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Abstract — The Rubik cube is 3D puzzle with 6 different colored faces. The classic puzzle is a 3x3x3 cube with 43 quintillion
possible permutations having a complexity of NP-Hard. In this paper, new metaheuristic approaches based on Simulated
Annealing (SA) and Genetic Algorithm (GA) proposed for solving the cube. The proposed algorithms are simulated in Matlab
software and tested for 100 random test cases. The simulation results show that the GA approach is more effective in finding
shorter sequence of movements than SA, but the convergence speed and computation time of the SA method is considerably
less than GA. Besides, the simulation of GA confirms the claim that the cube can be solved with maximum 22 numbers of

movements.
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I. INTRODUCTION

The classic Rubik’s cube is mechanical 3D puzzle which is
in-vented by a Hungarian sculpture and professor Erno
Rubik in 1974. It was first knows as the Magic Cube and
later is re-named to the Rubik’s Cube to honor of its
inventor. The standard cube has 6 faces each with 9 (3x3)
face lets. The goal of solving the cube is having each face
arranged with a specific color. The total number of
permutations is about 43 quintillion (exact value is
43,252,003,274,489,856,000 which is known as God’s
number) turns that makes it as a NPHard combinatorial
problem. If each turn takes one second of time, it will need
about 1400 trillion years to perform all possible
permutations. El-Sourani et al. imply an upper bound for the
maximum number of needed movements to solve the puzzle
which is equal to 22 movements. Some algorithms are
proposed to decrease this upper bound [1]. Solving the cube
is always considered in two aspects of time and the number
of the movements which both are covered in this paper. El-
Sourani et al. in [1] claim that there is an upper bound for
number of movements needed for solving the cube. This
bound was first reported as 27 which was next decreased to
22 movements. It should be mentioned that these values are
obtained by empirical experiments without using a scientific
or mathematical calculation. The proposed GA approach in
this paper is designed for testing this hypothesis and the
simulations results confirm the claim. The effort for finding
smaller upper bounds still continues by enthusiasts.

In this paper, two metaheuristic approaches based on GA

and SA are developed for solving the Rubik’s cube. The
proposed algorithms are implemented in Matlab 2009a
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software and are compared using equal random inputs. The
computational results show that the GA based approach lead
to solutions with fewer numbers of movements than that of
SA, although the computation time for finding such
solutions is higher than SA. Considering the time aspect, the
SA based approach solves the cube faster than GA approach,
but offers more number of movements. There are some
known classic algorithms for solving the cube which mostly
complete the cube layer by layer. These algorithms are hard
to learn and remember the sequence of the movements,
especially for a large size NxNxN (extended versions) of the
Rubik’s cube. Therefore, proposing heuristic approaches has
raised the interest of the researchers and mathematicians
which unfortunately few numbers of them are academically
reported and published. For example Korf in [2] used Pattern
Databases, Lee & Miller [3] used Best-Fast method, Kapadia
et al. [4] used A* Algorithm and IDA* which is depth-first
search oriented method as their graduate project, El-Sourani
et al. [1] composed exact methods with an evolutionary
approach for solving the Rubik’s cube problem, as their
graduate project. El-Sourani and Borschbach in [7, 8]
proposed two evolutionary algorithms based on group theory
and compared the efficiency of the developed methods.
Some other heuristics are developed which none of them are
published as an academic research work. Anil in [9]
proposed a method for solving the cube using Genetic
Algorithm which is based on Group theory analysis. This
algorithm solves the cube suing more than 100 movements
and is not fast enough regarding to the proposed GA
algorithm in this paper. Mantere proposed a method based
on the cultural algorithm for solving the cube [10]. Smith et
al. [11] developed evolutionary approach using genetic
programming.
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Il. THE PROPOSED APPROACHES

In this section, first the Rubik’s Cube and related operators
are mathematically modeled. Next, the proposed Simulated
Annealing and Genetic Algorithm approaches are described
in details.

2.1 Modeling the Problem

In order to simplify the implementation and calculations of
the operators on the problem, the 3D mechanical Rubik
puzzle is mapped as a 2D equivalent numerical matrix as
shown in Fig. 1.

