[
AJCSE International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol. 8, Issue.4, Apr 2020 E-ISSN: 2347-2693

A New Bit Level Positional Encryption Algorithm (NBLPEA ver-1)

Asoke Nath'", Sankar Das?, Oishi Mazumder®, Adrija Saha*, Monimoy Ghosh®

12345 Department of Computer Science, St. Xavier’s College (Autonomous), Kolkata, India

*Corresponding Author: asokejoyl@gmail.com
DOI: https://doi.org/10.26438/ijcse/v8i4.167172 | Available online at: www.ijcseonline.org
Received: 21/Jan/2020, Accepted: 19/Feb/2020, Published: 30/Apr/2020

Abstract- In the world of information we live in, cyber security is of paramount importance. Despite communicating through
secure channels, there might be breaches that might be targeted by attackers to extract valuable data. Designing and
betterment of these symmetric and asymmetric algorithms remain an open challenge to all. The Bitwise Positional
Encryption Algorithm is a completely new idea in this field. This simple encryption technique provides strong protection
against any kind of attack, be it brute force or statistical attacks. This multilevel encryption algorithm employs several bit-
level encryption procedures and matrix transposition operations. It takes into consideration positional parameters of bits,
which is further shuffled randomly and hence is impossible for the intruder to decrypt without knowing the key as well as
the exact method. The key here should be a shared parameter, for this is an instance of symmetric encryption. The algorithm
works on bit-level so it is not possible to break easily. By this algorithm, one can encrypt any kind of file with extensions
like .txt, .doc, .jpg, .png and the like. The present method can be used for encryption of any confidential messages like OTP
(One Time Password), ATM transactions etc. It is not possible to get back the original plain text file if there is one change in
bits in encrypted text. The testing is done on almost all types of files and it was found that the method is working

satisfactorily.

Keywords: Plain text, ciphertext, encryption, decryption, key, transposition, positional extraction.

I. INTRODUCTION

In simple terms, encryption is the process of making
information unreadable by unauthorized persons. The
process may be manual, mechanical, or electronic.
Encryption is essentially important because it secures data
and information from unauthorized access and thus
maintains confidentiality. The confidentiality of data is an
issue of growing concern over the past decade. The rapid
evolution of Internet technology has led to millions of
transactions per second across the world. In this scenario,
the study and enhancement of cryptographic algorithms are
quite indispensable. Apart from providing network
security, cryptography also assists in disk encryption,
anonymous communication, digital signatures, private
auctions, implementation of cryptocurrency — just to
mention a few. Businesses make use of these techniques to
secure their corporate secrets, governments to protect
sensitive information, and many individuals use it to
safeguard personal information and stop identity theft.
Cryptographic systems are an integral part of standard
protocols, most notably the Transport Layer Security
(TLS) protocol, making it relatively easy to incorporate
encryption mechanisms into a wide range of applications.
A good cryptographic algorithm might also provide for
message integrity, which tells the receiver if the original
message from the sender has been tampered with. A
secure system should maintain the integrity, availability,
and privacy of data. Therefore, algorithms that help
prevent interception, modification, penetration, disclosure
and enhance data/information security are now of primary
importance. Encryption is intrinsic to security in the

© 2020, 1JCSE All Rights Reserved

networked world. An understanding of encryption
technologies will assist the security professional in
understanding and implementing solutions to security
concerns in distributed systems.

The encryption process, which transforms the plain text
into ciphertext, may be thought of as a “black box”, which
takes inputs (the plain text and key) and produces output
(the ciphertext). The messages may be handwritten
characters, electromechanical representations as in a
teletype, strings of 1s and Os as in a computer or computer
network, or even analog speech. The black box will be
provided with whatever input/output devices it needs to
operate; the insides, or cryptographic algorithm, will
operate independently of the external representation of the
information. The key, which is more properly called the
crypto variable, is used to select a specific instance of the
encryption process embodied in the machine. The same
black box produces different ciphertexts from the same
plain text. In typical operation, a key is inserted prior to
encrypting a message and the same key is used for some
period of time. This period of time is known as a
cryptoperiod. For reasons associated with cryptanalysis,
the key should be changed on a regular basis. The most
important fact about the key is that it embodies the security
of the encryption system. This means the system is
designed so that complete knowledge of all system details,
including specific plain and ciphertext messages, is not
sufficient to derive the cryptovariable.

