

 © 2020, IJCSE All Rights Reserved 178

 International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol.8, Issue.5, May 2020 E-ISSN: 2347-2693

Performance Evaluation of Platforms Using Software Metrics

K.S. Aparna

1
, Vaibhav Kumar K.

2*
, Sushmitha G.

3
, Vanam Saikiran

4

1,2,3,4Department of Computer Science and engineering, RYMEC, VTU, Ballari, India

*Corresponding Author: vybhavkumar03@gmail.com , Tel.: +91-8861834245

DOI: https://doi.org/10.26438/ijcse/v8i5.178181 | Available online at: www.ijcseonline.org

Received: 20/May/2020, Accepted: 25/May/2020, Published: 31/May/2020

Abstract—In this paper, the quality of software and its performance is evaluated using software metrics. The software

product estimation is purely based on software metrics and is being applied on java and python platforms. Number of lines

of code (NLOC), Cyclomatic complexity number (CCN), Token count and parameter count have been utilized to analyze

the complexity of a program. The application is developed to test the codes of two different platforms and their

complexities are compared using doubly linked list program as an example. The results are recorded and compared based
on these software metrics to uncover the vary in results for similar projects.

The paper is divided into five sections. In section one we are discussing about software metrics and it's importance in

deciding the performance of different programming platforms. In section two we are discussing about different software

metrics that are used to evaluate the performance of the programs. In section 3 we are discussing the previous works and

related works. In section four we are taking an example and trying to evaluate the performance of the programs that are

written in java and python languages and discussing about the results. In section five we are discussing about the future

work and the conclusion of our developed tool.

Keywords— metrics, Cyclomatic complexity number (CCN), Number of lines of code (NLOC), Analyzer (developed tool),

parameter-count,token-count

I. INTRODUCTION

Software metrics are used to determine the various
software properties for example, cost, effort, reliability,

reusability, feasibility and maintenance. Programming

building is a genuinely intelligent and vital plan process as

a result of today’s dynamic condition which is very erratic

and on a basic level, not completely specifiable ahead of

time. Successful programming quality assessment requires

determinants that depict what quality is and how it tends to

be followed back to the improvement procedure or the

result itself. The programming industry is step by step

advancing towards a time of high development; where

casual ways to deal with the quality investigation cannot
work anymore. Because of the progressive development

[1], clients additionally perceive its worth and they are not

ready to settle on the subjective viewpoints. Despite this,

the inward nature of an item may go unchecked or be

purposely undermined on occasion. Programming

measurements are crude markers to code quality which

gives us the way to take star dynamic activities at the most

punctual stage conceivable, at whatever point venture is

getting off course. Java is most popular and widely used

programming language and it is a platform independent

language. It is an object-oriented programming. Python

works on different platforms and these two programming
languages has been taken as input to our model. Further,

Software measurements are instruments applied to a bit of

programming or its plan details to accomplish

reproducible quantitative estimations, which might be

additionally applied in cost estimation, venture planning,

investigating, quality confirmation.

II. DIFFERENT SOFTWARE METRICS AND ITS

IMPACT

Software metrics are most valuable entities in the whole

software life cycle. They provide the measurement for

software development. By using metrics, the software

quality can be improved. The analyzer is a software

application giving code measurements, for example,

cyclomatic complexity (CC) and the number of lines per

program; it assists with recognizing the functions of the

parameters and when applied to our code it surely assisted
with finding trouble instances of confusing code, anyway

measures, for example, Code complexity[13] have never

been unambiguously related with imperfect or breakable

code and it appears to feature code deserving of audit

instead of expressly deficient code. The Code complexity

stays a decent proportion of the number of experiments

important to completely test a bit of code.

NLOC (Number of lines): This one of the most important

length parameters which represent the total number of line

of codes along with the comments. Parameter of the LOC

measure claim [7] that LOC is an "artifact" of all software
development projects that can be counted. NLOC is

typically used to estimate or how much effort is required

to develop a program as well as to estimate and evaluate

other aspects of cost and quality.

