[
AJCSE International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.8, Issue.5, May 2020 E-ISSN: 2347-2693

Performance Evaluation of Platforms Using Software Metrics

K.S. Aparna’, Vaibhav Kumar K.*", Sushmitha G.%, Vanam Saikiran®
1234Department of Computer Science and engineering, RYMEC, VTU, Ballari, India

“Corresponding Author: vybhavkumar03@gmail.com, Tel.: +91-8861834245
DOI: https://doi.org/10.26438/ijcse/v8i5.178181 | Available online at: www.ijcseonline.org

Received: 20/May/2020, Accepted: 25/May/2020, Published: 31/May/2020

Abstract—In this paper, the quality of software and its performance is evaluated using software metrics. The software
product estimation is purely based on software metrics and is being applied on java and python platforms. Number of lines
of code (NLOC), Cyclomatic complexity number (CCN), Token count and parameter count have been utilized to analyze
the complexity of a program. The application is developed to test the codes of two different platforms and their
complexities are compared using doubly linked list program as an example. The results are recorded and compared based
on these software metrics to uncover the vary in results for similar projects.

The paper is divided into five sections. In section one we are discussing about software metrics and it's importance in
deciding the performance of different programming platforms. In section two we are discussing about different software
metrics that are used to evaluate the performance of the programs. In section 3 we are discussing the previous works and
related works. In section four we are taking an example and trying to evaluate the performance of the programs that are
written in java and python languages and discussing about the results. In section five we are discussing about the future
work and the conclusion of our developed tool.

Keywords— metrics, Cyclomatic complexity number (CCN), Number of lines of code (NLOC), Analyzer (developed tool),

parameter-count,token-count

I. INTRODUCTION

Software metrics are used to determine the various
software properties for example, cost, effort, reliability,
reusability, feasibility and maintenance. Programming
building is a genuinely intelligent and vital plan process as
a result of today’s dynamic condition which is very erratic
and on a basic level, not completely specifiable ahead of
time. Successful programming quality assessment requires
determinants that depict what quality is and how it tends to
be followed back to the improvement procedure or the
result itself. The programming industry is step by step
advancing towards a time of high development; where
casual ways to deal with the quality investigation cannot
work anymore. Because of the progressive development
[1], clients additionally perceive its worth and they are not
ready to settle on the subjective viewpoints. Despite this,
the inward nature of an item may go unchecked or be
purposely undermined on occasion. Programming
measurements are crude markers to code quality which
gives us the way to take star dynamic activities at the most
punctual stage conceivable, at whatever point venture is
getting off course. Java is most popular and widely used
programming language and it is a platform independent
language. It is an object-oriented programming. Python
works on different platforms and these two programming
languages has been taken as input to our model. Further,
Software measurements are instruments applied to a bit of
programming or its plan details to accomplish
reproducible quantitative estimations, which might be

© 2020, IJCSE All Rights Reserved

additionally applied in cost estimation, venture planning,
investigating, quality confirmation.

Il. DIFFERENT SOFTWARE METRICSAND ITS
IMPACT

Software metrics are most valuable entities in the whole
software life cycle. They provide the measurement for
software development. By using metrics, the software
quality can be improved. The analyzer is a software
application giving code measurements, for example,
cyclomatic complexity (CC) and the number of lines per
program; it assists with recognizing the functions of the
parameters and when applied to our code it surely assisted
with finding trouble instances of confusing code, anyway
measures, for example, Code complexity[13] have never
been unambiguously related with imperfect or breakable
code and it appears to feature code deserving of audit
instead of expressly deficient code. The Code complexity
stays a decent proportion of the number of experiments
important to completely test a bit of code.

NLOC (Number of lines): This one of the most important
length parameters which represent the total number of line
of codes along with the comments. Parameter of the LOC
measure claim [7] that LOC is an "artifact" of all software
development projects that can be counted. NLOC is
typically used to estimate or how much effort is required
to develop a program as well as to estimate and evaluate
other aspects of cost and quality.

