
 © 2014, IJCSE All Rights Reserved 31

 International Journal of Computer Science and EngineeringInternational Journal of Computer Science and EngineeringInternational Journal of Computer Science and EngineeringInternational Journal of Computer Science and Engineering Open Access
Research Paper Volume-2, Issue-3 E-ISSN: 2347-2693

Horizontal Aggregations in SQL to Generate Data Sets for Data Mining

Analysis in an Optimized Manner

Rekha S. Nyaykhor
1*

and Nilesh T. Deotale
2

1*
M. Tech Scholar, Computer Science and Engineering, RTMNU, India, rekha.nyaykhor@gmail.com

2
Assistant Professor, Computer Science and Engineering, RTMNU, India, deotalenilesh1976@gmail.com

www.ijcseonline.org

Received: 2 March 2014 Revised: 12 March 2014 Accepted: 22 March 2014 Published: 30 March 2014

Abstract— Data mining is the domain which has utility in real world applications. Data sets are prepared from regular

transactional databases for the purpose of data mining. However, preparing datasets manually is time consuming and tedious in

nature as it involves aggregations, sub queries and joins. Moreover the traditional SQL Structured Query Language) aggregations

such as MAX, MIN etc. can generate single row output which is not useful in generating datasets. Therefore it is essential to

build horizontal aggregations that can generate datasets in horizontal layout. These data sets can be used further for data mining

in the real world applications. This paper focuses on building user-defined horizontal aggregations such as PIVOT, SPJ

(SELECT PROJECT JOIN) and CASE whose underlying logic uses SQL queries.

Keywords— Data Mining, Horizontal Aggregations, PIVOT, CASE, SQL, Data Sets

I. INTRODUCTION

Horizontal aggregation is new class of function to return
aggregated columns in a horizontal tabular layout. So many
algorithms are required datasets with horizontal layout as
input with several records and one variable per column.
Managed large data sets without DBMS support can be a
more difficult task. Different subsets of data points and
dimensions are more flexible, easier and faster to do inside a
relational database with SQL queries than outside with
alternative tool. Horizontal aggregations can be performed
by using operator; it is easily implemented inside a query
processor, like a select, project and join operations. PIVOT
operator on tabular data that exchange rows, enable data
transformations useful in data modelling, data analysis, and
data presentation. There are many existing functions and
operators for aggregation in SQL [4].

In our horizontal aggregation provides a interface to generate
SQL code from a data mining tools. This SQL code is further
used to generate SQL queries, optimizing them and testing
them for correctness. This SQL code reduces manual work in
creating data sets for data mining project. Since SQL code is
automatically generated by horizontal aggregation, it is easy
and likely to be more efficient than SQL code written by
human effort [3]. A person who does not know SQL well or
someone who is not familiar with the database schema (e.g. a
data mining practitioner) can easily generate the SQL
queries. Hence, data sets can be created in less time. The
data set can be created inside the DBMS itself. In modern
database environments, they used to export de-normalized
data sets to cleaned and transformed outside a DBMS by
using external tools (e.g. statistical packages). But sending
large tables outside a DBMS is time taking, creates
inconsistent copies of the same data and it will cause the
compromise of database security. So, we are proposing a
more effective, better migrated and more secure solution

than external data mining tools. A horizontal aggregation
needs just small syntax extension to existing SQL aggregate
functions. Alternatively, horizontal aggregations can be used
to generate SQL code from a data mining tool to build data
sets for data mining analysis.

II. RELATED WORKS

SQL is the de facto standard to interact with relational
databases. It is widely used in all kinds of applications where
connectivity to database containing valuable business data is
required. SQL provides commands of various categories
such as DML, DDL, and DCL. Using SELECT query it is
possible to use aggregations, sub queries and joins. The
vertical aggregations supported by SQL include COUNT,
MIN, AVG, MAX and SUM. These are known as aggregate
functions as they produce summary of data [5]. The output
of these functions is in the form of single row values. These
values can’t be directly used for data mining. Therefore it is
essential to use some data mining procedures in order to
generate data sets.

Association rule mining [6] is used in OLAP applications as
they can generate trends in the data [7]. In this paper we
extend the SQL aggregate functions in order to build new
constructs namely PIVOT, SPJ and CASE. SQL queries are
used in clustering algorithms also as explored in [5].
Spreadsheet like operations as extensions to SQL queries are
proposed in [8]. The paper also discussed optimizations for
joins and other operations. However, it is known that CASE
and PIVOT can be used to avoid joins. New class of
aggregations can be generated by using algebra that has been
used traditionally [9]. In fact this paper focuses on
generating new class of aggregations known as horizontal
aggregations which will optimize the joins as presented in
[10]. For optimizing queries tree-based plans are used
traditionally [11].