It is important that the system is designed in this fashion
because the encryption process itself is seldom secret. The

167

International Journal of Computer Sciences and Engineering

details of the data encryption standard (DES), for example,
are widely published so that anyone may implement a DES
compliant system. In order to provide the intended secrecy
in the ciphertext, there has to be some piece of information
that is not available to those not authorized to receive the
message; this piece of information is the cryptovariable or
key[3].

Computer data often travels from one computer to another,
leaving the safety of its protected physical surroundings.
Once the data is out of hand, people with bad intentions
could modify or forge your data, either for amusement or
for their own benefit.

Cryptography can reformat and transform our data, making
it safer on its trip between computers. The technology is
based on the essentials of secret codes, augmented by
modern mathematics that protects our data in powerful
ways.

A. Computer Security - generic name for the collection of
tools designed to protect data and to thwart hackers

B. Network Security - measures to protect data during
their transmission

C. Internet Security - measures to protect data during
their transmission over a collection of interconnected
networks

To assess the security needs of an organization effectively,
the manager responsible for security needs some
systematic way of defining the requirements for security
and characterization of approaches to satisfy those
requirements. One approach is to consider three aspects of
information security:

» Security attack — Any action that compromises the
security of information owned by an organization.

» Security mechanism — A mechanism that is designed
to detect, prevent or recover from a security attack.

» Security service — A service that enhances the security
of the data processing systems and the information
transfers of an organization. The services are intended
to counter security attacks and they make use of one or
more security mechanisms to provide the service.

The world of cyber security is constantly evolving, and
researchers are always striving to design better algorithms
and mend the existing loopholes.

Il. LITERATURE SURVEY

Some bit-level encryption algorithms are DNA based
cryptography and BLSKEA version-1 and 2 that were
already developed by Nath et al. Now the authors discuss
the mentioned versions below.

A. Bit _Level Symmetric Key Encryption Algorithm
(BLSKEA): This method deals with bit-level

© 2020, 1JCSE All Rights Reserved

Vol .8, Issue.4, Apr 2020

encryption and decryption method. Nath et al(2014)
already introduced bit-level encryption method using
feedback. But in the present paper, the authors have
used some simple but very effective bit level encryption
method. The plain text is initially converted to bits and
after that bit-wise complement is done on some random
prime positions. The entire bit stream is reversed and
again applied bit complement operation in some
random prime position. The bit complement is followed
by bit-wise XOR operation and then the modified bit-
streams placed in a 2-dimensional array and perform
some bit operations such as left-shift, up-shift, diagonal
shift, cycling, right-shift number of times to make the
bit patterns random. The bit operations are performed a
number of times and finally, bits were converted to
bytes and transferred to some output file. The results
show that the present method is very much effective to
encrypt passwords, SMS or any other confidential
message. This algorithm has also been improvised.

. Bit Level Multi Way Feedback Encryption Standard

(BLMWEES): In the present method (BLMWFES-1),
the encryption-decryption process was done in bit-level.
The entire plaintext was broken up into blocks. For
every block, the first plaintext bit, the first key bit, the
initial forward feedback bit (FF) and the backward
feedback bit (BF) are added and then taken modulo
with 2. The bit obtained is the ciphertext bit. This
ciphertext bit was then propagated right to the nl-th
bit’s forward feedback value. ‘nl’ is equal to the
forward skip (FS) value specific to that block. Next, the
last plain text bit of that particular block was added
(modulo 2)with the key bit, FF, initial BF and then the
ciphertext bit obtained was then propagated left, to the
n2-th bit’s backward feedback value. ‘n2’ is equal to
the backward skip (BS) value of that block. This
process of adding the bits (modulo 2) and then
propagating it to the appropriate position was done
alternately from the left to right and from right to left
on the entire block of bits. This completes one round of
processing on a single block. After every round of
processing, the four important variables such as FF, BF,
FS and BS changes dynamically due to changing block
size and this makes the encryption very strong. The
total number of rounds (encryption number), the block
size for every round, initial FF, initial BF, initial FS and
initial BS were taken as a function of the keypad. The
keypad was generated from the user entered key (seed)
using the key-expansion algorithm explained in section-
I1. This method was then tested on standard plain texts
such as ASCII ‘0°, ASCII ‘1°, ASCII 2°, ASCII ‘3’ and

168

International Journal of Computer Sciences and Engineering

the results obtained were quite satisfactory. This
method is immune to any classical form of
attacks.

