@
AXJCSE International Journal of Computer Sciences and Engineering [pen Access

Research Paper Volume-3, Issue-7 E-ISSN: 2347-2693

Square of an Enormously Large Number

Harsh Bhardwaj

Maharaja Agrasen Institute of Technology
GGSIPU, New Delhi - India

www.ijcseonline.org

Received: Jun/23/2015 Revised: July/06/2015 Accepted: July/21/2015 Published: July/30/ 2015
Abstract- In this world of extremely fast and effective manipulations and calculations, the requirements for the time taken by a
computation needs to be nailed down to the extreme low as possible. The time required for calculations doesn't come up as an
issue unless you type in a really huge number, like a number including 100-digits or so. When this kind of number is required to
be processed upon, our computer systems take quite a while to process upon the operations being performed on the number. A
process for quick and easily manipulated computations is required to be produced, in order to increase the productivity,
convenience, ease of use and fairly deal with budgetary concerns. This document provides general practices, procedures and
tools for creating a faster computation of square of extremely large numbers. It is aimed for engineers, Mathematical gurus,
algorithm geeks, who are assumed to possess basic knowledge regarding what is meant by square of a number. It addresses
basic knowledge about how to calculate the square using conventional means and how the improvement can be made to save

time.

Keywords— Square of a number, Time-Complexity, Algorithm Design

I. INTRODUCTION

Let's start with basics of exponentiation. Exponentiation can
be referred to as the procedure of multiplying a given
number n' by itself for 'm'-number of times. The number to
be multiplied by itself can be called as 'base', i.e. 'n' here is
'base’, while the number how many times it is to be
multiplied, can be called as 'exponent, ie. 'm' here is
'exponent’. The symbol required to represent the
exponentiation can be given as "N, called as “carat”. Thus,
exponentiation can now be shown in mathematical terms as
n A m', also called as 'n to the power m'.

This simple concept of multiplication of a number by itself
has played a very significant role in the world of
mathematics. Polynomials are all based upon the base-
exponent relationship of variables. These polynomials build
up the infrastructure of Algebra.

When the exponent is made to be nothing but 2 (two), the
exponentiation starts to be termed as calculating the square
of a number. Now, the base 'n' becomes a k-digit number and
'm' becomes 2. This is represented as n * 2 and termed as 'n
to the power two' or in more familiar words 'square of n'.
From calculating the area of a circle, to equating popular
Energy-mass equation of Albert Einstein, the exponentiation
has developed its way through into being one of the very
crucial parts of the whole mathematics.

In Computer Technology, the requirements for developing a
faster way of computing the square of a given number have
evolved from various methods to various others. There exist
many of them that are effective enough to compute the

© 2015, IJCSE All Rights Reserved

square of very large numbers, but they are not as efficient as
the method we are about to discuss.

After having gone through this paper, you will be able to
calculate the square of a given number with an ease never
mentioned before and the algorithm discussed here would
provide an extremely fast way of computing the squares of
an extremely large number, i.e. consisting of several hundred
digits.

II. CONVENTIONAL METHOD

A. N to the power two

A very convenient method, as the name suggests is to
multiply the number with itself. For example, if we have a
number 'n' equals to 45 and it is supposed to be calculated
square of, then we need to multiply 45 with itself, i.e. 45, in
order to get the result 2025, as the square of this number. In
this approach, it is to be understood what it actually means to
multiply a number.

B. Multiplying a number

What it actually means to have a number multiplied is
adding the number as many times as the number it is
required to be multiplied with. Considering the previous
example, 45 ~ 2 depicts that 45 is to be multiplied with 45
and in order to multiply 45 with another 45, it would have to
be added with itself 45 times, i.e. 45 +45 +45 + ... +45
(45 times).

The square of a number can thus be calculated in this

manner. But, it can be easily seen how hectic this procedure
becomes when a number of sufficiently large number of

37

International Journal of Computer Sciences and Engineering

digits is encountered. This conventional approach is the
basic and the most absolute approach but computer
technology requires a faster way.