Corresponding Author: Rekha S. Nyaykhor,

rekha.nyaykhor@gmail.com

 International Journal of Computer Sciences and Engineering Vol.-2(3), pp (31-35) March 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 32

On aggregations also there is lot of research found in the
literature. Literature also includes cube queries and cross
tabulations [12]. Relational tables can unpivoted as presented
din [13]. Transformations are available that can be used for
horizontal aggregations [14]. Unpivot and TRANSPOSE
operators are similar. When compared with PIVOT transpose
can reduce the number of operations required. They have
inverse relationship between them. They can produce
vertical aggregations and decisions tree required by data
mining. Both operations are available in SQL Server [15].

Horizontal aggregations are also presented by researchers in
[16] and [17] with known limitations. The limitation is that
the resultant data cannot be directly used for data mining. In
this paper we proposed new operators that are best used for
horizontal aggregations. The results of these operations can
be used for data mining purposes further. The proposed
operations include SPJ, PIVOT and CASE.

III. IMPORTANCE OF THE STUDY

To build a suitable data set for data mining purposes is a time-

consuming task. This task generally requires writing long SQL

statements or customizing SQL code if it is automatically

generated by some tool. There are two main ingredients in

such SQL code: joins and aggregations [2]; we focus on the

second one. The most widely known aggregation is the sum

of a column over groups of rows. Some other aggregations

return the average, maximum, minimum, or row count over

groups of rows. Unfortunately, all these aggregations have

limitations.

Data sets that are stored in a relational database (or a data

warehouse) come from Online Transaction Processing

(OLTP) systems where database schemas are highly

normalized. But data mining, statistical, or machine learning

algorithms generally require aggregated data in summarized

form. Based on current available functions and clauses in

SQL, a significant effort is required to compute aggregations

when they are desired in a cross-tabular (horizontal) form,

suitable to be used by a data mining algorithm. Such effort is

due to the amount and complexity of SQL code that needs to

be written, optimized, and tested.

OLAP tools generate SQL code to transpose results

(sometimes called PIVOT) [3]. Transposition can be more

efficient if there are mechanisms combining aggregation and

transposition together. With such limitations in mind, a new

class of aggregate functions has been proposed that can

aggregate numeric expressions and transpose results to

produce a data set with a horizontal layout. Functions

belonging to this class are called horizontal aggregations.

Horizontal aggregations represent an extended form of

traditional SQL aggregations, which return a set of values in a

horizontal layout, instead of a single value per row.

IV. HYPOTHESIS

Let F be a table having a simple primary key K represented
by an integer, p discrete attributes and one numeric attribute:

F(K;D1;D2;... …..;Dp;A). In OLAP terms, F is a fact table
with one column used as primary key, p represents distinct
columns and one measure column passed to standard SQL
aggregations. F is assumed to have a star schema to simplify
exposition. Column K will not be used to compute
aggregations. Dimension lookup tables will be based on
simple foreign keys. That is, one dimension column Dj will
be a foreign key linked to a lookup table that has Dj as
primary key. Input table F size is called N. That is, |F| = N.
Table F represents a temporary table or a view based on a,
star join, query on several tables. Other two main tables used
in our proposed method are Vertical Table (FV) and
Horizontal Table (FH).

Example: Fig. 1 gives an example showing the input table F,

a traditional vertical sum () aggregation stored in FV, and a

horizontal aggregation stored in FH [18]. The basic SQL

aggregation query is:

SELECT D1, D2, sum (A)
FROM F
GROUP BY D1, D2
ORDER BY D1, D2;

 FH

 FV

 F

Fig. 1 Example of F, FV, and FH

As seen in fig. 1, sample data is given in input table. Vertical
aggregation result is presented in FV. In fact the result
generated by SUM function of SQL is presented in FV.
Horizontal aggregation results are presented in FH. In FV, D2
consist of only two distinct values X and Y and is used to
transpose the table. The aggregate operation is used in this is
sum (). The values within D1 are repeated, 1 appears 3 times,
for row 3, 4 and, and for row 3 & 4 value of D2 is X & Y. So
D2X and D2Y are newly generated columns in FH.

V. METHODOLOGY

We introduce a new class of aggregations that have similar
behaviour to SQL standard aggregations, but which produce
tables with a horizontal layout. In contrast, we call standard
SQL aggregations vertical aggregations since they produce
tables with a vertical layout. Horizontal aggregations just
require a small syntax extension to aggregate functions called
in a SELECT statement. Alternatively, horizontal
aggregations can be used to generate SQL code from a data
mining tool to build data sets for data mining analysis [18].