C. DNA Based Cryptography: DNA cryptography is a
relatively new paradigm that has attracted great interest
in the field of information security. DNA coding
technology is used to convert binary data to DNA
strings. Since scientists found that binary computers
have many physical limitations, especially in data
storage and computation, they have concentrated on
DNA computers and tried to implement this new
science in the information security field. DNA
cryptography is a new concept that needs many
improvements. Although there are still problems with
DNA cryptography, many scientists are trying to solve
them because they believe that, with the characteristics
of DNA computers they have more advantages than
conventional cryptography. DNA coding technology is
another concept in cryptography that is intended to
encode binary data to a DNA strand and vice versa.
Binary data can be encoded in DNA by using a
sequence of the alphabet. It is known that DNA
sequences contain four basic letters A, C, G, and T:
‘00° — A, ‘01’ > C, ‘10> > G, ‘11 — T For example,
a binary string like’01001011° is converted to ‘CAGT".
The cryptosystem is based on the Vigenere cipher,
which is a poly-alphabetic cipher. Poly-alphabetic
ciphers are multi-substitution ciphers, which means that
each letter in the plain text is substituted in different
forms. The main achievement of this study is
identifying a DNA cryptosystem, which is a new
science in information security. But the Vigenere
ciphers have some problems. The first problem is that it
uses the English alphabet so it is obvious that with
frequency analysis we can guess the correct letter of the
ciphertext. But in this project all encryption process in
bit level. In this project first, the authors have done a 3-
dimensional encryption process for n times. Then
covert the bit level ciphertext into DNA sequences that
are the form of A, C, G and T form. Then perform some
randomization operation to randomize the DNA
sequence. Then the authors converted the DNA
sequence into bits and then the bits are converted into
byte form. There are various improved versions of the
algorithms.

However, it is apparent that though various bit--level
algorithms have been designed to date, none of them
incorporates the position of bits into account. The present
algorithm is unique and truly innovative in this respect.
Additionally, this makes the algorithm truly hard to break
using conventional cryptanalysis techniques.

© 2020, 1JCSE All Rights Reserved

Vol .8, Issue.4, Apr 2020

I1l. ENCRYPTION ALGORITHM

The encryption algorithm is as follows -

Stepl: Input plain text and the key. The key can be any
random number.

Step2: Convert plain text to bits.

Step3: Find the position of 1s from the bit-stream thus
obtained.

Step4: Convert the positions obtained from the previous
step into their binary form, and store the positions in a 32-
bit format in a one-dimensional array. E.g. If the position
of the first 1 in the original bit-stream is 7, then the
corresponding stored format should be: 00000000
000000000000000000000111.

Step5: Complement the bits in non-prime positions in the
bit sequence.

Step6: Reverse the entire bit sequence, and complement
the bits in the prime positions.

Step7: Perform bitwise XOR operation with the bits at the
odd position and even position and substitute the resulting
bit at the even position. E.g. Bits at positions 1 and 2 are
XOR-ed and the resulting bit is substituted for bit 2.
Similarly, bits at positions 3 and 4 are XOR-ed and the
result is substituted for bit 4, and so on.

Step8: Reverse the entire bit sequence and perform bitwise
XOR operation in the following manner: Bit 1 and bit n(n
being the last bit position in the bit sequence) are XOR-ed
and resulting bit is substituted for bit n, bit 2 and bit (n-1)
are XOR-ed and the resulting bit is substituted for bit (n-2),
and so on.

Step9: Take a two-dimensional array of size key*key, and
store the first key*key elements from the bit sequence into
it. Perform the following shifting operations on the
elements:

e Perform bitwise left-shift. This is done by shifting
all elements in each row by one unit in the left
direction.

e Perform bitwise diagonal shift. This is done by
shifting all elements in each diagonal by one unit
diagonally along both diagonals.

e Perform bitwise down-shift. This is done by
shifting all elements in each column by one unit
in the down direction.

e Perform bitwise right-shift. This is done by
shifting all elements in each row by one unit in
the right direction.

169

International Journal of Computer Sciences and Engineering

e Perform bitwise up-shift. This is done by shifting
all elements in each column by one unit in the
down direction.

The elements of the modified two-dimensional array are
stored in their respective positions in the original array.

Stepl10: Take each successive (key*key) number of bits
from the bit sequence and perform step9 until the number
of residual bits is less than (key*key).

Step11: Bring the residual bits to the beginning of the two-
dimensional array and perform step9.

Stepl2: Repeat Step5.

Stepl13: Repeat Step6.

IV. DECRYPTIONALGORITHM

The decryption algorithm is as follows:
Stepl: Enter the ciphertext and the key.
Step2: Convert ciphertext to bits.

Step3: Complement the bits in prime positions and reverse
the bit sequence.

Step4: Complement the bits in the non-prime positions.