Top

‘ Left | Front | Right | Back

Down

Fig. 1 2D mapping of the Cube

The Cube has six colored faces, each is made up 9 (3x3)
small pieces. Each color is considered as an integer number
in [1..6] range. Next, The top and down(bottom) faces of the
cube in 2D representation, are moved to first and end
positions of the middle row of the matrix, to have a
homogenous array of integers, leading the 3x18 array named
Mij shown in Fig. 2.

Top Left Front  Right Back Down

1i171]21212(373/3]44; 4555|666
1:1:102:2:2]3:3:3[4 44555666
LiL{1[2{2]2[3]3]3]4]4]4]| 5556 6]6

Fig. 2 Integer array representing the solved cube

2.2 Modeling the Operators

There are eighteen basic operators which can be applied on
the Rubik’s cube. These operators rotate one layer out of 9
layers of the cube (three layers at each dimension),
clockwise or counter clockwise. Applying each of these
operators moves some of the small colored pieces of the
cube to new position which means some integer values in
2D representation will exchange location with some others.
For example, rotating the front face of the cube in clockwise
direction, exchanges the array cells as the sequences shown
in Fig.3 in which M(i,j) represents the ith row and jth
column of the Mij matrix.
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M(3,6) = M(3,1) = M(1,10) — M(1,18) — M(3,6)
M(2.6) = M(3.2) = M(2,10) - M(1,17) = M(2.,6)
M(1.6) — M(3.3) — M(3,10) — M(1,16) — M(L,6)
M(3.7) = M(1,7) > M(1.9) — M(3.9) — M(3.7)
M(2,7) - M(1,8) > M(2.9) — M(3.8) — M(Q2,7)

Fig. 3 Exchanging the array cells by rotating the front face
clockwise

The related exchanges of all eighteen basic operators are
calculated similarly. The input of the proposed algorithms is
an messed up 3x18 matrix (demonstrating a shuffled 3D
cube) and the main objective is sorting the matrix as Fig. 2
using a minimum length sequence of the operator (in GA
approach) or at shortest processing time (in SA approach).

2.3 The SA Approach

The Simulated Annealing approach is a random search
methods adopted from metallurgy introduced by Metropolis
et al. [5] and Kirkpatrick [6]. The algorithm first heats up the
heat bath (system) to melt the solid and next decreases
carefully the temperature of the system until the particles
arrange themselves specific in the ground state of the solid.
The SA algorithm starts with a randomly generated feasible
solution for the problem (call x) and calculates its energy
(fitness), f(x). Then a subsequent neighbor (state) y is
generated by applying small changes on the current solution.
If the energy (fitness) difference f(x)-f(y) is less than or
equal to zero, the state y is accepted as the current state.
Otherwise, the state y is accepted with the probability given
by the equation 1.

f)-f(y)
Probability=¢ 87 (1)

Where T is temperature of the system, and KB is physical
constant called Boltzmann constant [7]. Considering the
structure of the Rubik’s cube, each of the eighteen operators
mentioned in previous section, makes some changes on the
current cube and generate a new cube, which can be
considered as a neighbor of the current solution.

The fitness function in the proposed algorithm is defined as
total number of small colored pieces of all the faces, which
are not located at their correct position. Thus, the problem is
formulated as a minimization combinatorial problem in
which, the fitness of the final solution (solved cube) is equal
to zero. By defining binary matrix Uij [3x18] as:

. co l
U_(iJ)=[1 i M(L))= Ll i=123:J=12, 18 Q)
0 therwise

So, the proposed fitness function for a given cube (or
equivalent Mij) is defined as equation 3.
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flcube)= ZZU(.". j) (3)

i=l j=l
The SA algorithm gets a randomly messed up Rubik’s cube
as initial solution, and calculates its fitness. At the worst
case, the fitness will be 54-6=48. This is because the cube
has 54 small pieces and the middle square of each face, is
always located at the correct position and will never change.
Next, the main loop starts whit the initial temperature is set
to 5000 and continues until the best solution is found, or the
temperature is almost reached to zero. The percentage value
of decreasing the temperature is considered as a=0.05. At
each temperature, the inner loop randomly generates the
neighbors of the current solution by applying one of the
eighteen operators and calculates the fitness of the new
solution. The pseudo code of the proposed SA approach is
given in Fig. 4.