Existing Method: Our main goal is to define a template to

generate SQL code combining aggregation and transposition

(pivoting). A second goal is to extend the SELECT statement

K D1 D2 A

1

2

3

4

5

6

7

8

3 X

2 Y

1 Y

1 Y

2 X

1 X

3 X

2 X

9

6

10

0

1

null

8

7

D1 D2 A

1 X

1 Y

2 X

2 Y

3 X

null

10

8

6

17

D1 D2X D2Y

1

2

3

null 10

8 6

17 null

 International Journal of Computer Sciences and Engineering Vol.-2(3), pp (31-35) March 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 33

with a clause that combines transposition with aggregation.

Consider the following GROUP BY query in standard SQL

that takes a subset L1, L2,.....Lm from D1, D2,...., Dp:

SELECT L1, L2,......,Lm, sum(A)
FROM F
GROUP BY L1, L2,,......,Lm;

This aggregation query will produce a wide table with m + 1
columns (automatically determined), with one group for each
unique combination of values L1, L2,......, Lm and one
aggregated value per group (sum(A) in this case). In order to
evaluate this query the query optimizer takes three input
parameters:

• The input table F,

• The list of grouping columns L1, L2,......,Lm;

• The column to aggregate (A).

Proposed Syntax in SQL: Here we are explaining SQL
aggregate functions with a extension of BY clause followed
with a list of columns to produce horizontal set of numbers.

SELECT L1;L2;.......Lm, H(A BY R1;R2.......;Rk)
FROM F
GROUP BY L1;L2;.......Lm;

The sub group columns R1;R2;……Rk should be a parameter
of aggregation. Here H() represents SQL aggregation. It
contains at least one argument represented by A. The result
rows are represented by L1;L2;.......;Lm in group by clause.
(L1;L2;.......Lm) ∩ (R1;R2; …...Rk) = ∅.

We have tried to save SQL evolution semantics as possible.
And also we have to make efficient evolution mechanisms.
So we are proposing some rules.

• The GROUP BY clause is optional.

• If GROUP clause is present, there should not be a

HAVING clause.

• The transposing BY clause is optional.

• When BY clause is included, horizontal aggregation

reduces the vertical aggregation.

• Horizontal aggregation may combine with vertical

aggregation or other horizontal aggregation on the

same query.

• Till F does not change, horizontal aggregation can

be freely combined.

SQL Code Generation: In this section, we discuss how to

automatically generate efficient SQL code to evaluate

horizontal aggregations. We start by discussing the structure

of the result table and then query optimization methods to

populate it. We will prove the three proposed evaluation

methods produce the same result table FH.

Locking: In order to get a consistent query evaluation it is
necessary to use locking [9], [19]. The main reasons are that
any insertion into F during evaluation may cause
inconsistencies:

• It can create extra columns in FH, for a new
combination of R1;R2; ...;Rk;

• It may change the number of rows of FH, for a new
combination of L1;L2...;L m;

• It may change actual aggregation values in FH.

In other words the SQL statement becomes long transaction.
Horizontal aggregation can operate on static database without
consistency problem.

Table Definition:Let the result table be FH. As mentioned FH
has d aggregation columns, plus its primary key. The
horizontal aggregation function H() returns not a single
value, but a set of values for each group L1;L2;...;Lm.
Therefore, the result table FH must have as primary key, the
set of grouping columns {L1;L2;...;Lm} and as non key
columns all existing combinations of values R1;R2;...;Rk. We
get the distinct value combinations of R1;R2;...;Rk using the
following statement.

SELECT DISTINCT R1;R2;......;Rk
 FROM F;

Assume this statement returns a table with d distinct rows.
Then each row is used to define one column to store an
aggregation for one specific combination of dimension
values. Table FH that has {L1;L2;...;Lm} as primary key and
d columns corresponding to each distinct subgroup.
Therefore, FH has d columns for data mining analysis and j +
d columns in total, where each Xj corresponds to one
aggregated value based on a specific R1;R2;...;Rk values
combination.

Example: We are using the above some rules and created
horizontal table. Assume we want to summarize sales
information with one store per row for one year sales. In
more detail, we need the sales amount broken down by day of
the week, the number of transactions by store per month, the
number of items sold by department and total sales [18]. The
result is shown in table 1.