Step5: Take a two-dimensional array of size (key*key),
and store the first (key*key) elements from the bit
sequence into it. Perform the following shifting operations
on the elements:

e Perform bitwise down-shift. This is done by
shifting all elements in each column by one unit
in the down direction.

e Perform bitwise left-shift. This is done by shifting
all elements in each row by one unit in the left
direction.

e Perform bitwise up-shift. This is done by shifting
all elements in each column by one unit in the
down direction.

e Perform bitwise diagonal shift. This is done by
shifting all elements in each diagonal by one unit
diagonally along both diagonals.

e Perform bitwise right-shift. This is done by
shifting all elements in each row by one unit in
the right direction.

The elements of the modified two-dimensional array are
stored in their respective positions in the original array.

© 2020, 1JCSE All Rights Reserved

Vol .8, Issue.4, Apr 2020

Step6: Take each successive (key*key) number of bits
from the bit sequence and perform Step5 until the number
of residual bits is less than (key*key).

Step7: Bring the residual bits to the beginning of the two-
dimensional array and perform step5.

Step8: Perform bitwise XOR operation in the following
manner: Bit 1 and bit n(n being the last bit position in the
bit sequence) are XOR-ed and resulting bit is substituted
for bit n, bit 2 and bit (n-1) are XOR-ed and the resulting
bit is substituted for bit (n-2), and so on. Then the entire bit
sequence is reversed.

Step9: Perform bitwise XOR operation with the bits at the
odd position and the even position and substitute the
resulting bit at the even position. E.g. Bits at positions 1
and 2 are XOR-ed and the resulting bit is substituted for bit
2. Similarly, bits at positions 3 and 4 are XOR-ed and the
result is substituted for bit 4, and so on.

Step10: Complement the bits in the prime positions and
reverse the entire bit sequence.

Step11: Complement the bits in the non-prime positions.
Step12: Find the position of 1s from the bit-stream.

Step13: Construct a new bit sequence and place 1s at the
positions obtained from Step12.

Stepl4: Take up each block of 8 bits and convert them
back into bytes. This gives us the deciphered text.

V. RESULTS
Test Case 1: (Key - 22)

_| plaintext - Notepad = O X

File Edit Format View Help
Hello World!|

| ciphertext - Notepad = O X

File Edit Format View Help
[i S X O - BgR SRt 10
e 4 B (R mE e IEme Ny R 4 A1l 3 5 B i

el e bR TSR Y IAEIME

S [F] NI 62 BREE A 2,3

Figure 1. A plain text with corresponding cipher-text using
key: 22.

170

International Journal of Computer Sciences and Engineering

Test Case 2: (Key - 23)

_| plaintext - Notepad = a X

File Edit Format View Help
Hello World!|

| ciphertext - Notepad = O X

File Edit Format View Help
baEl FUBpRIA SR s IS . MBS HERTT B>
el EEEEE) E RIFR FSOH = E 0
L &AL S48 W 2B M EENER N 2B
SEflis e I 2 EReEN 2

Figure 2. A plain text with corresponding cipher-text using
key: 23.

Test Case 3: (Key - 23)
_| plaintext - Notepad - O X

File Edit Format View Help
Hello World!!!|

| ciphertext - Notepad - O X

File Edit Format View Help

P ST 20 i i S B Emk medEE) S RN
M) E EwEieIH M 2BeE &t | 2 Bk
MBH S HEHER P TN BEE s BN
Aclb®a i 2 ofRE pEis? Bl PR =S /7

Figure 3. A plain text with corresponding cipher-text using

key: 23.
Test Case 4: (Key - 25)
| plaintext - Notepad - O X
File Edit Format View Help
25866
| ciphertext - Notepad — O X

File Edit Format View Help

In éi,£p9SGfe%k-2E~auriud!

*' ' €%A&EOB; M @85” Mg~ ™a },ILy
,,©88a [G<Eal:ITUE"1yZASa=

Figure 4. A plain text with corresponding cipher-text using
key: 25.

© 2020, 1JCSE All Rights Reserved

Vol .8, Issue.4, Apr 2020

Test case 1 and test case 2 shows two cases with the same
plain text but different keys. We observe that the
ciphertexts generated in both cases are strikingly different
(Fig 1 and Fig 2).

Test case 2 and test case 3 presents different plain text with
the same keys. Here, too, the cipher texts generated in both
cases differ substantially (Fig 2 and Fig 3).

Test case 4 presents a case where the plain text is a
sequence of digits (like in an OTP). (Fig 4).

