

 © 2020, IJCSE All Rights Reserved 144

 International Journal of Computer Sciences and Engineering Open Access
Research Paper Vol.8, Issue.5, May 2020 E-ISSN: 2347-2693

IoT Data Analytics Pipeline using Elastic Stack and Kafka

Jayashri V

1*
, K Badari Nath

2

1,2Dept. of Computer Science and Engineering, R V College of Engineering, Bangalore, India

*Corresponding Author: jaya.shri1998@gmail.com, Tel.:9886520107

DOI: https://doi.org/10.26438/ijcse/v8i5.144148 | Available online at: www.ijcseonline.org

Received: 03/May/2020, Accepted: 12/May/2020, Published: 31/May/2020

Abstract— With Internet of Things enabling advanced connectivity of devices and systems, different types of sensors are

being used in various use cases. These generate huge volumes of data which can be processed and analysed over

distributed systems for the benefit of industries like healthcare, supply chain, agriculture, transportation and so on. Elastic
Stack is a set of open source solutions from Elastic. It is designed to help users move data of any kind from any type of

source and index, search, analyze, and visualize that data in real-time. It consists of Filebeat for shipping the logs, Logstash

for extracting and indexing, Elasticsearch for storing, searching and analysing, and Kibana for visualizing. It can be used

along with Apache Kafka which is an open source distributed streaming platform generally used to build data streaming

pipelines that move data between systems reliably. This paper explores the fundamentals of Apache Kafka and the Elastic

stack and how Kafka can be used in conjunction with the Elastic stack for collecting and analyzing the data generated by

networked sensors for IoT applications. It lays out the design for a system based on open source components, that monitors

the data from the sensors on devices, performs analytics and alerts the concerned teams when required.

Keywords— Apache Kafka, Elastic Stack, Filebeat, Logstash, Elasticsearch, Kibana, IoT

I. INTRODUCTION

Internet of Things (IoT) is one of the most enabling

technologies in the world today. From agriculture and
manufacturing to retail, the way many industries do

business is being changed by IoT. IoT device installations

in agriculture help farmers collect data about their crops

and livestock to optimize yields. In the healthcare industry,

IoT implies better and faster services for patients and

efficient monitoring of healthcare devices. Supply chain

logistics connect shipping vehicles with sensors to monitor

temperature and other metrics to ensure quality of the

goods [1]. Gartner, Inc. estimates that the industrial,

commercial and automotive IoT markets together will

grow to 5.8 billion endpoints in 2020. This is an increase
of 21% from 2019.

IoT devices comprise of various kinds of sensors that are

networked and can generate numerous data points at high

frequency. A simple temperature sensor can generate few

bytes of data per minute while a connected vehicle can

generate gigabytes of data per second. These huge data sets

indicate specific metrics. They can be ingested,

transformed, stored, queried and analysed in real time to

gain more value from them [2]. Being able to collect data

from various networked sensors at scale and send them to
applications at different geographical regions can be used

in various industries like supply chain, healthcare,

agriculture. This high-volume telemetry data can be

streamed and analysed to monitor the IoT device metrics

and alert if there is any anomalous behaviour. A system

based on open source tools can be setup to perform this at

scale. The paper discusses the blueprint for the components

used in such a system and how they work in conjunction.

The rest of the paper is organized as follows; Section II

contains the proposed system for the use of Internet of
Things. Section III discusses the technologies used to

implement the architecture proposed. Section IV explains

the qualitative results and section V concludes the paper

with an idea of the future scope of the proposed

architecture.

II. PROPOSED SYSTEM

Different kinds of sensor networks can be used to generate

data points that indicate specific metrics. For example,

Heating, Ventilation and Air Conditioning (HVAC) refers
to different systems in place for providing air circulation,

heating and cooling for residential and commercial

buildings. They keep reporting the ambient temperature,

desired temperature, air quality, humidity and energy

consumption metrics using sensors like temperature

sensors, air quality sensors, CO2 sensors, humidity sensors

and occupancy sensors [3].

In large organizations, these data points are collected

frequently from many HVACs, and can be sent to a central

IoT gateway that aggregates the data points as logs and
ingests them into the system [4]. The paper discusses the

architecture of an IoT data analytics pipeline and the

technologies with which the system can be implemented.