III. DEVELOPING A MEANS

It has to be seen how the advancement in computer
technology has brought the computational time to almost
negligible amount. The programming language used here is
Python and the module to keep track of the time element is
'time'. Recursive calling of function has been used in order to
keep the complexity of the algorithm as low as possible.

A. Time module of Python

This module can be used in order to keep track of the time
taken by a particular instruction or a set of instructions in
order to build up an exact scenario of how long does an
instruction or a set of instructions take to execute. This can
be shown to be done as:

timel = time.time()
Your instructions go here
time2 = time.time()

time2 = time2 — timel

It is clear that a variable called 'timel' holds the time
instance that occurred just before instructions had started
executing and 'time2' holds the time instance that occurred
right after the execution of instructions was done.
Subtracting the first variable from second gives the time
required by the set of instructions to execute. In order to use
this module, programmer has to import the module
exclusively.

B. Recursion

Recursion can be defined as the way in which one method
keeps passing a lower set of parameters to itself until a base
case is encountered in which function returns primitive
values that are predefined in the function or are too obvious
to guess. Recursion in this manner can be thought of as a
way in programming languages by which one method makes
a call to itself with a lower set of values. This can be
represented as:

def meth(paraml, param2, ..., paramk):
here goes the base case
meth(param_smallerl, param_smaller2, ... ,

param_smallerk)

0
ASJCSE ©2015, 1ICSE Al Rights Reserved

Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

It is clear from the example above that 'meth' method is

calling itself with lower set of values.
IV. GIVING THE ALGORITHM

A. Algorithm

Algorithm defines a set of sequential rules required to be
followed in order to solve a particular problem. The
algorithm for calculating the square of a given number can
be given as:

1. if the number is 1-digit, then

2. return the square of number

3. if modulo-10 of the number is 0, then

4. recursively call the algorithm over 1/10th of the
number
5. return the result obtained after multiplying it with

100 or appending two zeroes at the end of the

result

6. else

7. compute the nearest but smaller number that is
exactly divisible by 10, save it in variable 'num'’

8. recurse over the obtained number and store the
result in a variable, say 'sq'

9. i=1

10. while units digit of the number is greater than 0

11. sq=sq+num*2 +1i

12. increase i by 2

13. decrease units digit of the number by 1

14. return sq

Above algorithm can be explained in the following manner:

Line 1 is the base case for the recursive algorithm, i.e.
whenever the length of the number is 1, it should simply
return the square of the number. This can be done as simple
multiplication of the number by itself or by listing every
single case from 0 to 9 and returning the corresponding
value.

Now, there may occur two cases, i.e. when the number is
exactly divisible by 10 and when the number is not exactly
divisible by 10. When the number is exactly divisible by 10,
then it is known by practice that the square of this number

38

International Journal of Computer Sciences and Engineering

will be divisible by 100. Thus, we now only need to find the
square of the 1/10th of the number, and when the result
comes, we will multiply it with 100 for the correct answer.
In programming language that support string operations,
that most of the programming languages do, two zeroes can
be appended at the end of the result obtained. This
implementation can be pointed out in the algorithm on line
3,4 and 5.

In line 3, modulo-10 of the number is checked. If it is found
to be zero, a recursive call on 1/10th of the number is made
and the result is simply returned back.

When the number is found to be not divisible by 10 and
leaves a remainder, this remainder can be stored back for
further utilization. Compute the nearest but smaller 10's
multiple of the number as done in line 7. Recursive call can
be made over this number and the result is to be stored in a
variable, say 'sq'. This is done in /ine8.

In line 9, a variable called '1' is assigned a value of 1. The
loop on line 10 sustains until the remainder that we had
previously stored is greater than zero.