Begin
Inttialize Temp;
Get input cube, called x;
Compute f{x) using equation 3;
Repeat until frozen
a. Do N times
i y := FindNeighbor(x);
il Delta = fly)- fix);
il if Delta<0 then x:=y; (dccepty)
. else if Uf0,1) < ¢ Dol o x:=y; (Aceept y)
v else reject y;
b EndDo
6. Temp .= Temp- 6;
7. The Solution will be best so far;
8 End

Fig. 4 The pesudo code of the proposed SA

Inside the inner loop, we move from the current solution x to
its neighbor solution y and calculate the fitness. The
neighbor solution is a point in feasible solution space which
is obtained by making small changes in the current point
(solution). Considering the Rubik’s cube structure, these
changes are performed by applying either of eighteen
operators on the current cube. If the fitness of the new
solution is better (less) than that of the current solution, it
will be accepted and set as the current solution. Otherwise
the solution is not ignored forever and it may be accepted
with probability calculated by equation 1 in order to prevent
the local optimum trap.

2.4 The GA Approach

The GA method is a population based approach and is made
up some chromosomes each of which representing a solution
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of the problem being solved. Generally, the first generation
of the chromosomes is created by random and during the
execution iterations, next generations are made by applying
crossover and mutation operators. It is very important to
define and design the structure of the chromosomes in order
to optimize the efficiency of the GA method. The structure
of the chromosomes in proposed GA is considered as an
integer vector of length k which is shown in Fig. 5.

1 2 k-1 k
Op# | Opz | .. Opz Op#
Fig.5 The structure of the proposed chromosome

The values of the genes in the chromosome represent the
operation number (Op#) which is suggested to be applied on
the cube. So, a chromosome demonstrates a sequence of
operators for solving the cube if k is large enough. In
proposed GA method, the length of the chromosome first
was considered as k=50 and all input cubes were easily
solved using maximum 50 numbers of movements. Next
experiments were designed by decreasing the length of the
chromosome and the chance of solving the cube was also
decreasing as for k=22 (El-Sourani claim) the proposed
approached was 43% successful in solving the cube. It
should be mentioned that the proposed GA was unsuccessful
in solving the cube for k<22 which informally confirms the
claim.

The success rate of the proposed GA for solving the cube
using sequence of movements of length k is given in table 1
for different values of k.

Value of & K50 140 130 |25 |12 | K22
SuccessRate | 100% | 91% | 73% | 4% | 38% | O

Table 1. Success rate of proposed GA with regard to the
length of the chromosome

The population size at every generation is considered as 100
chromosomes. The simulation results show that increasing
the population size, increases the computation time of the
execution, but does not lead to considerable improvement at
successful rate of solutions. The chromosomes at the first
generation are created randomly and the value of each gene
is randomly selected between [1..18] to identify the
movements. It is also considered that the value of two
consecutive genes should not be set to opposite movements
because it neutralizes the operator’s influence. After
generating the chromosomes, the fitness of them is
calculated using equation 3.

The chromosomes of the current population are selected
using roulette wheel method with probability 0=80% and
offsprings (children) are generated using one point crossover
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operator. If the fitness of the children is better than that of
the parents, they will be moved to the next generation. The
mutation is another operator which is applied on p=20% of
the population and changes the value of a randomly selected
gene such that the new value is not the opposite movement
of the previous and next gene.

The elitism concept is also considered in proposed GA that
transfers top 10% chromosomes of the current generation to
the next generation. The pseudo code of the proposed GA is
given in Fig. 5.

Begm
Getinifal iyt cube,
Generate intial population o size PopSize,
Do whil fermination condion s ot met
a.Caleulate the finss o chramasomes n curent papulation,
b. - Select PopSice pair of population using roulete wheel method.
¢, Apply Crossover apesator it probability . Caleulate childen's
fimess, ifaceeptabl, add them fo mate pool,
. Apply martaron aperator with probability B fte finessis modifed,
add the mutated chromosome to mate pool
e Add top 10% of the curren papulation o mate pool,
- Sort the mate pool in decreasing order, tcate the mate pool and
replace asthe current papulation, empty the mate pool
5. Selct thetopmast chromosome of he populaton asthe fnalsoluion and report
the sequence of aperators
6. End

]
2.
]
{

Fig 5. The pseudo code of the proposed GA

I11. SIMULATION AND COMPUTATIONAL
RESULTS

The proposed methods are implemented in Matlab 2009a
software using a personal computer with 4.2 GHz of
processor and 2GB of RAM, running Microsoft Windows 10
and the simulation results are reported in the following
subsections.