Fig. 1. shows a technology agnostic block diagram of the

pipeline. Fig. 2. goes into the details of the technologies to

be used in the implementation of the architecture.

https://whatis.techtarget.com/definition/open-source
https://searchitoperations.techtarget.com/definition/Elastic

 International Journal of Computer Sciences and Engineering Vol.8 (5), May 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 145

Fig. 1. Architecture diagram for log analytics pipeline

Fig. 2. Technology mapping for architecture components

In the proposed architecture, logs aggregated at the IoT

gateway from various HVAC systems are forwarded by a

log shipper (Filebeat). The Filebeat agent monitors the log

files at regular intervals and forwards it to the output

configured (Apache Kafka). Filebeat keeps checking the

files for newer log entries whenever the sensor readings

update the files. To avoid forwarding unnecessary logs,

users can also specify which lines of the files to include or

exclude while sending messages to Kafka.

The data is shipped as messages into an Apache Kafka

cluster. Kafka acts as a layer that permits huge volumes of

sensor data to be ingested with high performance. It

enables data to be streamed from the edge(producers) to

the consuming applications(subscribers) on the cloud.

Kafka provides a pull-based messaging system. This

provides the advantage of adding different consumers that

consume at their own pace without affecting the

performance.

Logstash pulls the data from Kafka, normalizes the logs

and sends the data to an analytics data store

(Elasticsearch). Logstash provides a broad array of filters

that enable users to parse through the sensor logs, remove

unnecessary fields and create relevant fields for the JSON

output.

Elasticsearch enables the organization to perform search

and analytics on the data. By knowing the thresholds of

sensor data or data ranges, the management can set

maintenance plans on real data instead of having fixed

maintenance cycles where components may be forced to be
replaced even if they‘re not nearing end of life. Using

Elasticsearch helps generate a specific and useful

maintenance plan which is more accurate and reduces

production downtime and costs [5]. Appropriate

visualizations can also be made to derive more value using

Kibana, the visualization tool that works in conjunction

with Elasticsearch.

Using the HVAC sensor metrics, the organization can

analyze the health of the devices. It can also monitor the

performance of the HVAC systems by tracking the metrics

and taking corrective actions. This can be used as an early

warning mechanism for failures. In case of failures or

critical conditions, an alert system can be put in place to

inform the concerned authorities about the scenario. For
example, an alert can be triggered when the CO2 levels

(indicated by the CO2 sensor readings) in the building

crosses the threshold, so that appropriate action can be

taken to increase the ventilation. For this, Kibana‘s alerting

system can be leveraged or a customized solution can be

built that observes the data, detects a condition and takes

the appropriate action.

The applications processing the data that comes from the

IoT edge can be deployed on the cloud. For example,

according to the official documentation, Microsoft Azure

provides an SLA of 99.9% on Kafka uptime. It allows
seamless integration of the Elastic stack on the cloud to

format, search, analyze and visualize data reliably and

securely in real-time.

III. TECHNOLOGIES USED TO IMPLEMENT

THE ARCHITECTURE

A. Filebeat

Filebeat is a lightweight shipper for files located locally. It

is used to forward the log data and centralize it. The

Filebeat agent can be installed on the server which keeps
monitoring the log files or input locations specified and

ships them to the outputs which could be Elasticsearch,

Logstash, Kafka and a few others. When Filebeat is started,

it starts the input configured to look at the locations

specified for log data. For each log file located, a harvester

is started. It reads the file line by line, sends the new data to

libbeat which aggregates the events and forwards the

aggregated content to the provided output.

Listing 1. shows a sample filebeat.yml configuration to get

prospectors (inputs) from a folder of log files and output to

a Kafka cluster. The output can be configured by setting
options in the Outputs section of the filebeat.yml

configuration file. In the ‗prospectors‘ settings of the

filebeat.yml file, the path of the log files that are the input to

Beats is provided. Filebeat also provides ‗include_lines‘

and ‗exclude_lines‘ settings. These are to include or

exclude respectively, only those lines of the log files that

wholly or partly match the regular expression specified.

