[4
AX]CSE International Journal of Computer Sciences and Engineering [pen Access

Review Paper Vol.-7, Issue-2, Feb 2019 E-ISSN: 2347-2693

Application of KNN Classification Technique in Detection of Software
Fault

Ritika®", Er. Saurabh Sharma?®

L2Dept. of Computer Science Engineering, Sri Sai University Palampur, HP, India

“Corresponding Author: rc60447@gmail.com
DOI: https://doi.org/10.26438/ijcse/v7i2.389393 | Available online at: www.ijcseonline.org

Accepted: 16/Feb/2019, Published: 28/Feb/2019

Abstract--- The software engineering is the technology which is used to analyze software behavior SDP includes software
metrics, their attributes like line of code etc. The main goal of software defects prediction model includes ordering new
software modules based on their defect-proneness and classifying them whether it is new software or not. The main purpose of
SDP for the ranking is to predict which modules have the most defects to define software quality enhancement. The goal of
SDP for the ranking task is to predict the relative defect number, although estimating the precise number of defects of the
modules is better than estimating the ranks of modules, because the precise number of defects can give more information than
the ranks. The software defect prediction technique is applied in the previous work based on the technique of ANN. In this
research work the technique of KNN is applied for the software defect prediction. It is analyzed that proposed technique has

high accuracy and less execution time as compared to existing ANN technique.

Keywords---Fault Prediction, KNN, Software Defect Prediction, NFR ,ANN

I. INTRODUCTION

A collection of programs, procedures, data and
documentation is known as software. By keeping in
consideration the hardware and operating system which is
also known as a platform, the software is designed for a
particular organization. A systematic method through which
the software is developed is known as engineering. The
designing of software is highly complex which thus needs
various guidelines. Defect can be simply defined as a
variance between expected and actual [1]. Defect is a slip-
up found once the appliance goes into production. It
commonly refers to several troubles with the software
products, with its external behavior or with its internal
features. In other words Defect is the difference between
expected and actual result in the context of testing. In
different words defect is that the distinction between
expected and actual end in the context of testing. It is the
deviation of the customer requirement. Defect life cycle,
also known as Bug Life cycle is the journey of a defect
cycle, which a defect goes through during its lifetime [2].It
varies from organization to organization
and additionally from project to project because it is
ruled by the computer
code testing method and additionally depends upon the
tools used. There’s no one right thanks to rely on package
quality —its sophisticated area.lt is helpful, however, to
cluster its varied parts into three broad aspect .The three
aspects of package quality area unit practical quality,

© 2019, IJCSE All Rights Reserved

structural quality, and method quality. SDP includes
software metrics, their attributes like line of code etc [3].
The main goal of software defects prediction model includes
ordering new software modules based on their defect-
proneness and classifying them whether it is new software or
not. First of all, data is obtained from old software modules
with known defect numbers and including values of all
software modules with known defect numbers. It included
software values of the software metrics and their attributes.
Furthermore, model based approach like machine learning to
construct model and obtained data from them. The proposed
model predicts the number of defects of new modules. An
order has been received according to the prediction model
and allocates resources according to the testing order. The
main purpose of SDP for the ranking is to predict which
modules have the most defects to define software quality
enhancement [4]. The goal of SDP for the ranking task is to
predict the relative defect number, although estimating the
precise number of defects of the modules is better than
estimating the ranks of modules, because the precise number
of defects can give more information than the ranks. To
construct a prediction model, we have a tendency to should
have defect and activity information collected from actual
software package development efforts to use because the
learning set. There exist compromise between however well
a model fits to its learning set and its prediction performance
on extra information sets. Therefore, we should evaluate a
model’s performance by comparing the predicted
defectiveness of the modules in a test set against their actual

