
 © 2014, IJCSE All Rights Reserved 41

 International Journal of Computer Science and EngineeringInternational Journal of Computer Science and EngineeringInternational Journal of Computer Science and EngineeringInternational Journal of Computer Science and Engineering Open Access
Review Paper Volume-2, Issue-3 E-ISSN: 2347-2693

Study: Impact of Agile on Current IT Scenario

Anuradha Singhal1*, Tarun Chaner2 and Richa Gupta3

1*
Department of Computer Science ,Delhi University,India, anuradhasinghal19@gmail.com

 3

2

 Department of Computer Science, Kurukshetra University,India,tarun.chander@gmail.com

Department of Computer Science , Delhi University India ,India ,richie.akka@gmail.com

www.ijcseonline.org

Received: 2 March 2014 Revised: 10 March 2014 Accepted: 22 March 2014 Published: 30 March 2014

Abstract— The present research paper majorly discusses with regard to various issues related to agile software development
approach in related to changes mande in diverse background.

Index Term—Extreme Programming, Feature driven development, Focal Point, Return on Investment (ROI), Scrums

I. INTRODUCTION

Agile software development is an evolutionary, highly
collaborative, disciplined, quality-focused approach to
software development, whereby potentially shippable
working software is produced at regular intervals for review
and course correction. Agile software development
processes1 include Scrum, Extreme Programming (XP), Open
Unified Process (OpenUP), and Agile Modeling (AM), to
name a few. Agile development is becoming widespread
because it works well – organizations are finding that agile
project teams, when compared to traditional project teams,
enjoy higher success rates, deliver higher quality, have
greater levels of stakeholder satisfaction, provide better
return on investment (ROI), and deliver systems to market
sooner. But, just because the average agile team is more
successful than the average traditional team, that doesn’t
mean that all agile teams are successful nor does it mean that
all organizations are achieving the potential benefits of agile
to the same extent. Agile processes are intended to support
early and quick production of working code. This is
accomplished by structuring the development process into
iterations, where an iteration focuses on delivering working
code and other artifacts that provide value to the customer
and, secondarily, to the project. Agile process proponents
and critics often emphasize the code focus of these
processes. Proponents often argue that code is the only
deliverable that matters, and marginalize the role of analysis
and design models and documentation in software creation
and evolution. Agile process critics point out that the
emphasis on code can lead to corporate memory loss because
there is little emphasis on producing good documentation
and models to support software creation and evolution of
large, complex systems. The claims made by agile process
proponents and critics lead to questions about what practices,
techniques, and infrastructures are suitable for software
development in today’s rapidly changing development
environments. In particular, answers to questions related to
the suitability of agile processes to particular application
domains and development environments are often based on

anecdotal accounts of experiences.

II. LITERATURE REVIEW

There is a demand for approaches able to deal with the
increasing complexity of software development, because
coordination becomes more difficult when complexity
increases (Kraut, 1995)[8]. A family of potential approaches
that has received a lot of attention from software engineers
and software researchers the later years has adopted the term
“agile” (Abrahamsson, 2003)[1]. Agile software
development is introduced as a software development
approach promoting teamwork, innovation, flexibility, and
communication (Agerfalk, 2006)[2]. Agile development
approaches and global software development approaches
differ significantly in their key tenets, e.g. regarding
coordination mechanisms (Ramesh, 2006)[9]. Global
software development focuses on command-and control and
formal communication. The desired organizational structure
is mechanistic, which means that it is bureaucratic with high
formalization. Agile or change-driven development focuses
on leadership-and-collaboration and informal
communication. The desired organizational form is organic,
which means that it is flexible, participative, and encourages
cooperative social action. Therefore, applying agile
principles to global software development marks an
intersection of two seemingly incompatible approaches. Still,
(Ramesh, 2006) demonstrate how a balance between agile
and distributed approaches can help meet the challenges with
incorporation of agility in distributed software development.
Despite the differences, there is a growing interest in
assessing the viability of using agile practices for distributed
teams (Agerfalk, 2006)[2]. Several reports claim that it can
be done successfully ((Berczuk, 2007)[3], (Farmer, 2004),
(Fowler, 2003), (Holmstrom, 2006)[6], (Nisar, 2004),
(Korkala, 2007)[7], (Ramesh, 2006), (Sulfaro, 2007),
(Sutherland, 2007))[10].Agile software development
comprises a number of practices and methods ((Erickson,
2005)[5], (Cohen, 2004), (Abrahamsson, 2002). Among the
most known and adopted agile methods are Extreme
Programming (XP) (Beck, 2004) and Scrum (Schwaber,