Multiline pattern settings enable users to configure which

lines are to be sent as a single event to Kafka.

filebeat.prospectors:

- type: log

 enabled: true

 paths:

 - /usr/local/etc/filebeat/sensor/*.log

 exclude_lines: [„ERR‟,‟WARN‟]

output.kafka:

 hosts: ["localhost:9092"]

 topic: 'sensorTopic'

 codec.json:

 International Journal of Computer Sciences and Engineering Vol.8 (5), May 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 146

 pretty: true

Listing 1. Sample Filebeat Configuration

B. Kafka

Kafka was developed to solve the problem of delivering

high volume event data to numerous subscribers. Built

originally by the world‘s largest professional social network

LinkedIn, it has been donated to the Apache Software

Foundation and hence open sourced. As of October 2019,

LinkedIn‘s Kafka deployments handle over 7 trillion

messages every day.

Kafka helps move data to where we need it, in real time,

reducing the problems that come with integrations between

multiple source and target systems. This is done by

allowing data streams to be decoupled from the systems.

So, source systems generate events or messages to Apache

Kafka and target systems will source their data from

Apache Kafka.

Kafka functions as a cluster consisting of one or more

servers called Kafka brokers. Producers push records into

Kafka topics. A topic in Kafka cluster is a category name to
which applications can publish, process and reprocess

records. Topics can have zero or more consumers

subscribed to the data that is written to them. Data is stored

in the topics for a specified retention period. Brokers in a

cluster are managed by Zookeeper. A cluster can have

multiple zookeepers preferably odd numbered. Zookeepers

store the metadata information related to the cluster [6].

Kafka topics can be divided into zero or more partitions.

They contain records in a sequence that can‘t be changed.

Each record in a partition is assigned and identified by its

unique offset as shown in fig. 3. Order of the messages is
maintained within partitions. Partitions let users to

parallelize a topic by allowing the data produced to the

topic to be split across multiple brokers (servers). Each

partition can be placed in different servers to allow multiple

consumers to read from a topic simultaneously. Writes to a

partition are sequential. Reading messages however can be

either from beginning or also from any point in the partition

by providing the offset value [6].

Each partition is replicated across a number of servers that

can be configured. This provides one of Kafka‘s important
advantages, fault tolerance. Replica is a redundant unit of a

topic partition. For each partition, there is a server that

behaves as the leader and others (zero or more) acting as

followers. The leader is responsible for all reads and writes

for the partition and the followers make exact copies of the

leader. One of the followers are assigned as the new leader

automatically if the leader fails. To balance the load, a

server can be a leader for a few of its partitions and

follower for some others [6].

Fig. 3. Apache Kafka architecture

C. Logstash

Logstash is an open source data processing pipeline that

accepts data from multiple sources, transforms it and

forwards it to the configured output. The events are
processed in the pipeline: inputs->filters->outputs. The

input plugin allows handling of a specific input stream

which could be events from Kafka, Filebeat, CSV files,

Redis, RabbitMQ, TCP sockets, endpoints of

HTTP/HTTPS APIs and others. The inputs can then be

mutated to modify it, remove unwanted data, or add extra

information. Various plugins are provided for many

operations like parsing, extracting, managing and

structuring the data [7]. For example, the Grok filter can be

used to extract data from a string field that is of a known

pattern, or custom patterns specified in a separate folder.
Logstash also supports a huge range of destinations like

Elasticsearch, CSV files, database, data analytics

algorithms or just to be shown on the console. Listing 2

shows a sample ‗logstash-sample.conf‘ file that matches a

custom pattern specified in the ‗patterns‘ directory. The

index pattern is specified in the output plugin to split the

data (HVAC data in Listing 2) into many indices for

Elasticsearch. An index pattern can match many

Elasticsearch indices. So, each document can be sent to the

appropriate index depending on its content or timestamp,

automatically [7].

input {

 kafka {

 bootstrap_servers => "localhost:9092"

 topics => ["sensors-topic"]

 codec => json

 }

}

filter {

 grok {

 patterns_dir => ['./patterns']

 match => ["message","%{SENSORSFORMAT:HVAC}

%{OMIT:omitfield}"]

 }

 mutate {

 remove field => ["@version" ,"@metadata" ,"host" ,"omitfield"]

