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Abstract— In modern world a huge amount of data is available which can be used effectively to produce vital information. The
information achieved can be used in the field of Medical science, Education, Business, Agriculture and so on. As huge amount
of data is being collected and stored in the databases, traditional statistical techniques and database management tools are no
longer adequate for analyzing this huge amount of data. Data Mining (sometimes called data or knowledge discovery) has
become the area of growing significance because it helps in analyzing data from different perspectives and summarizing it into
useful information. There are increasing research interests in using data mining in education. This new emerging field, called
Educational Data Mining, concerns with developing methods that discover knowledge from data originating from educational
environments . The data can be collected from various educational institutes that reside in their databases. The data can be
personal or academic which can be used to understand students' behavior, to assist instructors, to improve teaching, to evaluate
and improve e-learning systems , to improve curriculums and many other benefits. It neighbor, naive bayes, support vector
machines and many others. Using these techniques many kinds of knowledge can be discovered such as association rules,
classifications and clustering. The discovered knowledge can be used for organization of syllabus, prediction regarding
enrolment of students in a particular programme, alienation of traditional classroom teaching model, detection of unfair means
used in online examination, detection of abnormal values in the result sheets of the students and so on.
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I.  INTRODUCTION (HEADING 1) form SS-ELM and the unsupervised data as US-ELM which

The Machine Learning Algorithm is designed for neural
network in prediction of complexity data. At first the neural
network is familiarly developed by using Forward Selection
and Back Propagation method to construct the network for
the past decades to provide the efficient optimal solution for
local minimum problem and computational cost. The neural
network is then trained by the SVM Support Vector Machine
or Super Vector Machine is consider as the traditional
approach for neural network to avoid the local minimum
problem and computational cost, the SVM act as a classifier
and provide benefits by reducing Structural Risk. The SVM
due to its simplicity and efficiency it is applied in various
domain to reduce computational cost. Later The Extreme
Machine Learning Algorithm is used in Neural Network as a
Classifier, The EML algorithm is used to update weights
from input layer to hidden layer and to the output layer.
Later the EML is considered as the best algorithm in
performance generalization for Neural Network. The ELM
Algorithm is used in solving multiclass classification
problems. The predicting accuracy of the ELM is more
compared to the SVM algorithm. So the new algorithm is
formed by the combination of SVM and ELM as ESVM
effective and famous then the basic model ELM and SVM.
The ELM is used to handle both the labelled data and
unlabeled data where the labelled data is named as
supervised data and the unlabeled data is named as
unsupervised data. The Supervised data is used to ELM to
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are more familiar in solving multi class classification, class
imbalance data. Since the SS-ELM and US-ELM consumes
more computational cost. The unified framework is to be
constructed with efficient and accurate prediction.

ELM (SS-ELM) and the unsupervised ELM (US-ELM)
show the learning capability and computational efficiency of
ELMs and can solve effectively in multi-class classification
or multi-cluster clustering and unseen data. Moreover, it is
shown in this paper that all the semi-supervised and
unsupervised ELMs can actually be put into a unified
framework as EML-CID. The EML-CID algorithm provides
new perspectives for understanding the mechanism of Class
Imbalance and Data Prediction which is the key concept in
ELM theory.

II.  SCOPE OF THE RESEARCH

The class imbalance problem occurs by presence of
small size of minority class and class differences. The
minority class allows the learner ability to reduce the
discovering patterns. The increase of minority class helps the
learner to predict interesting discovering patterns. The
minority class is improved by using sampling method.
Sampling means a change or alter in data or records of
minority class. The Sampling is of three types they are
Under Sampling, Over Sampling and combination of both.
The under sampling is done by reducing the data from
majority class, the over sampling is done by increasing the
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data from minority class. The other method is combined both
where the records or removed from majority class and
replicate or increase data in minority class. By using this
methods the original data gets alter and leads reduces
prediction in accuracy. Therefore the EML-CID is formed as
a unified framework of Supervised and Unsupervised data to
solve the Class Imbalance and Data Prediction Problem. The
EML-CID aims in achieving are as follows

1. To investigate the use of open source data mining
software to conflict fraud, with particular attention to
fraud/non-fraudulent cases in Class classification system.

2. To identify the type of problems that arise when
taking a data mining approach to fraud detection, particularly
the class imbalance problem and Data Prediction.

3. To identify solutions to the class imbalance
problem and show how they can be implemented through the
use of open source software.

1. METHODOLOGY

In proposed method  EML-CID that collect the
information from the dataset, From the Dataset the EML-
CID perform the clustering operation using the K-means
clustering that implement to find the weightage of minority
class samples, the weightage of is calculated based on the
Euclidean distance from majority class samples. This
classifier technique used to perform the imbalanced dataset.

Pseudo code for EML-CID:

Step 1: Input Dataset identify missing values and remove
noisy data and redundant data.

Step 2: Group Data to form Clusters using KNN.

Step 3: Calculate Distance between each clusters using
Manhattan Distance.

Step 4: Choose class of input dataset to form Majority Class
and Minority Class.

Step 5: Identify the weightage for each records in each
cluster or in each class

Step 6: Identify the Support Weightage Factor for each
records.

Step 7: Choose the minority class and solve class imbalance
by using the Threshold Selection weight.

Step 8: Repeat the process until all the minority class is
solved by class imbalance problem

Step 9: The class Balanced dataset is used inn statistical
analysis, fraud detection and for data prediction in open
source software.