389

International Journal of Computer Sciences and Engineering

defectiveness. Several defect prediction techniques have
been proposed by researchers. The artificial neural network
relies on the human biological system in its design and style.
It processes information in a way similar to the human brain
using an intricate system of interconnected neurons to solve
highly complex problems [5]. Genetic Algorithms is an
approach to machine learning that behaves equally to the
human factor and also the Darwinian theory of activity.
Genetic Algorithms square measured enforced starting with
a personal population that’s typically drawn within the sorts
of trees. The Fuzzy Logic model relies on the idea or
reasoning and works on a worth that’s approximate in
nature. It is a intensify from mathematical Boolean Logic
wherever there will solely be True or False. The problem of
classification has been wide studied within the information,
data processing, and knowledge retrieval communities. The
training information is employed so as to construct a
classification model, that relates the options with in the
underlying record to one of the category labels. For a given
instance of test that the category is unknown, the training
model is employed to predict a category label for this
instance. In the onerous version of the classification
problem, a selected label is expressly alloted to the instance,
whereas within the soft version of the classification issue, a
chance worth is appointed to the checking instance. Other
alterations of the classification task permits ranking of
various class selections for a testing instance, or enable the
designation of multiple labels to a testing instance [6]. The
application of Support vector machine (SVM) method is to
Text Classification. The SVM need each positive and
negative training set uncommon for different classification
ways. A neural network classifier could be a network of
units, wherever the input units typically represent terms, the
output unit(s) represents the class. For classifying a
document under test, its term weights are allotted to the
input units; the turning on of those units is propagating
forward through the network, and also the price that the
output unit(s) takes up as a consequence determines the
categorization call. When decision tree is employed for text
classification it consist tree internal node area unit labeled by
term, branches outward from them that labeled by test on the
weight, and leaf node are represent corresponding class
labels. Naive bias method is kind of module classifier under
known priori probability and class conditional probability .it
is basic idea is to calculate the probability that document D
is belongs to class C.

Il. LITERATURE REVIEW

In the software development projects a major key challenge
role is played by the requirement analysis. In the software
projects, the involvement of the specific customer
requirements and management has various impacts. Hence,
it is required to improve this area more in terms of both
academic and industrial fields. They presented the model of
CMMI in order to expose the development and management

© 2019, IJCSE All Rights Reserved

Vol.7(2), Feb 2019, E-ISSN: 2347-2693

requirement. It also specifies the various different goals and
practical platform for them as well [7]. They listed in this
paper the requirement of the management and key
challenges and issues faced by it with the help of the model
CMMI and its regular activity. The technical documentation
plays an essential role in determining the success and failure
of any software for which a Software requirement
specification document has been utilized. To resolve this
author in this paper proposed an effective approach [8]. In
this method, four processes were involved. On the basis of
the received concern from stakeholders, RMM was
generated to minimize ambiguities and incorrectness. The
requirements of the client and SRS have been checked by
the inspection of the third party. A detailed report to team of
requirement engineers was submitted by the third party after
performing detailed analysis using inspection models and
assigning total quality score. Development of the high
quality software is the process based on the requirements of
the software in which each step is related to SR. This
technique requires human effort so that created features can
be analyzed easily [9]. They proposed the use of deep
learning in order to classify the requirements of the software
without utilizing the feature engineering. On the basis of the
Convolutional Neural Network this proposed method also
stated as art in other languages. They utilize the PROMISE
corpus for the evaluation of the proposed method in which a
set of labeled requirements in functional and different
categories of nonfunctional requirements was utilized. On
the basis of the performed experiments, it is concluded that
proposed method shows effective results for the SRC using
CNN. An essential role is played by the safety system in the
automotive sector. These safety systems are ABS brake
systems, stability control system, and air bag systems.
Among these safeties system one is oriented towards
collisions which are activated at different interval of time
with objectives. For instance, in order to prevent the impact
of the collision, these systems are activated [10]. The
objective of minimizing the physical harm to occupants
these systems is activated during collision. The time between
the collision and arrival of outside assistance for the
vehicle’s occupant’s minimization is the main objective after
the collision. Some of the recommendations of the
requirements are satisfied by the presented SRS in the
automotive standard 1SO 26262 and to the requirements of
the standard ISO/IEC/IEEE 15288 they utilized the
processes in this paper. In the management of the software
project an essential role is played by the estimation of the
software effort in which requirements is its major driver. In
order to identified the which non-functional requirements are
used they performed the literature review so that their effects
and which method is used can be identified easily [11].
Obtained result, demonstrated that non-functional
requirements has been utilized by the 33% of 39 algorithmic
methods. Hence, these published results were not definite
when the correlation with estimation accuracy was
investigated. They also conducted the quasi-experiment on

390

International Journal of Computer Sciences and Engineering

publicly available datasets to address the issue. Therefore,
experimental results show that there is reduction in the 30%
in the estimation error with the use of nonfunctional
requirements. In this paper that within the electronic
systems, the reverse engineering is performed for various
reasons. In this paper, the imaging parameters of a
successful tomography are also presented here along with
the combination of advanced 3-D image processing. The
associated time and cost of these systems is reduced by
providing an analysis to automate RE. The two PCBs which
are a four-layered custom design board and the complex
commercial board are presented in this paper. On the basis
of these experiments, the performances of proposed
algorithms are analyzed and it is seen that there is an
improvement in the proposed methods in comparison to the
traditional approaches [12].