 }

 split { field => "HVAC" }

}

output {

 elasticsearch {

 hosts => ["http://localhost:9200"]

 index => "HVAC-%{+dd.MM.YYYY}"

 }

}

Listing 2. Sample Logstash configuration file

 International Journal of Computer Sciences and Engineering Vol.8 (5), May 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 147

D. Elasticsearch

Elasticsearch is an open source, distributed search and

analytics engine. It can be used to store, search and analyze

big volumes of data that could be logs, numerical, textual,

structured and unstructured. For full text querying, it

implements inverted indices with finite state transducers

and for analytics, it makes use of column stores. Raw data
flows from various sources. This raw data is parsed,

normalized, transformed and enriched and then ingested to

Elasticsearch for indexing. After indexing in Elasticsearch,

users can run queries and aggregations on the data to

obtain useful data summaries [8].

When a JSON object is sent to Elasticsearch, it

automatically creates a document with the right mapping

for each field without causing an overhead on

performance. Elasticsearch provides dedicated APIs for

mapping configuration. To customize the indexing, users

can provide their own mapping definition [9]. Users can
also prevent indexing unwanted data by disabling dynamic

mapping for sections of the document selected. For some

use-cases, multiple mappings are possible causing an

overhead. For instance, a string field can be indexed for

text search as a text field and for sorting and aggregations

as a key word field. If the main use of such a field is

known, overhead can be avoided by specifying beforehand

how it will be indexed.

Listing 3. is a sample Index template that has mappings,

index settings and patterns based on which the system
determines whether the template pertains to an index that is

newly added [7]. The data types for fields like

carbon_dioxide, temperature and humidity are specified.

PUT ‟http ://localhost:9200/_template/hvac‟

{

 ”template”:"HVAC-*",

 ”settings”:{"number_of_replicas":4},

 ”mappings”:{

 ”logs”:{

 ”properties”:{

 ”carbon_dioxide”:{"type":"short"},

 “temperature”:{“type”:”byte”},

 “humidity”:{“type”:”byte”}

 }

 }

 }

}

Listing 3. Sample index template for HVAC-* indices [7]

E. Kibana

Storing a lot of information in a structured format is only

useful if we get value out of it. One way to generate value
is by getting better insights into what is happening using

visualizations. Kibana provides a web-based interface for

viewing, searching and analysing the data stored in

Elasticsearch. The main components of the Kibana main

view are – Discover, Visualize, Dashboards and

Management. The management component is to configure

index patterns and other details. It can be used to view the

index fields and their properties. Formatters for the field

can be modified to change how the field is viewed in the

Kibana Graphical User Interface. Discover permits users to

browse interactively and analyze the data. Visualize

section is used to visualize the data using one or more of

the provided plugins. It helps create tables, graphs, pie

charts and more [10]. Dashboard is used to combine

multiple saved visualize and discover outputs into a single

view. Users can rearrange and resize the dashboard
elements according to their needs [7].

IV. RESULTS AND DISCUSSION

A basic test of this architecture using readings from

temperature, pressure and humidity sensors has shown that

significant flexibility for configuration changes is present

when using elastic stack. The streaming of large volumes

of continuous sensor readings happens reliably and

seamlessly using Apache Kafka. Elasticsearch not only

behaves as a high-performance database but also as an

efficient source to visualize data on the Kibana dashboards.
The watcher UI, a feature of Elasticsearch is used to set the

conditions to generate a threshold alert. All these offer a

higher level of customization as they are open source tools.

V. CONCLUSION

The paper throws light on the problem of how HVAC

systems‘ sensor data produced in one location needs to be

aggregated and processed for analysis elsewhere for

monitoring and alerting. A solution for handling this

processing on a pipeline based on open source technologies
is presented. The application of Filebeat to forward sensor

data to Apache Kafka which ensures guaranteed, low

latency and high throughput delivery to the data analytics

pipeline is discussed. The consumer end of Kafka shows

how Logstash is used for parsing and transforming the data

into a structured format for indexing in the search and

analytics engine, Elasticsearch. Visualizations are done

using Kibana. The paper also provides an in-depth

introduction to the technologies (Elastic stack and Apache

Kafka) used throughout the proposed IoT data analytics

pipeline.