The main part of this whole algorithm resides in the next
three lines from line 11 to line 13. The explanation for this
can be stated by an example.

Let’s consider a number, 34. The nearest but smaller 10’s
multiple to this number is 30. Square of 30 can be
calculated using recursive calls as described above. In order
to calculate the square of 34, four iterations are carried out
inside the while loop. In first iteration, square of 30, i.e.
900, is added up with ‘twice of 30’ and 1, to yield the
square of 31 as 961. In second iteration, 961 is added up
with ‘twice of 30° and 3, to yield 1024, i.e. the square of 32.
In the next iteration, 1024 is added up with ‘twice of 30’
and 5, to yield the square of 33 as 1089. In the fourth
iteration, 1089 is added up with ‘twice of 30’ and 7 to give
the final answer of square of 34, i.e. 1156.

Thus, it can be shown that the algorithm applies to all sort
of inputs and returns the square of number in recursive

manner.

The square calculated can be returned as in line 14.

B. Flowchart

€
/;&]CSE © 2015, IJCSE All Rights Reserved

Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693
A 4

Input:
Number

Is

len(Number)
YES =17 NO
Return the
Square of
number v
Check for
modulo-10 of
number
Is modulo-10
==07?
y
Put 1/10™ of i=1
number in
recursion
\ 4
Find the
h 4 nearest but
Append two smaller 10’s
zeroes at the multiple,
end of the ‘num’
result
v
Put this
Return the numbe.r n
recursion
result
A
Store the
result in ‘sq’

39

International Journal of Computer Sciences and Engineering

v
Is units-digit
>0?
YES NO
sq =sq + num *2 +1
v
Increase i by 2; v
Decrease units-digit
by 1 Return ‘sq’
\ 4
End

C. Corectness of the Algorithm

Correctness of the algorithm can be proved by having
proved the applicability of the algorithm over all sort of
inputs that the algorithm claims to be working upon. This is
where the working of the inner of the ‘while’ loop is
explained.

This method of computing the square of a number can also
be implemented in thought process for human beings for
faster calculation of square of small numbers.

Let’s consider a number, 57. The requirement is to find the
square of this number. The unit’s digit being 7 is required to
be stored in a variable, say ‘udigit’. The nearest but smaller
10’s multiple is found to be 50. Calculate the square of 50.
The square of 50 can be easily calculated as two zeroes are
required to be placed after the square of 5. This is done in
the first recursion in the algorithm given above. This
ensures that the square of a number ending with a zero is
calculated by eliminating the zero in the end and calculating
the square of the remaining number by recursion and
multiplying the result by 100 (or placing two zeroes in the
end of the result in thought process).

Once the square of 50 is calculated as 2500, the while loop
gets activated and the processing is done as follows:

In the first iteration, add 50 * 2 = 100 and 1 to 2500, to
make it 2601, this is the square of 51. In the second
iteration, add 50 * 2 and 3 to 2601, to make it 2704, this is
the square of 52. By proof of induction it can be shown that

0
ASJCSE ©2015, 1ICSE Al Rights Reserved

Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

proceeding in this manner, the square of a number can be
calculated with faster pace and greater ease.

D. Implementation

Every algorithm is required to have a working model in
order to test the applicability and complexity of it. The
following program is written in Programming language and
gives a working model of the algorithm given here.

import time

num = 99999
timel = time.time()
def func(num):
if num ==
return 0
if num ==
return 1
if num == 2:
return 4
if num == 3:
return 9
if num ==
return 16
if num ==
return 25
if num ==
return 36
if num ==
return 49
if num ==
return 64
if num ==
return 81

numl = num % 10

if numl ==

40

International Journal of Computer Sciences and Engineering

num2 = num/ 10

num3 = func(num?2) * 100

return nums3
else:

num2 = num - numl
num3 = func(num?)

sq = num3
i=1

while numl > 0:
sq =sq + num2 *2 + i
i+=2
numl -= 1
return sq
time2 = time.time()
time2 = time2 - timel
print “***ALGORITHM USED***”