SDP models play a very crucial role in the identification and
detection of faults in different modules of software. Some of
these models are used for quality improvement[13].In this
paper they proposed that defects in software may result in
degradation of the software quality which will be cause of
software failure .It is very important to make efforts for
minimizing defects in software. The software defect
prediction model construction can benefit from directly
optimizing the model performance measure for ranking task
have been discussed in paper [14].For predicting defects in
software several classification technique have used like
SVM, Decisions trees, Random forest, Naive bayes, ANN.
SVM classification technique used for the defect prediction
in [15][16],Decision tree algorithm is employed for the same
effort in[17][18][19] and Naive Bayes [20] [21][22].ANN
Algorithm has used for the problem in [23][24].

I11. RESEARCH METHODOLOGY

The software fault prediction is the technique which can
predict the faults. The pre-training ANN technique is applied
for the software prediction. In this research work, KNN
classification technique will be replaced with the ANN
technique for the software prediction and then for detection.
The KNN is the classification technique which is applied to
classify similar and dissimilar data into more than one class.
K-Nearest neighbor classifiers depend on learning by
analogy. The training samples are depicted by n dimensional
numeric attributes. Every sample represents a point in an n-
dimensional space. Along these lines, the greater part of the
training samples is stored in an n-dimensional pattern space.
At the point when given an unknown sample, a k-nearest
neighbor classifier looks the pattern space for the k training
samples that are closest to the unknown sample. "Closeness"
is defined in terms of Euclidean distance. Not at all like
decision have tree induction and back propagation, nearest
neighbor classifiers assigned break even with weight to
every attribute. This may bring about confusion when there
are numerous irrelevant attributes in the data. Nearest
neighbor classifiers can likewise be utilized for prediction,

© 2019, IJCSE All Rights Reserved

Vol.7(2), Feb 2019, E-ISSN: 2347-2693

that is, to give back a genuine valued prediction for a given
unknown sample. For this situation, the classifier gives back
the average value of the genuine valued associated with the
k nearest neighbors of the unknown sample. The k-nearest
neighbors' algorithm is among the simplest of all machine

learning algorithms.
START

A
Define software for the fault prediction

A

Define pre-training set for the fault prediction

Define number of nearest neighbor
for the classification

Y

If Error
Detected

A
Yes Apply KNN learning
to detect faults from
the project

A\ 4
Shown final output of number of faults detected

Fig 1: Flowchart of Software fault Detection Process

IV. EXPERIMENTAL RESULTS

The proposed research has been implemented in Python and
the results are evaluated by making comparisons against
proposed and existing research in terms of certain
performance parameters. The datasets are given in .csv
format with comma as the delimiter and point as decimal
mark. The datasets were cleared of files that contained
“.example” or “.tests” in their path. A complete description
of features inside the datasets is given in Table of Metrics.

391

International Journal of Computer Sciences and Engineering

OOB MSE ERROR RATE

8000

7500

7000

008 Error Rate

6500

e J.‘) I_I_’_
100 200 300 400 500 B0
Iteration Rate

The accuracy is = 74.49
Fig 1: Error Rate of ANN technique

As shown in figure 1, the ANN technique is executed for the

fault prediction in the software. The accuracy of fault
prediction 74.5 percent

OOB MSE ERROR RATE

7600
7400
7200
7000
6800

6600

008 Error Rate

6400

6200
6000

100 200 300 400 500 BO0
Iteration Rate

The accuracy is = 79.62

Fig 2: Error Rate of KNN technique

As shown in figure 2, the KNN technique is executed for the
fault prediction in the software. The accuracy of fault
prediction 79.62 percent.

correctly classified defects
Accuracy = Y e * 100

© 2019, IJCSE All Rights Reserved

Vol.7(2), Feb 2019, E-ISSN: 2347-2693

Accuracy

(0]
o

©

NN N
N

Accuracy

~
(9]

Accuracy Percentage
~ ~
H o)}
1

~
w
|

~N
N
|

ANN Technique KNN Technique

Fig 3: Accuracy Comparison

As shown in figure 3, the accuracy of proposed method is
compared with the existing method. It is analyzed that
accuracy of proposed method is high as compared to existing
due to use of KNN with NFR matrix

Table 1: Accuracy Comparisons

TECHNIQUE ACCURACY
ANN 74
KNN 79.6

Tablel. shows the accuracy comparision of previous ANN
technique with the proposed KNN technique table shows the
KNN technique is having higher accuracy i.e. 79.6 as
compared to ANN technique i.e.74.