VI. IMPLEMENTATION

Horizontal aggregation is evaluated by the following

methods as defined:

Table: 1

 International Journal of Computer Sciences and Engineering Vol.-2(3), pp (31-35) March 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 34

A Multidimesional Data set in Horizontal Layout, Suitable for Data Mining

Store Id
Sales Amt

Mon Tue...... Sun

Count Transacions

Jan Feb...........Dec

Columns

Dairy meat Product
Sales

10

30

125 141...... 140

80 98....... 88

2011 1807 4200

802 912 1632

54 87 112

42 35 174

25054

13876

SPJ Method

It is based on standard relational algebra operators (SPJ

queries). The basic idea is to create one table with a vertical

aggregation for each result column, and then join all those

tables to produce another table. It is necessary to introduce

an additional table F0 that will be outer joined with projected

tables to get a complete result set [16]. The optimized SPJ

method code is follows:

INSERT INTO FH

SELECT F0.L1, F0.L2,....,F0.Lm,

 F1.A, F2 .A,......,Fn .A

FROM F0

LEFT OUTER JOIN F1

ON F0. L1= F1. L1 and. . . and F0. Lm= F1. Lm

LEFT OUTER JOIN F2

ON F0. L1= F2. L1 and. . . and F0. m= F2. Lm

LEFT OUTER JOIN Fn

ON F0. L1= Fn. L1 and. . . and F0. Lm= Fn. Lm

PIVOT Method

The pivot operator is a built-in operator which transforms

row to columns. It internally needs to determine how many

columns are needed to store the transposed table and it can

be combined with the GROUP BY clause. Since this

operator can perform transposition it can help in evaluating

horizontal aggregation [18]. The optimized PIVOT method

SQL is as follows:

SELECT DISTINCT R1

FROM F; /*produces v1,………,vd*/

SELECT

 L1,L2,…,Lm

 ,v1,v2,….,vd

INTO FH

FROM (

 SELECT L1,L2,…..,Lm, R1,A

 FROM F) Ft

PIVOT (

 V (A) FOR R1 in (v1,v2,…,vd)

) AS P;

CASE Method

It can be used in any statement or clause that allows a valid

expression. The case statement returns a value selected from

a set of values based on Boolean expression. The Boolean

expression for each case statement has a conjunction of K

equality comparisons. Query evaluation needs to combine

the desired aggregation with “case” statement for each

distinct combination of values of R1;R2……..,Rk [20]. The

optimized case method code is as follows:

SELECT DISTINCT R1,…..,Rk

 FROM Fv;

 INSERT INTO FH

 SELECT L1,L2,....,Lm

 ,sum(CASE WHEN R1=v11 and . . . Rk=vk1

 THEN A ELSE null END)

,sum(CASE WHEN R1=v1n and . . . Rk=vkn

THEN A ELSE null END)

 FROM Fv

 GROUP BY L1,L2,. . .,Lm ;

VII. CONCLUSION

In this paper we extended three aggregate functions such as

CASE, SPJ and PIVOT. These are known as horizontal

aggregations. We have achieved it by writing underlying

constructs for each operator. When they are used, internally

the corresponding construct gets executed and the resultant

data set is meant for OLAP (Online Analytical Processing).

In order to prepare real world datasets that are very much

suitable for data mining operations, we explored horizontal

aggregations by developing constructs in the form of

operators such as CASE, SPJ and PIVOT. Instead of single

value, the horizontal aggregations return a set of values in the

form of a row. The result resembles a multidimensional

vector. We have implemented SPJ using standard relational

query operations. The CASE construct is developed

extending SQL CASE. The PIVOT makes use of built in

operator provided by RDBMS for pivoting data.

In future, this work can be extended to develop a more formal
model of evaluation methods to achieve better results. Then
we can also develop more complete I/O cost models.

VIII. SCOPE FOR FURTHER RESEARCH

The data sets achieved by using Horizontal aggregation are

highly standard and easy to analyze. In our next paper we are

going to show the actual implementation of methods.

 International Journal of Computer Sciences and Engineering Vol.-2(3), pp (31-35) March 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 35

REFERENCES

[1] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. “Data

cube: A relational aggregation operator generalizing group-by,

cross-tab and subtotal”. In ICDE Conference, pages 152–

159,1996 .
[2] E.F. Codd, “Extending the Database Relational Model to

Capture More Meaning,” ACM Trans. Database Systems, vol.
4, no. 4, pp. 397-434, 1979.

[3] Rajesh Reddy Muley, Sravani Achanta and Prof.S.V.Achutha
Rao, “Query Optimization Approach in SQL to prepare Data
Sets for Data Mining Analysis”, International Journal of
Computer Trends and Technology (IJCTT) – vol.4, no.8, pp 1-
5,August 2013.