Algorithm for EML-CID:
I=>Input

D> Dataset

M; = Minority Class
M,>Majority Class
Ic>Input Class
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C,~>Class Balance

KNN- K nearest neighbor

W; 2> Weightage of Individual Records
Sw = Support factor weight

T,y = Threshold of Selection Weight
D.~> Distance between each Clusters

Step 1: Input Dataset [> D,

Step 2: Form Clusters C= Z I(KNN)

i=0

Step 3: Calculate Manhattan Distance
Cn i=k

Dcsz=ZZI Xi— yi B

Ci i=1

Step 4: Choose Input Class I, in D,, Compute M; Minority
Class and M, Majority Class.

Cn

Step 5: Compute Weightage W; = ZWZ(]C) in each
Ci
clusters or in each class.

Step 6: 1dentify the support weightage
Cn
5. = v 2, WilIE),
Ci

Cn

Step 7: Caleulate T(Sy) = Ave( Z S wy
Ci
Step 8: Choose the Minority Class and make Class
Imbalance as Balance
C—>Mi

ce D dolif (Mi == Ma),ChooseT(Sw)
Ci

IV. ORIGINAL CONTRIBUTION

Imbalanced learning problems cover unequal
distribution of data samples among different classes, where
most of the samples belong to some classes and rest to the
other classes. If such samples come only from two classes,
the class having most of the samples is called the majority
class and other the minority class. Learning from the
imbalance data is of utmost important to the research
community as it is present in many vital real-world
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classification problems, such as medical diagnosis
information retrieval systems, detection of fraudulent
telephone calls, detection of oil spills in radar images, data
mining from direct marketing, and helicopter fault
monitoring.

The primary goal of any classifier is to reduce its
classification error, i.e., to maximize its overall accuracy.
However, imbalance learning problems pose a great
challenge to the classifier as it becomes very hard to learn
the minority class samples. It is because the classifier
learned from the imbalanced data tends to favor the
majority class samples, resulting in a large classification
error over the minority class samples. Imbalance that exists
between the samples of two classes is usually known as
between-class imbalance. The actual cause for the bad
performance of conventional classifiers on the minority
class samples is not necessarily related to only on the
between-class imbalance. Classifiers’ performance have
been found to depreciate in the presence of within-class
imbalance and small disjoints problems. Besides, the
complexity of data samples is another factor for the
classifiers’ poor performance.

If the samples of the majority and minority classes
have more than one concepts in which some concepts are
rarer than others and the regions between some concepts of
different classes overlap, then the imbalance problem
becomes very severe. We propose a novel Hybrid Method
named as EFFECTIVE MACHINE LEARNING-CLASS
IMABALANCE DATA (EML-CID) whose goal is to
alleviate the problems of imbalanced learning and generate
the useful synthetic minority class samples to avoid fraud
detection. The essences of the proposed method are: 1)
selection of an appropriate subset of the original minority
class samples, 2) assigning weights to the selected samples
according to their importance in the data, and 3) using a
clustering approach for generating the useful synthetic
minority class samples.

The EML-CID Process is of 4 Phases
PHASE I: Dataset collection

A dataset collection of database contains the
imbalanced dataset in various field such as medical
diagnosis, facial recognition. The dataset is typically
organized for student dataset to model aspects of reality in a
way that supports processes requiring information. The
dataset information is collected using and stored in this
module that represent the user given input data set for the
purpose of oversampling method. The input information
contain the set of majority, minority, and synthetic sample.

PHASE II: Problem occurred in imbalanced dataset
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The dataset contains the large amount of
information. For example the normal dataset contains the
True positive (TP), True negative (TN), False positive (FP),
False negative (FN). So this information is known as
imbalanced dataset in data mining. So the dataset contain
the redundancy information and noisy data. The module
represent the recognition of imbalanced dataset information
is not accuracy and cannot determine the accurate
prediction of minority sample dataset.

Phase III: Clustering the minority sample

The clustering using K-means clustering
techniques in predicting the noisy minority class sample.
Select an appropriate subset of the original minority class
samples, assigning or calculate the weights to the selected
samples according to their importance of the data and the
calculated weightage based on the Euclidean distance from
majority class samples. In based on weightage calculation to
predict noisy data from minority sample set.

PHASE 1IV: Accuracy prediction of imbalanced dataset
by EML-CID

The weight factor calculation is performed the
selected sample set and using the K-means clustering
operation that reduce the noisy minority class sample. The
classifier techniques used to classify the separately on
majority sample and minority sample of dataset and finally
produce the oversampling dataset from the original dataset
and that used to relate to the one record from another record
dataset by EML-CID.

Input Dataset Accuracy Results:

2 cWMelfG o x FMWNHEEAE

Class Imbalance Problem:
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V. CONCLUSION

The machine learning algorithm are
successful in overcoming the class imbalance problem. In
this paper, a hybrid technique is to be introduced as
Effective Machine Learning in Class Imbalance Data EML-
CID algorithm, to extend the traditional ELMs beyond
multi-class classification, multi clustering and Unseen data
problems, the unified framework EML-CID is formed by
the combination of Semi Supervised ELM (SS-ELM) and
Unsupervised ELM (US-ELM). It leads to competitive

results in Class Imbalance and Dataset prediction, and it

more

requires significantly less training time. We test our
algorithms on a variety of data sets including Student
Dataset as Importance, and make comparisons by this
experimental results. This favor the use of EML-CID for
overcoming the class imbalance problem. Consideration
should also be given to what performance metrics will be
used to judge the performance of the methods and provide
new paradigm into the Machine Learning Algorithm.
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