“ =+ ”»

print “The square of ”, num, “is: ”, sq
print “Time required: ”, time2, “ and size of input: ”,
len(str(num))

time3 = time.time()

numl = num ** 2

time4 = time.time()

time4 = time4 - time3

print “***CONVENTIONAL METHOD***”

print “The square of ”, num, “is: ”, numl

print “Time required: ”, time4, “ and size of input: ”,
len(str(num))

It should be clear from the program given above that time
module of Python language has been used in order to
compare the time taken by each of the two methods: first,

method given by the algorithm mentioned afore and second,
the conventional method of squaring a number.

€
/;&]CSE © 2015, IJCSE All Rights Reserved

Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

E. Observation

Following screenshots show the time difference taken when
the square of a sufficiently large number is calculated. We
start with a number consisting of 10 digits and proceed by
increasing the number by 10 digits every time.

ALGORITHM USED

The square of 9987476453 1is: 99749685899229461209

Time required: 1.90734863281e-06 and size of the input: 10

CONVENTIONAL METHOD

The square of 9987476453 1is: 99749685899229461209

Time required: 5.96046447754e-06 and size of the input: 10

>python square.py

ALGORITHM USED

The square of 99874764536457329810 1is: 9974968591212794709474296386875114636100
Time required: 2.14576721191e-06 and size of the input: 20

CONVENTIONAL METHOD

The square of 99874764536457329810 1is: 9974968591212794709474296386875114636100
Time required: 9.05990600586e-06 and size of the input: 20

>python square.py

ALGORITHM USED

The square of 998747645364573298106347520010 1is: 9974968591212794709601087800152954
89119643180972277350400100

Time required: 1.90734863281e-06 and size of the input: 30

CONVENTIONAL METHOD

The square of 998747645364573298106347520010 1is: 9974968591212794709601087800152954
89119643180972277350400100

T‘ime required: 6.91413879395e-06 and size of the input: 30

5|

on” squar €. py
ALGORITHM USED

The square of 9987476453645732981063475200106457832009 1is: 997496859121279470960108
78001658543802227292535610492442026008623596056464976081

Time required: 2.14576721191e-06 and size of the input: 40

CONVENTIONAL METHOD

The square of 9987476453645732981063475200106457832009 1is: 997496859121279470960108
78001658543802227292535610492442026008623596056464976081

Time required: 6.91413879395e-06 and size of the input: 40

>python square.py

ALGORITHM USED

The square of 99874764536457329810634752001064578320096234500955 1is: 99749685912127
94709601087800165854380223974592190815130912643167020619297046714685670374057895912025
Time required: 1.90734863281e-06 and size of the input: 50

CONVENTIONAL METHOD

The square of 99874764536457329810634752001064578320096234500955 1is: 99749685912127
94709601087800165854380223974592190815130912643167020619297046714685670374057895912025
T'ime required: 7.86781311035e-06 and size of the input: 50

5|

>python square.py

ALGORITHM USED

The square of 998747645364573298106347520010645783200962345009556455599932 1is: 9974
96859121279470960108780016585438022397459219094408121727318101058858410229366754152022
228104758964713471682038404624

Time requi 2.14576721191e-06 and size of the input: 60

CONVENTIONAL METHOD

The square of 998747645364573298106347520010645783200962345009556455599932 1is: 9974
96859121279470960108780016585438022397459219094408121727318101058858410229366754152022
228104758964713471682038404624

Time required: 8.10623168945e-06 and size of the input: 60

>python square.py

ALGORITHM USED

The square of 9987476453645732981063475200106457832009623450095564555999328456700991
is: 99749685912127947096010878001658543802239745921909440812172900732309932111094264
437165119511220982807459651088203491310320394443891180382081