178

International Journal of Computer Sciences and Engineering

Cyclomatic complexity number: It is a software metric
used to indicate the complexity in the code and it is used
for white box testing. Initially created by Thomas
McCabe, this generally utilized measure checks straight
autonomous ways through a progression of control chart
[8]. This can be found by checking language
watchwords and administrators which influence on
source code multifaceted nature. Cyclomatic intricacy
has an establishment in diagram hypothesis and gives us
a very valuable sensible measurement. Cyclomatic
complexity can be calculated in two ways
V(G)=E-N+2 1), V@G)=P+1 (2)
Where, Where,

E is Number of Edges P is predicted conditions
N is Number of node

Functions Count: All the capacities, strategies, or
subroutines are considered under this physical well as
coherent measurement. When contrasted with LOC, it
is increasingly important a size-metric because
somewhat, it is free of the programming language
selected. It is anything but difficult to figure and
serves best as an interface metric. The benefits of
using this measurement to support management
decision-making in order to ensure the quality of the
program.

Token count: A computer program is a collection of
tokens, which may be functions of the parameters and
when applied to our code it surely assisted with finding
trouble instances of confusing code.

I1l. RELATED WORK

Estimation is basic in any building space, and there is no
exclusion of programming designing. A few specialists in
the past have applied programming measurements as key
contributions to direct quality indicators. Henrike
Barkmann [3] distinguishes the connection between's few
measurements from notable article situated measurements
suites, for example, CK measurements, McCabe
Cyclomatic Complexity, and different size measurements,
other than introducing potential edges. Yasunari
Takai et al. [4] propose new programming measurements
dependent on coding guidelines infringement to catch
dormant blames in a turn of events. Dad Juda distinguishes
a straight development pattern in programming size for
manned space and airplane, which can sensibly anticipate
programming size in comparative future projects, utilizing
SLOC based information. Zhou Yuming and XU Baowen
[5] research the connections of size and unpredictability
measurements with the viability of opensource
programming. S. Pradeep et aluses CK measurements,
SLOC, COM measurements, and so on to examine the
connection between programming measurements and
imperfections. Domenico Cotroneo shows the connection
between programming maturing and a few static highlights
of the product. Cesar Couto, Christofer Silver find
confirmations towards causality between programming
measurements (as indicators) and the event of bugs.

© 2020, IJCSE All Rights Reserved

Vol.8 (5), May 2020, E-ISSN: 2347-2693

Yuming Zhou rethinks the capacity of unpredictability
measurements to anticipate shortcoming inclination.
Daniela Glasberg approves OO plan measurements on a
business Java application. AK Pandey has utilized LOC,
MVG, and Halstead measurements to arrange the product
module as flaw inclined or not. Zhou et al infers that LOC
and WMC (weighted technique McCabe multifaceted
nature) are without a doubt preferable deficiency
inclination indicator over other lesser-known intricacy
measurements SDMC, AMC. In his enormous
observational investigation of five Microsoft programming
frameworks, Nagappan [6] found that disappointment
inclined programming substances are measurably
associated with code unpredictability measures.

IV. EXAMPLE AND RESULTS

For example, let’s take a program that has been written in
both the languages java and python. Here we took a
Doubly Linked-list program and we got the following
result Fig:1. By analysing that result the programmer will
choose the language in which he has to be implement his
project or any application.

4.1 The java program is as follows:
1. public class DoublyLinkedList {
2. class Node{

3. intdata;

4. Node previous;

5. Node next;

6. public Node(int data) {

7. this.data = data;

8

9

}

-}
10. Node head, tail = null;
11. public void addNode(int data) {
12. Node newNode = new Node(data);
13. if(head == null) {
14. head = tail = newNode;
15. head.previous = null;
16. tail.next = null;

}
18. else {
19. tail.next = newNode;
20. newNode.previous = tail;
21. tail = newNode
22. tail.next =null; }

}

24. public void display() {

25. Node current = head;

26. if(head == null) {

27. System.out.printin(“List is empty");

28. return;

29. }

30. System.out.printin(*"Nodes of doubly linked
list:);

31. while(current = null) {

32. System.out.print(current.data + " ');

33. current = current.next;

34. }

179

International Journal of Computer Sciences and Engineering

35.
36.
37.

}
public static void main(String[] args) {

DoublyLinkedList dList =
new DoublyLinkedList();

Vol.8 (5), May 2020, E-ISSN: 2347-2693

Result discussion of java program:
1. Mathematically, the cyclomatic complexity is
calculated by using
It can be calculated for each function for example,

38. dList.addNode(1); In 4.1line number 25. Public display()

39. dList.addNode(2); There are two condition nodes so

40. 40. dList.addNode(3); V(G)=2+1=3 3)

41. dList.addNode(4); Here P =2

42. dList.addNode(5); 2. Lines of each class has been calculated by using
43. dList.display(); the length.