 International Journal of Computer Sciences and Engineering Vol.8 (5), May 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 179

Cyclomatic complexity number: It is a software metric

used to indicate the complexity in the code and it is used

for white box testing. Initially created by Thomas

McCabe, this generally utilized measure checks straight

autonomous ways through a progression of control chart

[8]. This can be found by checking language

watchwords and administrators which influence on
source code multifaceted nature. Cyclomatic intricacy

has an establishment in diagram hypothesis and gives us

a very valuable sensible measurement. Cyclomatic

complexity can be calculated in two ways
V(G) = E - N + 2 (1), V(G) = P + 1 (2)

Where, Where,

E is Number of Edges P is predicted conditions

N is Number of node

Functions Count: All the capacities, strategies, or

subroutines are considered under this physical well as

coherent measurement. When contrasted with LOC, it
is increasingly important a size-metric because

somewhat, it is free of the programming language

selected. It is anything but difficult to figure and

serves best as an interface metric. The benefits of

using this measurement to support management

decision-making in order to ensure the quality of the

program.

Token count: A computer program is a collection of

tokens, which may be functions of the parameters and

when applied to our code it surely assisted with finding
trouble instances of confusing code.

III. RELATED WORK

Estimation is basic in any building space, and there is no

exclusion of programming designing. A few specialists in

the past have applied programming measurements as key

contributions to direct quality indicators. Henrike

Barkmann [3] distinguishes the connection between's few

measurements from notable article situated measurements

suites, for example, CK measurements, McCabe

Cyclomatic Complexity, and different size measurements,

other than introducing potential edges. Yasunari

Takai et al. [4] propose new programming measurements

dependent on coding guidelines infringement to catch
dormant blames in a turn of events. Dad Juda distinguishes

a straight development pattern in programming size for

manned space and airplane, which can sensibly anticipate
programming size in comparative future projects, utilizing

SLOC based information. Zhou Yuming and XU Baowen

[5] research the connections of size and unpredictability

measurements with the viability of opensource

programming. S. Pradeep et aluses CK measurements,

SLOC, COM measurements, and so on to examine the

connection between programming measurements and

imperfections. Domenico Cotroneo shows the connection

between programming maturing and a few static highlights

of the product. Cesar Couto, Christofer Silver find

confirmations towards causality between programming

measurements (as indicators) and the event of bugs.

Yuming Zhou rethinks the capacity of unpredictability

measurements to anticipate shortcoming inclination.

Daniela Glasberg approves OO plan measurements on a

business Java application. AK Pandey has utilized LOC,

MVG, and Halstead measurements to arrange the product

module as flaw inclined or not. Zhou et al infers that LOC

and WMC (weighted technique McCabe multifaceted
nature) are without a doubt preferable deficiency

inclination indicator over other lesser-known intricacy

measurements SDMC, AMC. In his enormous

observational investigation of five Microsoft programming

frameworks, Nagappan [6] found that disappointment

inclined programming substances are measurably

associated with code unpredictability measures.

IV. EXAMPLE AND RESULTS

For example, let’s take a program that has been written in

both the languages java and python. Here we took a
Doubly Linked-list program and we got the following

result Fig:1. By analysing that result the programmer will

choose the language in which he has to be implement his

project or any application.

4.1 The java program is as follows:

1. public class DoublyLinkedList {

2. class Node{

3. int data;

4. Node previous;

5. Node next;
6. public Node(int data) {

7. this.data = data;

8. }

9. }

10. Node head, tail = null;

11. public void addNode(int data) {

12. Node newNode = new Node(data);

13. if(head == null) {

14. head = tail = newNode;

15. head.previous = null;

16. tail.next = null;

17. }
18. else {

19. tail.next = newNode;

20. newNode.previous = tail;

21. tail = newNode

22. tail.next = null; }

23. }

24. public void display() {

25. Node current = head;

26. if(head == null) {

27. System.out.println("List is empty");

28. return;
29. }

30. System.out.println("Nodes of doubly linked

list: ");

31. while(current != null) {

32. System.out.print(current.data + " ");

33. current = current.next;

34. }

 International Journal of Computer Sciences and Engineering Vol.8 (5), May 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 180

35. }

36. public static void main(String[] args) {

37. DoublyLinkedList dList =

new DoublyLinkedList();

38. dList.addNode(1);

39. dList.addNode(2);

40. 40. dList.addNode(3);
41. dList.addNode(4);

42. dList.addNode(5);