Time required: 2.14576721191e-06 and size of the input: 70

CONVENTIONAL METHOD

The square of 9987476453645732981063475200106457832009623450095564555999328456700991
is: 99749685912127947096010878001658543802239745921909440812172900732309932111094264
437165119511220982807459651088203491310320394443891180382081

Time required: 8.10623168945e-06 and size of the input: 70

41

International Journal of Computer Sciences and Engineering

654798760 1is: 9974968591212794709601087800165854380223974592190944081217290073230994
74015187390164759800583796714205927071801142700820102833966131866195735054736725609753
7600

Time required: 1.90734863281e-06 and size of the input: 80

*%%CONVENTIONAL METHOD***

The square of 99874764536457329810634752001064578320096234500955645559993284567009917
654798760 1is: 9974968591212794709601087800165854380223974592190944081217290073230994
74015187390164759800583796714205927071801142700820102833966131866195735054736725609753
7600

Time required: 8.10623168945e-06 and size of the input: 86

>python square.py

%ALGORITHM USED*

The square of 99874764536457329810634752001064578320096234500955645559993284567009917
6547987606340955667 1is: 997496859121279470960108780016585438022397459219094408121729
00732309947401518740283078888413859138553457642316694325945569399685004421878139117987
9229181721750979539177170859414889

Time required: 2.14576721191e-06 and size of the input: 90

%%CONVENTIONAL METHOD***

The square of 99874764536457329810634752001064578320096234500955645559993284567009917
6547987606340955667 1is: 997496859121279470960108780016585438022397459219094408121729

00732309947401518740283078888413859138553457642316694325945569399685004421878139117987
9229181721750979539177170859414889
Time required: 9.05990600586e-06 and size of the inpu 90

on square.py
ALGORITHM USED
The square of 99874764536457329810634752001064578320096234500955645559993284567009917
65479876063409556675467833454 is: 997496859121279470960108780016585438022397459219609
44081217290073230994740151874028307888852307885430202048043311436233885226867560948417
8889972740542487246342844454456494492510687456966879040681570116
Time required: 1.90734863281e-06 and size of the input: 100
CONVENTIONAL METHOD
The square of 99874764536457329810634752001064578320096234500955645559993284567009917
65479876063409556675467833454 1is: 99749685912127947096010878001658543802239745921909
44081217290073230994740151874028307888852307885430202048043311436233885226867560948417
8889972740542487246342844454456494492510687456966879040681570116
T‘ime required: 1.31130218506e-05 and size of the input: 100
>

It can be easily seen how the algorithm works in constant
time without having the effect of the number of digits in the
number whose square is required to be calculated. This
becomes interesting when it is seen that the algorithm
consumes much less time required to compute the square
than the conventional technique of using exponential
operation.

The algorithm also works for very large number, say
numbers consisting of 100 digits and more. The time
consumed to compute the square of the number remains
constant and this can be shown in the following screenshots
that show how the impact of number of digits doesn’t affect
the running time of the algorithm, but it does affect the
conventional method of exponential operation.

>python square.py

ALGORITHM USED

The square of 99874764536457329810634752001064578320096234500955645559993284567009917
65479876063409556675467833454998747645364573298106347520010645783200962345009556455599
9328456700991765479876063409556675467833454 1is: 997496859121279470960108780016585438
022397459219094408121729600732309947401518740283078888523078854321970417615539951758054
44427594119293933792192492437540877742460091848397281443551358265674529734097740159294
57441519387305625151384822738003920073275918573902978982143983725173248942241646933671
02566220204804331143623388522686756094841788899727405424872463428444544564944925106874
56966879040681570116