44. } 3. Token count for each class is

45. } The total number of tokens in function display()

4.2 The python program is as follows:

N =53 4)
4. The number of parameters in function display()
are calculated by parameters passed in a function.

1. class Node:

2. def _init_ (self,data): Result discussion of python program:

3. self.data = data; 1. The cyclomatic complexity for the function

4. self.previous = None; display()

5. self.next = None; In 4.2 line number 21. Of the function display()
6. class DoublyLinkedList: There are two condition nodes so

7. def __init_ (self): V(G) = 2+1 =3 (here p=2) (5)

8. self.head = None; 2. Lines of each class has been calculated by using
9. self.tail = None; the length.

10. def addNode(self, data): 3. Token count for each class is

11. newNode = The total number of tokens in function display()
Node(datadat N =65 (6)

12. if(self.nead == None): 4. The number of parameters in function display()
13. self.head = self.tail = newNode; are calculated by parameters passed in a function.
14, self.head.previous = None;

15. self.tail.next = None; As explained in the above the results for other functions
16. else: are calculated by using our software application. The
17. self.tail.next = newNode; main difference we observed is some functions having
18. newNode.previous = self.tail; high complexity and high parameter and token counts. By
19. self.tail = newNode; analyzing all the results the python program is having the
20. self.tail.next = None; good performance.

21. def display(self):

22. current = self.head;

23. if(self.nead == None):

24, print("List is empty"); S—

25. return; ——— '

26. print("Nodes of doubly linked list: "); B . ety

27. while(current '= None): - - :

28. print(current.data),; Sh— ™ -

29. current = current.next; (““[ul.

30. dList = DoublyLinkedList(); —— ‘

3L dList.addNode(1); e S I i

32. dList.addNode(2); e : 2 >

33. dList.addNode(3); — . . '

34. dList.addNode(4); S e

35. dList.addNode(5);

36. dList.display();

Figure 1. Doubly Linked-List program report

The analyzer can compute the cyclomatic multifaceted
nature for programming written in different dialects. It V.
lines up with unpredictability, although it tallies switch
proclamations [11] by the number of cases and takes a
gander at consistent articulations for fanning.

FUTURE WORK AND CONCLUSION

There are a lot more things that need to be done in the
future with the software application of Analyzer to
include a more number of parameters to be tested and it
should cover more programming languages. This paper

© 2020, IJCSE All Rights Reserved 180

International Journal of Computer Sciences and Engineering

describes the progression of four software metrics on a
set of two programming languages java and python
programming platforms through software automated
analysis tools. Cyclomatic complexity centres around the
unpredictability of the program. Quality measures [16]
can help to find out which lines of code need to be made
more elegant and simpler, which lines need more
extensive testing and in line with a lot of experiments
going on in the same direction, we need to build things
easier to use we need to build things easier to use and
should have an economic value. This economical value
plays a very important role in deciding the different
platforms required for building the various applications
within cost, time and budget constraints. These software
metrics play very major role in deciding the performances
of various emerging platforms.

REFERENCES

[1] H. Barkmann, R. Lincke, and W. Léwe. “Evaluation of
Software Quality Metrics In Open-Source Projects”. In
Proceedings of The 2009 IEEE International Workshop on
Quantitative Evaluation of large-scale Systems and
Technologies (QUESTO09), Bradford, UK, 26-29th May 2009.
Yasunar Takai, Takashi Kobayashi, kiyoshi Agus “Sofiware
Metrics based on Coding Standards Violations”, In Proc. the
Joint Conference of the 21th International Workshop on
Software Measurement and the 6th International Conference
on Software Process and Product Measurement
(IWSM/MENSURAZ2011) pp.273-278, Nara, Japan, 3-4 Nov.
2011.

Paul A. Judas, Lorraine E. Prokop. “A historical compilation

of software metrics with applicability to NASA's Orion

spacecraft flight software sizing”. ISSE 7(3): 161-170 (2011).

Yuming Z., Baowen X. “Predicting the Maintainability of

Open Source Software Using Design Metrics”. \Wuhan

University Journal of Natural Sciences, Vol. 13 No.1, PP 14-

20. 2008.