The Elastic stack offers benefits like incredible scalability,

reliability, flexibility to work with multiple data sources,

support for big data and customizability that comes with

being open sourced [11]. With many well-known

organizations today like Uber, GitHub and Adobe

deploying the Elastic stack, it is rapidly growing as a

complete solution for operational and application logging.

Although the analytics pipeline discussed in the paper is

from an Internet of Things perspective, its scope can also

be extended for other use cases like processing and

performing analysis on System logs, Web server logs, logs
from database and so on.

REFERENCES

[1] M. Sheik Dawood, M. Jehosheba Margaret, R. Devika, ―Review

on Applications of Internet of Things (IoT)‖, International

Journal of Advanced Research in Computer Engineering &

Technology, Vol. 7, Issue 12, pp: 841-845, December 2018

 International Journal of Computer Sciences and Engineering Vol.8 (5), May 2020, E-ISSN: 2347-2693

 © 2020, IJCSE All Rights Reserved 148

[2] Mantripatjit Kaur, Anjum Mohd Aslam, ―Big Data Analytics on

IOT: Challenges, Open Research Issues and

Tools‖, International Journal of Scientific Research in Computer

Science and Engineering, Vol.6, Issue.3, pp.81-85, June 2018.

[3] Jordi Serra, David Pubill, Angelos Antonopoulos, Christos

Verikoukis, ―Smart HVAC Control in IoT: Energy Consumption

Minimization with User Comfort Constraints‖, The Scientific

World Journal, 2014. doi:10.1155/2014/161874

[4] Poonam M. Mahajan, ―WSN: Infrastructure and

Applications‖, International Journal of Scientific Research in

Network Security and Communication, Vol.06, Issue.01, pp.6-

10, 2018.

[5] Hong-Linh Truong, ―Integrated Analytics for IIoT Predictive

Maintenance Using IoT Big Data Cloud Systems‖, 2018 IEEE

International Conference on Industrial Internet (ICII), pp: 109-

118.

[6] Jay Kreps, Neha Narkhede, Jun Rao, ―Kafka : a Distributed

Messaging System for Log Processing‖, 6th International

Workshop on Networking Meets Databases (NetDB 2011),

Athens, Greece. Jun. 12, 2011.

[7] Marcin Bajer, "Building an IoT Data Hub with Elasticsearch,

Logstash and Kibana", 5th International Conference on Future

Internet of Things and Cloud Workshops (FiCloudW), Prague,

2017, pp. 63-68.

[8] D. Kalyani, Dr. D. Mehta, ―Paper on Searching and Indexing

Using Elasticsearch‖, International Journal of Engineering and

Computer Science Vol. 6, Issue 6, pp: 21824-21829, June 2017

[9] Paro A., ElasticSearch Cookbook - Second Edition, Packt

Publishing

Ltd, Jan 2015

[10] Sunny Advani, Meghna Mridul, Prof. S. R. Vij, Manil Agarwal,

Loya Palak A., Kasturkar Sanketa S, ―Log Analytics Using ELK

Stack on Cloud Platform‖, International Journal of Advanced

Research in Computer and Communication Engineering, Vol. 5,

Issue 4, pp: 50-52, April 2016

[11] Manuj Aggarwal, TetraTutorials Team, ―ElasticSearch,

LogStash, Kibana (the ELK Stack) #3‖, Packt Publishing, Jan

2018 [Online]

Authors Profile

Miss. Jayashri V is pursuing Bachelor of

Engineering from R.V. College Of

Engineering, Bangalore, India from 2016

(curremtly in 8th semester). Her areas of

interest are Cloud computing, IoT, Web

Development and Big Data Analytics.

Dr. Badari Nath K pursued Bachelor of
Engineering from UVCE Bangalore,

India in 2006 and Master of Engineering

from PSG College Of Technology and

his Doctorate from Visvesvaraya

Technological University. He is

currently working as Assistant Professor

in Department of Computer Scientce, RVCE Bangalore,

India since 2010. He has published more than 17 research

papers in reputed international journals including IJITR

and conferences including IEEE and Springer and it‘s also

available online. His main research work focuses on

Embedded & Real time systems.Image processing &
Graphics Programming, Cloud Computing & IOT based

Systems.