Corresponding Author: Anuradha Singhal

International Journal of Computer Sciences and Engineering Vol.-2(3), pp(41-45) March 2014, E-ISSN: 2347-269

 © 2014, IJCSE All Rights Reserved 42

2001). XP focuses primarily on the implementation of
software, while Scrum focuses on agile project management
(Abrahamsson, 2003). In this study the focus is on Scrum
since Scrum is an agile approach to the management of
software development projects ((Erickson, 2005), (Cohen,
2004)[4], (Abrahamsson, 2002)), and thus focuses on the
coordination of work.

III. RESEARCH METHODOLOGY

Methodology is defined as a process in which particular
discipline is followed by the system of methods. Research in
common refers to a search for knowledge. Research can also
be defined as a scientific and systematic search for relevant
information on a particular topic. The research is in fact a
scientific investigation. The main purpose of the research is
not only to discover the answers to the questions specified
but also to provide certain scientific procedures throughout
the application. Thus, research methodology is generally an
association of considerable part of most important scientific
research and technology. There are many features which are
obtained in the past based on the qualitative and quantitative
approaches towards the researchers.
Quantitative vs. Qualitative: Quantitative research depends

on assessment of quantity or amount i.e. the organization is

based on measurement of total quality or amount details. The

details are applicable based on the phenomena which are

expressed as per the terms of quantity. It is relevant to the

outcomes that can be expressed corresponding to quantity.

Qualitative research is concerned to qualitative phenomenon,

i.e., it is a phenomenon that involves quality or kind.To

address the research questions, semi-structured interviews

were conducted with the persons. The focus was on

understanding coordination of work, communication within

and between the teams, feedback-sessions, planning and

estimation, use of documentation, roles and specializations,

and how decisions were made. All the interviews were

transcribed. The interviewees were asked to indicate the

relative level of the various coordinating mechanisms used

between local and remote sites in their projects. While the

interviews were the primary source of data for this study,

access was given to previously collected data on the primary

company. The research methodology for this report entails

primary and secondary sources available and is of qualitative

approach.

IV. SAMPLING

4.1 Agile Adoption Survey
February 2008
Message sent out to DDJ mailing list
642 respondents:
54.8% were developers,
29.4% were in management
41.6% had 10-20 years IT experience,
37.2% had 20+ years

37.7% worked in orgs of 1000+ people
71% worked in North America,
17% in Europe,
4.5% in Asia

4.2 Project Success Survey

August 2007
Email to DDJ mailing list
586 respondents
54% were developers/modelers,
30% were in management
73% had 10+ years in IT
13% worked in orgs of 1000+ IT people
84% worked in commercial firms
69% North American,
18% European

V. ANALYSIS

5.1 Case study of IBM

The following case study was described at the Agile 2008
conference by Sue McKinney, Vice President IBM Software
Group, and Ted Rivera, Senior Agile Transformation
Architect. International Business Machines is a large $100B
worldwide technology and services company. Ten years ago
like most companies, software development at IBM was
done using the old-fashioned waterfall approach. This
resulted in significant quality issues and ever-increasing
schedule slips. After several disappointing years, IBM
shifted to the Rational Unified Process (RUP) approximately
5 years ago. The iterative nature of RUP seemed to help
initially, but the development teams still struggled to meet
schedules with high quality deliverables. In 2006, IBM
invested in an elaborate shift over to Agile Methods. The
shift involved over 25,000 software developers across 78
worldwide locations. 220 commercial projects started up
with a commitment to following the philosophies and
principles of Agile Methods. Measurements were taken
using the IBM deployment evaluation framework, tracking
numbers of lines of code, employee satisfaction surveys, and
capturing defect trends. Overall, the projects experienced a
30% velocity increase when compared to previous non-agile
projects. This resulted in substantial measurable gains in
time to market and ROI. One of these 220 projects dealing
with the IBM WebSphere product was enormously
successful and met its yearly sales goal on the very first day
of availability. In addition, $2.567M was saved by increased
software quality and earlier defect detection. Field defects
were reduced by 80% from previous releases. The number of
trouble tickets from the field customers was reduced by 95%
from previous releases. Another of the 220 projects involved
the IBM DB2 product and 600 software engineers.
Comparing previous non-agile releases of DB2, IBM found
that using Agile Methods led to a 25% productivity gain and
a saving of over $5M per year.IBM is an excellent example
of a large company that has fully embraced Agile Methods
and is currently realizing the fruits of this decision with
substantial measurable cost avoidance and increased sales