Time required: 2.14576721191e-06 and size of the input: 200

%CONVENTIONAL METHOD*

The square of 99874764536457329810634752001064578320096234500955645559993284567009917
65479876063409556675467833454998747645364573298106347520010645783200962345009556455599
9328456700991765479876063409556675467833454 1is: 997496859121279470960108780016585438
02239745921909440812172900732309947401518740283078888523078854321970417615539951758054
44427594119293933792192492437540877742460091848397281443551358265674529734097740159294
57441519387305625151384822738003920073275918573902978982143983725173248942241646933671
02566220204804331143623388522686756094841788899727405424872463428444544564944925106874
56966879040681570116

Time required: 1.50203704834e-05 and size of the input: 200

>)

[
/"NCSE © 2015, IJCSE All Rights Reserved

Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

>python square.py

ALGORITHM USED

The square of 998747645364573298106347520010645783200962345009556455599932845670099176547987606340955667546
783345499874764536457329810634752001064578320096234500955645559993284567009917654798760634095566754678334549
987476453645732981063475200106457832009623450095564555999328456700991765479876063409556675467833454 is: 99
749685912127947096010878001658543802239745921909440812172900732309947401518740283078888523078854321970417615
539951758054444275941192939337921924924375408777424600918483972814435513582656745297340979396586663986710880
650780075171653149845186925765780673633755912860597320547699699885742463828679652460113784817686764357589816
271601612971178674060093499014631135098314729578358104275164148266604812094015929457441519387305625151384822
738003920073275918573902978982143983725173248942241646933671025662202048043311436233885226867560948417888997
2740542487246342844454456494492510687456966879040681570116

Time required: 1.90734863281e-06 and size of the input: 300

CONVENTIONAL METHOD

The square of 998747645364573298106347520010645783200962345009556455599932845670099176547987606340955667546
783345499874764536457329810634752001064578320096234500955645559993284567009917654798760634095566754678334549
987476453645732981063475200106457832009623450095564555999328456700991765479876063409556675467833454 is: 99
749685912127947096010878001658543802239745921909440812172900732309947401518740283078888523078854321970417615
539951758054444275941192939337921924924375408777424600918483972814435513582656745297340979396586663986710880
650780075171653149845186925765780673633755912860597320547699699885742463828679652460113784817686764357589816
271601612971178674060093499014631135098314729578358104275164148266604812094015929457441519387305625151384822
738003920073275918573902978982143983725173248942241646933671025662202048043311436233885226867560948417888997
2740542487246342844454456494492510687456966879040681570116

I'ime required: 2.09808349609e-05 and size of the input: 300

The square of 998747645364573298106347520010645783200962345009556455599932845670099176547987606340955667546
783345499874764536457329810634752001064578320096234500955645559993284567009917654798760634095566754678334549
987476453645732981063475200106457832009623450095564555999328456700991765479876063409556675467833454998747645
3645732981063475200106457832009623450095564555999328456700991765479876063409556675467833454 is: 9974968591
212794769601087800165854380223974592190944081217290073230994740151874028307888852307885432197041761553995175
805444427594119293933792192492437540877742460091848397281443551358265674529734097939658666398671088065078007
,517165314984518692576578067363375591286059732054769969988574246382867965265961315664194265854961157227491870
057565816590391238063897693656293462438139558484132192531276252071800682750609583348421233810293549985623181
473874278122902324803751896219049837191279118271964993675660113784817686764357589816271601612971178674060093
499014631135098314729578358104275164148266604812094015929457441519387305625151384822738003920073275918573902
978982143983725173248942241646933671025662202048043311436233885226867560948417888997274054248724634284445445
6494492510687456966879040681570116