VI. CONCLUSION AND FUTURE SCOPE

The present algorithm has been tested on various types
of files like .txt, .doc, .pdf, .png, .jpg and other media files.
It can be verified that the encrypted files cannot be
decrypted without the initial knowledge of the key. The
algorithm is secure from brute force attack or any kind of
statistical attack, since it deals with bit positions, rather
than encryption of individual characters as is done in
conventional cryptographic algorithms.

If the ciphertext is altered by even just a single
character, the original plain text cannot be recovered, as
the algorithm is sensitive.

As the algorithm is highly secure, it may be used for
the security of highly confidential texts of small lengths
such as OTP or password encryption.

VII. ACKNOWLEDGEMENT

The authors are indebted to the Dept. of Computer Science,
St. Xavier’s College, Kolkata, for providing them an
opportunity to work on cryptographic algorithms. One of
the authors AN expresses his sincere gratitude to Rev.
Dominic Savio, Principal of St. Xavier’s College, Kolkata
for allowing the author to do research work in the field of
Network Security.

REFERENCES

[1] William Stallings, “Cryptography and Network Security:
Principles and Practice”, Tata Mc-Graw Hill Publishing LTD.

[2] Behrouz A. Forouzan, “Cryptography and Network Security”,
Special Indian edition 2007, Tata Mc-Graw Hill Publishing
LTD.

[3] Ronald A. Gove, “Introduction to Encryption Technology.”

[4] Dan Boneh, Victor Shoup, “A Graduate Course in Applied
Cryptography.” from Stanford University.

[5] Sachin Sharma, Jeevan Singh Bisht, “Performance Analysis of
Data Encryption Algorithms”, Volume-3, Issue-1, pp. 1-5, 2015.

[6] M. Arora, S. Sharma, “Synthesis of Cryptography and Security
Attacks”, Volume-5, Issue-5, Oct 2017.

[7] Sreeparna Chakrabarti, Dr. G.N.K. Suresh Babu, “A Literature
Survey on the Cryptographic
Encryption Algorithms for Secured Data Communication.” in

171

International Journal of Computer Sciences and Engineering

International Journal on Future Revolution in Computer Science
& Communication Engineering VVolume: 4 Issue: 10.

[8] Asoke Nath, Soumyadip Ray, Salil Anthony Dhara, Sourav
Hazra, “3-Dimensional Bit Level Encryption Algorithm
Version-3 (3DBLEA-3)”, International Journal of Latest Trends
in Engineering and Technology Vol.(10)lIssue(2), pp.347-353

[9] Bit Level Encryption Standard(BLES) : Version-l, Neeraj
Khanna, Dripto Chatterjee, Joyshree Nath and Asoke Nath,
International Journal of Computer Applications(IJCA)(0975-
8887) USA Volume 52-No.2.,Aug, Page.41-46(2012).

[10] Multi Way Feedback Encryption Standard Verl, Purnendu
Mukherjee, Prabal Banerjee, Asoke Nath, IJACR, published in
September 2013 issue.

Authors Profile

Dr. Asoke Nath is working as Associate
Professor in the Department of Computer
Science, St. Xavier’s College
(Autonomous), Kolkata. He is engaged in
research work in the field of Cryptography
and Network Security, Steganography,
Green Computing, Big data analytics, Li-Fi
Technology, Mathematical modelling of
Social Area Networks, MOOCs etc. He has published more than
248 research articles in different Journals and conference
proceedings.

Mr. Sankar Das is an Associate Professor
in the Deartment of Computer Science, St.
Xavier’s College (Autonomous), Kolkata.
He has done projects on Cryptography and
Network Security. He is currently doing
research work in field of Image processing,
Digital Steganography and extensive
research work on Ethical Hacking.

Miss Oishi Mazumder is currently a third
year undergraduate student in the
Department of Computer Science,
St.Xavier's College. She is interested to
work in the domains of Atrtificial
Intelligence and Cryptography with their
implementation in real life applications for
solving the problems and easing the world
of the common people.

Ms. Adrija Saha is a student of Dept. of
Computer Science, St. Xavier's College
(Autonomous), Kolkata. She is interested
in DBMS, Visual Basic, SQL and
Automata Theory.

Mr. Monimoy Ghosh is a student of the
Dept. of Computer Science, St. Xavier’s
College, Kolkata. He is enthusiastic about
Cryptography, Network Security, DBMS,
Automata Theory, Compiler Design and
Operating Systems. He is also a member of
various online learning communities like
Codechef, Coursera, edX, etc.

© 2020, IJCSE All Rights Reserved

Vol .8, Issue.4, Apr 2020

172