International Journal of Computer Sciences and Engineering Vol.-2(3), pp(41-45) March 2014, E-ISSN: 2347-269

 © 2014, IJCSE All Rights Reserved 43

revenue.IBM has since long recognized the value of lean and
agile development. IBM had been applying rapid application
development, lean approaches, model driven development
and many other agile principles regularly, to ensure quality
deliverable at a much quicker pace. With more well defined
agile methodologies like Scrum and XP becoming popular,
IBM has been leveraging these successfully, delivering
projects using one or more of these agile methodologies,
either in their out-of-the-box form, or using a modified
version. IBM Agile projects collaborate using our internal
knowledge management systems, communities of practice,
and have access to toolsets and enablers hosted in the
centralized organizational process repository .
The following are the responses to corresponding questions
that are acquired from respondents.
Fig 1 shows adoption of Agile Technology in industry.

Fig 1 Adoption of Agile Software

18.3% of respondents indicated they’re still in the pilot
stage.15% of “No” respondents hope to do Agile this year.
Fig 2 depicts Impact of Agile on Technology. Fig 3 shows
Impact of Agile on Sales . Fig 4 illustrates Impact of Agile
on Business StakeHolder satisfaction. Fig 5 illustrates Agile
impact on system development cost

Fig 2 Impact of Agile on Productivity

Fig 3 Impact of Agile on Sales

Fig 4 Impact of Agile on Satisfaction of Stakeholders

Fig 5 Impact of Agile on cost of System Development

Fig 6 shows Adoption of various techniques and impact on
productivity.

Fig 6 Adoption of various techniques

Quality: 87.3% believe that delivering high quality is more
important than delivering on time and on budget
Scope: 87.3% believe that meeting actual needs of
stakeholders is more important than building the system to
specification
Money: 79.6% believe that providing the best ROI is more
important than delivering under budget
Staff: 75.8% believe that having a healthy workplace is more
important than delivering on time and on budget
Schedule: 61.3% believe that delivering when the system is
ready to be shipped is more important than delivering on
schedule

International Journal of Computer Sciences and Engineering Vol.-2(3), pp(41-45) March 2014, E-ISSN: 2347-269

 © 2014, IJCSE All Rights Reserved 44

Fig 7 Agile methodology success rates

Agile methodology success rates is depicted in Fig7. (214
co-located projects, 210 not co-located, and 129 offshoring
/outsourcing). Percentage of Agile Technology knowledge
acquisition is shown in Fig 8.Fig 9 ,10depicts types of Agile
methods and Agile techniques used in today IT world.

Fig 8 Knowledge on Agile

Fig 9 Agile Methods used

Fig 10 Agile Techniques used

VI. LIMITATIONS OF AGILE PROCESSES

1.1 Limited support for distributed development

environments-

The emphasis on co-location in practices advocated by agile
processes does not fit well with the drive by some industries
to realize globally distributed software development
environments. Development environments in which team
members and customers are physically distributed may not
be able to accommodate the face-to face communication
advocated by agile processes.

1.2 Limited support for development involving large teams

Agile processes support process "management-in-the small"
in that the coordination, control, and communication
mechanisms used are applicable to small to medium sized
teams. With larger teams, the number of communication
lines that have to be maintained can reduce the effectiveness
of practices such as informal face-to-face communications
and review meetings. Large teams require less agile
approaches to tackle issues particular to "management-in-
the-large".
Traditional software engineering practices that emphasize
documentation, change control and architecture-centric
development are more applicable here.