Time required: 1.90734863281e-06 and size of the input: 400

CONVENTIONAL METHOD

The square of 998747645364573298106347520010645783200962345009556455599932845670099176547987606340955667546
783345499874764536457329810634752001064578320096234500955645559993284567009917654798760634095566754678334549
987476453645732981063475200106457832009623450095564555999328456700991765479876063409556675467833454998747645
3645732981063475200106457832009623450095564555999328456700991765479876063409556675467833454 is: 9974968591
212794709601087800165854380223974592190944081217290073230994740151874028307888852307885432197041761553995175
805444427594119293933792192492437540877742460091848397281443551358265674529734097939658666398671088065078007
517165314984518692576578067363375591286059732054769969988574246382867965265961315664194265854961157227491870
057565816590391238063897693656293462438139558484132192531276252071800682750609583348421233810293549985623181
473874278122902324803751896219049837191279118271964993675660113784817686764357589816271601612971178674060093
499014631135098314729578358104275164148266604812094015929457441519387305625151384822738003920073275918573902
978982143983725173248942241646933671025662202048043311436233885226867560948417888997274054248724634284445445
6494492510687456966879040681570116

Time required: 2.90870666504e-05 and size of the input: 400

>python square.py

+44ALGORITHM USED***

The square of 998747645364573298106347520010645783200962345009556455599932845670099176547987606340955667546783345499874764536457
329810634752001064578320096234500955645559993284567009917654798760634095566754678334549987476453645732981063475200106457832009623
450095564555 56700991765479876063409556675467833454998747645364573298106347520010645783200962345009556455599932845670099176
54798760634095566754678334549987476453645732981063475200106457832009623450095564555999328456700991765479876063409556675467833454
is: 997496859121279470960108780016585438022397459219094408121729007323099474015187402830788885230788543219704176155399517580544
442759411929393379219249243754087774246009184839728144355135826567452973489793965866639867108806507800751716531498451869257657806
736337559128605073205476996998857424638286796526506131566419426585496115722749187005756581659039123806389769365629346243813955848
1413219253127625207379567646885214229034145137032672086166797639231246693914578281839809516708021199694069604242657076190002276530
422990532665694578710838415345762071476212556583382565206451423160933398065950612639392303800682750609583348421233810293549985623
181473874278122962324803751896219049837191279118271964993675660113784817686764357589816271601612971178674060093499014631135098314
729578358104275164148266604812094015029457441519387305625151384822738003920073275918573902978982143983725173248942241646933671025
6622020480433114362338852268675609484178889972740542487246342844454456494492510687456966879040681570116

Time required: 1.00734863281e-06 and size of the input: 500

+#+*CONVENTIONAL METHOD***

The square of 998747645364573298106347520010645783200962345009556455599932845670099176547987606340955667546783345499874764536457
329810634752001064578320096234500955645559993284567009917654798760634095566754678334549987476453645732981063475200106457832009623
450095564555099328456700991765479876063409556675467833454998747645364573298106347520010645783200962345009556455599932845670099176
54798760634095566754678334549987476453645732981063475200106457832009623450095564555999328456700991765479876063409556675467833454
is: 997496859121279470960108780016585438022397459219094408121729007323099474015187402830788885230788543219704176155399517580544
442759411929393379219249243754087774246009184839728144355135826567452973409793965866639867108806507800751716531498451869257657806
736337559128605073205476996998857424638286796526506131566419426585496115722749187005756581659039123806389769365629346243813955848
413219253127625207379567646885214229034145137032672086166797639231246693914: 839809516708021199694069604242657076199002276530
422990532665694578710838415345762071476212556583382565206451423160933398065950612639392303800682750609583348421233810293549985623
18147387427812296232480375189621904983719127911827196499367566011378481768676435758981627160161297117867406069:
72957835810427516414826660481209401592945744151 6251513848227380039200732759185739029789821439837251732489
66220204804331143623388522686756094841788899727 2844454456494492510687456966879040681570116

Time required: 3.2901763916e-65 and size of the 500

It is clearly seen in the above pictures that the square
calculated through the algorithm mentioned in this paper
takes reasonably less amount of time than the conventional
method of calculating the square. A clear vision of the same
can be deciphered by presenting a graph holding the amount
of time taken on Y-axis with respect to the number of digits
of the number on X-axis.