[4] J.A. Blakeley, V. Rao, I. Kunen, A. Prout, M. Henaire, and C.
Kleinerman, “.NET Database Programmability and
Extensibility in Microsoft SQL Server,” Proc. ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD ’08), pp. 1087-
1098, 2008.

[5] C. Ordonez. “Integrating K-means clustering with a relational
DBMS using SQL,” IEEE Transactions on Knowledge and
Data Engineering (TKDE), 18(2):188–201, 2006.

[6] H. Wang, C. Zaniolo, and C.R. Luo.”ATLaS: A small but
complete SQL extension for data mining and data streams”. In
Proc. VLDB Conference, pages 1113–1116, 2003.

[7] S. Sarawagi, S. Thomas, and R. Agrawal, “Integrating
Association Rule Mining with Relational Database Systems:
Alternatives and Implications,” Proc. ACM SIGMOD Int’l
Conf. Management of Data (SIGMOD ’98), pp. 343-354,
1998.

[8] A. Witkowski, S. Bellamkonda, T. Bozkaya, G. Dorman, N.
Folkert, A. Gupta, L. Sheng, and S. Subramanian,
“Spreadsheets in RDBMS for OLAP,” Proc. ACM SIGMOD
Int’l Conf. Management of Data (SIGMOD ’03), pp. 52-63,
2003.

[9] H. Garcia-Molina, J.D. Ullman, and J. Widom, “Database
Systems: The Complete Book”, first ed. Prentice Hall, 2001.

[10] C. Galindo-Legaria and A. Rosentahl, “Outer Join
Simplification and Reordering for Query Optimization,”
ACM Trans. Database Systems, vol.22, no.1, pp.43-73, 1997.

[11] G. Bhargava, P. Goel, and B.R. Iyer, “Hypergraph Based
Reorderings of Outer Join Queries with Complex Predicates,”
Proc. ACM SIGMOD Int’l Conf. Management of Data
(SIGMOD ’95), pp. 304-315, 1995.

[12] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. “Data
cube: A relational aggregation operator generalizing group-by,
cross-tab and subtotal”. In ICDE Conference, pages 152–
159,1996.

[13] G. Graefe, U. Fayyad, and S. Chaudhuri, “On the Efficient
Gathering of Sufficient Statistics for Classification from Large
SQL Databases,” Proc. ACM Conf. Knowledge Discovery and
Data Mining (KDD ’98), pp. 204-208, 1998.

[14] J. Clear, D. Dunn, B. Harvey, M.L. Heytens, and P. Lohman,
“Non- Stop SQL/MX Primitives for Knowledge Discovery,”
Proc. ACM SIGKDD Fifth Int’l Conf. Knowledge Discovery
and Data Mining (KDD ’99), pp. 425-429, 1999.

[15] C. Cunningham, G. Graefe, and C.A. Galindo-Legeria,
“PIVOT AND UNPIVOT: Optimization and Execution
Strategies in an RDBMS,”Proc: 13th Int’l Conf. Very Large
Data Bases (VLDS’04), pp.998-1009, 2004.

[16] C. Ordonez, “Horizontal Aggregations for Building Tabular
Data Sets,” Proc. Ninth ACM SIGMOD Workshop Data

Mining and Knowledge Discovery (DMKD ’04), pp. 35-42,
2004.

[17] C. Ordonez, “Horizontal Aggregations for Building Tabular
Data Sets,” Proc. Ninth ACM SIGMOD Workshop Data
Mining and Knowledge Discovery (DMKD ’04), pp. 35-42,
2004.

[18] C. Ordonez, “Vertical and Horizontal Percentage
Aggregations,” Proc. ACM SIGMOD Int’l Conf. Management
of Data (SIGMOD’04), pp. 866-871,2004.

[19] Carlos Ordonez and Zhibo Chen,” Horizontal Aggregations in
SQL to Prepare Data Sets for Data Mining Analysis”, IEEE
transactions on knowledge and data engineering, vol. 24, no. 4,
pp 1-14, April 2012.

[19] G. Luo, J.F. Naughton, C.J. Ellmann, and M. Watzke,
“Locking Protocols for Materialized Aggregation Join Views,”
IEEE Trans. Knowledge and Data Eng., vol. 17, no.6, pp. 796-
807, June 2005.

[20] Jasna S and Manu J Pillai. Article: Preparing Data Sets for the
Data Mining Analysis using the Most Efficient Horizontal
Aggregation Method in SQL. International Journal of
Computer Applications 86(13):32-36, January 2014.

AUTHOR’S PROFILE:

Rekha S. Nyaykhor completed her

B.E. in IT stream from KITS college

Ramtek, RTMNU and currently

persuing her M,Tech in CSE from

PBCoE, RTMNU (MH state).