1.3 Limited support for developing large complex software

The assumption that code refactoring removes the need to
design for change may not hold for large complex systems in
particular. In such software, there may be critical
architectural aspects that are difficult to change because of
the critical role they play in the core services offered by the
system. In such cases, the cost of changing these aspects can
be very high and therefore it pays to make extra efforts to
anticipate such changes early. The reliance on code
refactoring could also be problematic for such systems. The
complexity and size of such software may make strict code
refactoring costly and error-prone.
Agile development methods aren’t used under the following
circumstances:

International Journal of Computer Sciences and Engineering Vol.-2(3), pp(41-45) March 2014, E-ISSN: 2347-269

 © 2014, IJCSE All Rights Reserved 45

i) When goal is to produce documentation, such as a
requirements document, for sign-off by one or more project
stakeholders
ii)While using a case tool to specify the architecture and/or
design of our software BUT not using that specification to
generate part or all of our software
iii)When customers/users have limited involvement with our
efforts. For example they are involved with initial
development of requirements, perhaps are available on a
limited basis to answer questions, and at a later date will be
involved in one or more acceptance reviews of the work.

VII. CONCLUSION

The agile qualities in large IT shops have always sounded
philosophical. This perception is changing. Recent facts and
studies support the notion that large IT shops today can
quickly deliver large & efficient software using Agile
methodology. Therefore, the better question is how a large
unit can act like small in agility, but remains big in risk
management. When we tend to emphasize on the latter, we
move towards the classical Waterfall approach, which has
hidden cost in terms of requirements gaps and probable
program failure. We then try to be agile by retaining most of
the heavy practices but making the software development
lifecycle iterative or spiral. In other words, we simply loosen
the controls and start calling it agile development, and expect
it to behave like one as well. Many a times, we are not
conscious of the best practices that Agile methodologies use
to reduce the risk of eliminating controls. For instance,
Scrum has the principle of “documenting less but
broadcasting more” - a mechanism that makes the project
inherently risk-aware despite having less artifacts.

Today, Agile is at crossroads not in terms of “how loose” or
“tight” should the software development lifecycle behavior
be, but in terms of how it brings in the right collection of
best practices, which would make the project both
requirement-aware and risk-aware, ensuring high flexibility,
reduced risk and increased visibility. This correction in our
perception of Agile has happened rather late – I claim so as I
see an explosion in the adoption of Agile methodologies that
exploit this confusion. What is needed is the practices that
the IT shop would institutionalize to hedge the absence of
many merits that traditional waterfall still carries. This
diminishes role of methodologies and heightens the need for
a best practice culture.

REFERENCES

[1]. Abrahamsson, P. W. J. S. M. T. &. R. J., 2003. New
directions on agile methods - A comparative analysis.
International Conference on Software Engineering-ICSE,
pp. 244-254.

[2]. Agerfalk, P. J. &. F. B., 2006. Flexible and distributed
software processes: Old petunias in new bowls?.
Communications of the ACM, Volume 49, pp. 26-34.

[3]. Berczuk, S., 2007. Back to basics: The role of agile
principles in success with a distributed Scrum team.. In:
AGILE 2007. s.l.:s.n., pp. 382-388.

[4]. Cohen, D. L. M. &. C. P., 2004. An introduction to agile
methods.. Zelkowitz, M. V. (Ed.) ed. Amsterdam: Elsevier.

[5]. Erickson, J. L. K. &. S. K., 2005. Agile modeling, agile
software development, and extreme programming: The state
of research. Journal of Database Management, Volume 16,
pp. 88-100.

[6]. Holmstrom, H. F. B. A. P. J. &. C. E. O., 2006. Agile
practices reduce distance in global software development.
Information Systems Management, Volume 23, pp. 7-18.

[7]. Korkala, M. &. A. P., 2007. Communication in distributed
agile development: A case study.. 33rd EUROMICRO
Conference on Software Engineering and Advanced
Applications, pp. 203-210.

[8]. Kraut, R. E. &. S. L. A., 1995. Coordination in software-
development. Communications of the ACM, Volume 38,
pp. 69-81.

[9]. Ramesh, B. C. L. M. K. &. X. P., 2006. Can distributed
software development be agile?. Communications of the
ACM, Volume 49, pp. 41-46.

[10]. Sutherland, J. V. A. B. J. &. P. N., 2007. Distributed Scrum:
Agile project management with outsourced development
teams. Hawaii International Conference on System Sciences
, p. 274.

AUTHORS PROFILE

Anuradha Singhal ,MS(Software Sytems) , BITS

Pilani B.E Rajasthan University Tarun Chander

, B.E (Computer Science) Kurukshetra University

Richa Gupta .MSc(Computer Science) ,Delhi University