42

International Journal of Computer Sciences and Engineering

In the graph shown below, the comparison of number of
digits with respect to the time taken for calculating the
square of a number by both the methods is shown. It can be
seen how the time taken increases with the increase in
number of digits. It should be noted here that input numbers
are reasonably large, i.e. consisting of 100, 200, 300, 400
and 500 digits.

2.50E-05 :_/_
2.00E 05 /‘/
1.50E 05 .——/./
1.00E-05

- & - i b .

-— v v v v
QO00seon -
0 100 2m 300 400 500 600
—4#— Aigorithm == Conventional

F. Advancement in the Algorithm

The algorithm can also be modified for the computation of
higher exponential powers. This can be achieved by
strategically repeating the algorithm until the required result
is obtained. A more elaborative explanation for this fact can
be given by an example.

Let a base number be ‘46’ and the exponent be ‘9’. The
operation *46 " 9’ is required to be carried out. This can be
done by calculating the square of 46 using the algorithm.
This gives 46 ~ 2’. Calculating the square of the result
obtained will give 46 ~ 4°. Applying the same algorithm
again for calculating the square will give *46 * 8’. Now, this
result is simply required to be multiplied by another 46 in
order to yield the result for 46 ~ 9°. In this manner, higher
exponential operations on a number can be dealt with.

o
ASJCSE ©2015, 1ICSE Al Rights Reserved

Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693
G. Future Scope

1. The algorithm being used here functions on a pre-
determined set of hardware that keeps it working in
a conventional way of execution of operations that
limits the effectiveness of the algorithm. The speed
of calculation can be improved by providing the
algorithm with proper hardware. With proper
hardware capable of holding the variables and
function and heaps used, the algorithm can be
proved to be even faster.

2. It can be seen from the fact of execution of the
algorithm, that for all the numbers, the nearest but
smaller 10’s multiple is calculated. For numbers
that are more than 5 units more to the 10’s
multiple, i.e. 57 is 50 (10’s multiple) + 7 (unit’s
digit), the inner loop executes for seven times. This
can be reduced by having considered the nearest
but larger 10’s multiple, i.e. 60 for 57. Now, square
of 60 can be calculated as 3600 and twice of 60
can be subtracted from 3600 and 1 is added to get
the square of 59, i.e. 3481. In order to find the
square of 58, from 3481, twice of 60 has to be
subtracted again and 3 has to be added up to the
result, to get 3364. In the next iteration, subtracting
twice of 60 from 3364 and adding 5 will give the
square of 57, as 3249. This reduces the number of
iterations from 7 to 3 and thus leads to a better and
efficient method of calculating the squares.

V. CONCLUSION

The requirements for computing the square of a given
number faster than presently used conventional method
have been fulfilled. It can now be concluded that a square of
a number can be subjected to be considered as a problem
that can be solved by dividing the problem into sub-problem
of calculating the square of the nearest but smaller 10’s
multiple of the given number. This implementation is done
in programming by using the concept of recursion.

V1. ACKNOWLEDGMENT

I would like to thank my parents for providing me all sorts of
means to have a considerable environment for proper
studies. I would also thank the Almighty God, for all the
protection and care he has been giving to me. A special
thanks to my father, who could not see his son’s first
authored paper. I would also thank my dearest friend,
Yogender Bhardwaj, for introducing me to IJCSE and
promoting me to develop this paper. A special thanks to my

43

International Journal of Computer Sciences and Engineering Vol.-3(7), PP(37-44) July 2015, E-ISSN: 2347-2693

dearest friends Moksh Gaur, Akash Raman, Aakrisht Aman,
for encouraging me to publish my work.

VII. REFERENCES

I would mention here that this discovery is individual to the
author only and contribution of no other person or any
source is involved. The following references contribute to
the development of the program and not the algorithm:

[1] Dive Into Python, Mark Pilgrim, Published 20" May 2004

o
ASJCSE ©2015, 1ICSE Al Rights Reserved 44