43. dList.display();

44. }

45. }

4.2 The python program is as follows:

1. class Node:

2. def __init__(self,data):

3. self.data = data;

4. self.previous = None;
5. self.next = None;

6. class DoublyLinkedList:

7. def __init__(self):

8. self.head = None;

9. self.tail = None;

10. def addNode(self, data):

11. newNode =

Node(datadat

12. if(self.head == None):

13. self.head = self.tail = newNode;

14. self.head.previous = None;
15. self.tail.next = None;

16. else:

17. self.tail.next = newNode;

18. newNode.previous = self.tail;

19. self.tail = newNode;

20. self.tail.next = None;

21. def display(self):

22. current = self.head;

23. if(self.head == None):

24. print("List is empty");

25. return;

26. print("Nodes of doubly linked list: ");
27. while(current != None):

28. print(current.data),;

29. current = current.next;

30. dList = DoublyLinkedList();

31. dList.addNode(1);

32. dList.addNode(2);
33. dList.addNode(3);

34. dList.addNode(4);

35. dList.addNode(5);

36. dList.display();

The analyzer can compute the cyclomatic multifaceted

nature for programming written in different dialects. It

lines up with unpredictability, although it tallies switch

proclamations [11] by the number of cases and takes a

gander at consistent articulations for fanning.

Result discussion of java program:

1. Mathematically, the cyclomatic complexity is

calculated by using

 It can be calculated for each function for example,

 In 4.1line number 25. Public display()

 There are two condition nodes so

 V(G) = 2+1 = 3 (3)
 Here P =2

2. Lines of each class has been calculated by using

the length.

3. Token count for each class is

 The total number of tokens in function display()

 N = 53 (4)

4. The number of parameters in function display()

are calculated by parameters passed in a function.

Result discussion of python program:
1. The cyclomatic complexity for the function

display()
 In 4.2 line number 21. Of the function display()

 There are two condition nodes so

 V(G) = 2+1 =3 (here p=2) (5)

2. Lines of each class has been calculated by using

the length.

3. Token count for each class is

 The total number of tokens in function display()

 N = 65 (6)

4. The number of parameters in function display()

are calculated by parameters passed in a function.

As explained in the above the results for other functions

are calculated by using our software application. The

main difference we observed is some functions having

high complexity and high parameter and token counts. By

analyzing all the results the python program is having the

good performance.

Figure 1. Doubly Linked-List program report

V. FUTURE WORK AND CONCLUSION

There are a lot more things that need to be done in the

future with the software application of Analyzer to

include a more number of parameters to be tested and it

should cover more programming languages. This paper

 International Journal of Computer Sciences and Engineering Vol.8 (5), May 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 181

describes the progression of four software metrics on a

set of two programming languages java and python

programming platforms through software automated

analysis tools. Cyclomatic complexity centres around the

unpredictability of the program. Quality measures [16]

can help to find out which lines of code need to be made

more elegant and simpler, which lines need more
extensive testing and in line with a lot of experiments

going on in the same direction, we need to build things

easier to use we need to build things easier to use and

should have an economic value. This economical value

plays a very important role in deciding the different

platforms required for building the various applications

within cost, time and budget constraints. These software

metrics play very major role in deciding the performances

of various emerging platforms.

 REFERENCES

[1] H. Barkmann, R. Lincke, and W. Löwe. “Evaluation of

Software Quality Metrics In Open-Source Projects”. In

Proceedings of The 2009 IEEE International Workshop on

Quantitative Evaluation of large-scale Systems and

Technologies (QuEST09), Bradford, UK, 26-29th May 2009.

[2] Yasunar Takai, Takashi Kobayashi, kiyoshi Agus ”Software

Metrics based on Coding Standards Violations”, In Proc. the

Joint Conference of the 21th International Workshop on

Software Measurement and the 6th International Conference

on Software Process and Product Measurement

(IWSM/MENSURA2011) pp.273-278, Nara, Japan, 3-4 Nov.

2011.

[3] Paul A. Judas, Lorraine E. Prokop. “A historical compilation

of software metrics with applicability to NASA's Orion

spacecraft flight software sizing”. ISSE 7(3): 161-170 (2011).