S Pradeep, Chaudhary K D and V Shrish. "An Investigation of

the Relationships between Software Metrics and Defects".

International Journal of Computer Applications 28(8):13-17,

August 2011. Foundation of Computer Science, New York,

USA.US

M.Karanam, L.Gottemukkala “Software Fault Detection Using

Improved Relief Detection Method” Vol 4, Issue 5, pp.1-4,

October 2016.

A. Fitzsimmons and T. Love, “4 review and evaluation of

software science,” Computing Survey, vol. 10, no. 1, March

1978.

S. D. Conte, H. E Dunsmore, and V. Y. Shen,

engineering metrics and models”

Publishing Company, Inc., 1986.

B. A Nejmeh, “NPATH: A measure of execution path

complexity and its applications,” Comm. of the ACM, vol. 31,

no. 2, pp. 188-210, February 1988.

[10] T.A. McCabe, “4 complexity measure,” |IEEE Transactions
on Software Engineering, vol. 2, no. 4, pp. 308-320, December
1976.

[11] Woodward, Hennell, M.A., and Heldey, D.A.: “4 measure of
control flow complexity in program text", |EEE Transactions
on Software Engineering, 1979, 5, (1). pp. 45 - 50.

[12] Hall, N.R., and Preiser, S.: “Combined network complexity
measures”, IBM Journal of Research & Development, 1984,
28, (1), pp. 15 - 27.

(2]

(3]

[4]

[5]

[6]

[7]

8]

“ Software
Benjamin/ Cummings

[9]

© 2020, IJCSE All Rights Reserved

Vol.8 (5), May 2020, E-ISSN: 2347-2693

[13] Aanchal, Sonu Kumar “Metrics for software components in
object oriented environments: A survey”, Vol 1, Issue 2,
march-april-2013.

[14] wiener, R., and , R.: “Software engineering with Modula-2
and Ada” (Wiley, 1984).

[15] Dahl, O.J., Dijkstra, E.W., and Hoare, C.A.R.: “Structured
programming ” (Academic Press, 1972).
[16] Dijkstra, E.W.;,,Goto statement considered harmful®,

Communications of ACM, 1968, 18, (8), pp. 453 —457.

[17] O, Omidiora. E.O, Balogin M.O. “4 complexity metric for
multi-paradigm programming languages”, vol.4, No.12,
December 2014.

[18] Ermiyas Birihanu Belachew, Feidu Akmel Gobena, Shumet
Tadesse Nigatu, “Analysis of software quality using software
metrics”, vol.8, No.4/5, October 2018.

[19] Gurudev Singh, Dilbag Singh, Vikram Singh “A4 study of
software metrics” vol.11, January 2011.

[20] Neha saini, Sapna kharwar, Anushree Agarwal,’A Study of
significant software metrics ”,vol.3, No.12, July 2014.

Authors Profile

Mrs. k s Aparna working as assistant
professor in the Department of Computer
Science and Engineering at Rao
Bahadhur Y Mahabaleswarappa
Engineering college, Affiliated to VTU,
Belagavi, approved by AICTE, New [
Delhi,and Govt. Of Karnataka, certified by NAAC with
B++, Cantonment, Ballari - 583101

Mr. Vaibhav Kumar K pursuing BE in

Department of Computer Science and
Engineering at Rao Bahadhur Y
Mahabaleswarappa Engineering college,

Affiliated to VTU, Belagavi, approved by R
AICTE, New Delhi,and Govt. Of Karnataka, certified by
NAAC with B++, Cantonment, Ballari - 583101

Miss. Sushmitha G pursuing BE in

Department of Computer Science and ﬁ ‘
Engineering at Rao Bahadhur Y . |
Mahabaleswarappa Engineering college,)4 @
Affiliated to VTU, Belagavi, approved by | i

AICTE, New Delhi,and Govt. Of Karnataka, certified by
NAAC with B++, Cantonment, Ballari — 583101

Mr. Vanam Saikiran pursuing BE in
Department of Computer Science and
Engineering at Rao Bahadhur Y
Mahabaleswarappa Engineering college,
Affiliated to VTU, Belagavi, approved by J
AICTE, New Delhi,and Govt. Of Karnataka, certified by
NAAC with B++, Cantonment, Ballari —583101.

181