3.1 The Proposed SA results

The initial temperature value should be chosen as the value
of the equation 1 is calculated around 1 [6]. Hence,
considering the difference domain between the fitness of two
neighbor solutions, this value is set to 1000. The cooling rate
of the temperature is set to §=0.05 by try and error.

The proposed SA is executed for200 different initial cubes
and it was successful solving the cube on all the test cases.
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The number of needed movements and the computation time
of the best and the worst cases in seconds are given in table
2.

Case Best Worst
L T Average
Criteria | Case Case
Computation time (seconds) | 1812 6847 3631
# of movements 157 358 219

Table 2. Computation results of proposed SA for 200
experiments

The convergence diagram of the best and the worst cases
related to table 1 are also depicted in figures 6 and 7
respectively. The vertical axis shows the value of fitness
function.
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Fig. 6 Total fitness (a) and best fitness (b) of the best case

The main reason of fluctuations at (a) diagram in figures 7
and 8 is because of the nature of the movement operators.
Applying an operator on the cube, may move a face let to its
correct position, but change the correct position of some
other pieces at the same time. Besides, one movement can
move some pieces (maximum 9 pieces) to their correct
position and lead to salient decrement of the fitness.
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Fig. 7 Total fitness (a) and best fitness (b) of the worst case

3.2 The Proposed GA Results

In order to compare the proposed algorithms, the proposed
GA is also simulated for the same experiments test cases.
The simulation parameters are listed in table 3. The results
show that the GA approach can lead to shorter solution
considering number of the movements, although the
execution time for finding such solutions as high.

Parameter Value
Population Size 100
Crossover Rate 08
Mutation Rate 02
(hromosome Size Nupto 30

Number of experments for each 0
chromosom size )
Nomber of sterations until final | 2562 Generattons for 22 movements

solution 37 Generattons for 50 movements

Table 3. Simulation Parameters of Proposed GA
The simulation results of the best and the worst cases with

regard to the number of the required movements for solving
the cube are given in table 4.
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i [ & Best Worst
Criferia - T Case Case
Required number of movements 2 50
Average Execution time (Second) 3135.12 68.25

Table 4. Number of required movements and mean
execution time of 200 experiments

As shown in table 4, the GA approach has taken a long time
(3135.12 seconds) for finding short solutions of length 22. It
should be mentioned that the GA method was able to find
such solutions only in 43% cases (86 out of 200
experiments) and the reported time is the average of these
successful cases. The figure 9 shows the input and output of
the algorithm for one of these starting from the fitness equal
to 38.

N SO e

@ ®)

Fig.9 (a) Input cube, (b) Solved cube using 22 movements
The corresponding convergence diagram is depicted in Fig.
10 in which the horizontal axes shows number of the
movements. The vertical axes shows the value of fitness
function which has reached to zero at the 22" movement.
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Fig. 10 The fitness function of solving the cube using 22
movements
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IV. CONCLUSION

In this paper, the Rubik’s cube problem is considered for
solving and due to the complexity and NP-Hard nature of the
problem, two meta-heuristic algorithms based on Simulated
Annealing and Genetic Algorithm are proposed for solving
the cube. The proposed algorithms are simulated in
MATLAB software using a personal computer with 4.2 GHz
processor and 2GB of RAM running Microsoft Windows 10
for 200 different experiments.

The Computational results show that the SA approach
performs faster than the GA method for solving the cube and
consists less iterations and rapid convergence. Nevertheless
the GA approach is more successful in finding short
solutions, that is, the number of required movements for
solving the cube is less. Besides, the several experiments of
the GA method, confirms the claim that the cube requires at
most 22 numbers of movements to be solved.
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