[4] Yuming Z., Baowen X. “Predicting the Maintainability of

Open Source Software Using Design Metrics”. Wuhan

University Journal of Natural Sciences, Vol. 13 No.1, PP 14-

20. 2008.

[5] S Pradeep, Chaudhary K D and V Shrish. "An Investigation of

the Relationships between Software Metrics and Defects".

International Journal of Computer Applications 28(8):13-17,

August 2011. Foundation of Computer Science, New York,

USA.US

[6] M.Karanam, L.Gottemukkala ―Software Fault Detection Using

Improved Relief Detection Method”,Vol 4, Issue 5, pp.1-4,

October 2016.

[7] A. Fitzsimmons and T. Love, “A review and evaluation of

software science,” Computing Survey, vol. 10, no. 1, March

1978.

[8] S. D. Conte, H. E Dunsmore, and V. Y. Shen, “ Software

engineering metrics and models” Benjamin/ Cummings

Publishing Company, Inc., 1986.

[9] B. A. Nejmeh, “NPATH: A measure of execution path

complexity and its applications,” Comm. of the ACM, vol. 31,

no. 2, pp. 188-210, February 1988.

[10] T.A. McCabe, “A complexity measure,” IEEE Transactions

on Software Engineering, vol. 2, no. 4, pp. 308-320, December

1976.

[11] Woodward, Hennell, M.A., and Heldey, D.A.: “A measure of

control flow complexity in program text‟, lEEE Transactions

on Software Engineering, 1979, 5, (1). pp. 45 - 50.

[12] Hall, N.R., and Preiser, S.: ‟Combined network complexity

measures”, IBM Journal of Research & Development, 1984,

28, (I), pp. 15 – 27.

[13] Aanchal, Sonu Kumar ―Metrics for software components in

object oriented environments: A survey”, Vol 1, Issue 2,

march-april-2013.

[14] Wiener, R., and , R.: ‟Software engineering with Modula-2

and Ada” (Wiley, 1984).

[15] Dahl, O.J., Dijkstra, E.W., and Hoare, C.A.R.: “Structured

programming” (Academic Press, 1972).

[16] Dijkstra, E.W.:„Goto statement considered harmful‟,

Communications of ACM, 1968, 18, (8), pp. 453 – 457.

[17] O, Omidiora. E.O, Balogin M.O. “A complexity metric for

multi-paradigm programming languages”, vol.4, No.12,

December 2014.

[18] Ermiyas Birihanu Belachew, Feidu Akmel Gobena, Shumet

Tadesse Nigatu,”Analysis of software quality using software

metrics”, vol.8, No.4/5, October 2018.

[19] Gurudev Singh, Dilbag Singh, Vikram Singh “A study of

software metrics” vol.11, January 2011.

[20] Neha saini, Sapna kharwar, Anushree Agarwal,”A Study of

significant software metrics”,vol.3, No.12, July 2014.

Authors Profile

Mrs. k s Aparna working as assistant

professor in the Department of Computer

Science and Engineering at Rao

Bahadhur Y Mahabaleswarappa

Engineering college, Affiliated to VTU,

Belagavi, approved by AICTE, New

Delhi,and Govt. Of Karnataka, certified by NAAC with
B++, Cantonment, Ballari - 583101

Mr. Vaibhav Kumar K pursuing BE in

Department of Computer Science and

Engineering at Rao Bahadhur Y

Mahabaleswarappa Engineering college,

Affiliated to VTU, Belagavi, approved by

AICTE, New Delhi,and Govt. Of Karnataka, certified by

NAAC with B++, Cantonment, Ballari - 583101

Miss. Sushmitha G pursuing BE in

Department of Computer Science and

Engineering at Rao Bahadhur Y

Mahabaleswarappa Engineering college,

Affiliated to VTU, Belagavi, approved by

AICTE, New Delhi,and Govt. Of Karnataka, certified by

NAAC with B++, Cantonment, Ballari – 583101

Mr. Vanam Saikiran pursuing BE in

Department of Computer Science and

Engineering at Rao Bahadhur Y
Mahabaleswarappa Engineering college,

Affiliated to VTU, Belagavi, approved by

AICTE, New Delhi,and Govt. Of Karnataka, certified by

NAAC with B++, Cantonment, Ballari – 583101.