V. CONCLUSION & FUTURE SCOPE

In this research work, the KNN classification technique has
been used for the detection of faults in software. For
detection of bugs in software testing procedure includes
comparison of the expected outcome with the actual
outcome which helps in detecting the errors which may
occur during the development of the project. In the previous
work ANN technique was used for fault prediction.In this
research work, the ANN will be replaced with the KNN
classification technique for the software defect prediction
with more accuracy. The performance of KNN technique is
analyzed in terms of accuracy and execution time and
compared with the previous ANN technique. It is analyzed
that KNN technique having more accuracy than ANN
technique, it performs well in terms of all defined
parameters i.e.. For continuation of this work ,we will
suggest to use other deep learning models for improving the
accuracy and performance.

392

International Journal of Computer Sciences and Engineering

REFERENCES

[1] Dang Viet Dezung, Atsushi Ohnishi Improvement of Quality of
Software = Requirements ~ with ~ Requirements Ontology”,
International Conference on Quality Software, Jeju, pp 284- 289,
2009

[2] F. Shull, et al., How Perspective-Based Reading Can Improve
Requirements Inspections, IEEE Computer, Vol. 33, No. 7, pp. 73-
79, Jul.2000.

[3] C. Denger and T. Olsson, Quality Assurance in Requirements
Engineering, in Engineering and Managing Software
Requirements, A. Aurum and C. Wohlin, Eds. Springer, pp. 163-
185, 2005

[4] J. G. Hall, M. Jackson, R. C. Laney, B. Nuseibeh, and L. Rapanotti,
“Relating software requirements and architectures using problem
frames,” in Proc.of the IEEE Joint International Conference on
Requirements Engineering, 2002, pp. 137-144.

[5] P. Grnbacher, A. Egyed, and N. Medvidovic, “Reconciling software
requirements and architectures: The cbsp approach,” in Fifth IEEE
International Symposium on Requirements Engineering, 2001, pp.
202-211.

[6] M. Brandozzi and D. Perry, “Transforming goal oriented
requirement specifications into architectural prescriptions,” in
Proceedings of First International Workshop From Software
Requirements to Architectures (STRAWO01), 2001, pp. 54-61.

[7] Senay Tuna Demirel, Resul Das, “Software Requirement Analysis:
Research Challenges and Technical Approaches”, IEEE, 2018

[8] Syed Waqas Ali, Qazi Arbab Ahmed, Imran Shafi, “Process to
Enhance the Quality of Software Requirement Specification
Document”, IEEE, 2018

[9] Ra"ul Navarro-Almanza, Reyes Ju’arez-Ram’irez, Guillermo Licea,
“Towards supporting Software Engineering using Deep Learning:
A case of Software Requirements Classification”, 2017 5th
International Conference in Software Engineering Research and
Innovation

[10] Jorge Rafael Aguilar Cisneros, Genaro de la Rosa Garcia, Carlos
Alberto Ferndndez-y-Fernandez, “Software = Requirement
Specification for the Automotive Sector: The case of a Post-
Collision Event Control System”, 2017 5th International
Conference in Software Engineering Research and Innovation

[11] Stallin E. F. Silva, Mario L. Cortes, “Use of non-functional
requirements in software effort estimation: systematic review and
experimental results”, 2017 5th International Conference in
Software Engineering Research and Innovation

[12] Navid Asadizanjani, Mark Tehranipoor, and Domenic Forte, “PCB
Reverse Engineering Using Nondestructive X-ray Tomography and
Advanced Image Processing”, 2017, IEEE TRANSACTIONS ON
COMPONENTS, PACKAGING AND MANUFACTURING
TECHNOLOGY

[13] Mrinal Singh Rawat, Sanjay Kumar Dubey , “Software Defect
Prediction Models for Quality Improvement: A Literature Study”,
1JCSI International Journal of Computer Science Issues, Vol. 9,
Issue 5, No 2, September 2012 ISSN (Online): 1694-0814

[14] Xiaoxing Yang, Ke Tang, Senior Member, IEEE, and Xin Yao, “A
Learning-to-Rank Approach to Software Defect Prediction”, [EEE
TRANSACTIONS ON RELIABILITY, VOL. 64, NO. 1, MARCH
2015

[15] B. Twala, “Software faults prediction using multiple classifiers,”
in: 2011 3rd Int. Conf. Comput. Res. Dev., 4, 2011.

[16] L. Yu, “An evolutionary programming based asymmetric weighted
least squares support vector machine ensemble learning
methodology for software repository mining,” Inf. Sci. 191, 2012.

[17] L. Guo, Y. Ma, B. Cukic, H.S.H. Singh, “Robust prediction of
faultproneness by random forests,” in: 15th Int. Symp. Softw.
Reliab. Eng., 2004.

© 2019, IJCSE All Rights Reserved

Vol.7(2), Feb 2019, E-ISSN: 2347-2693

[18] A. Kaur, R. Malhotra, “Application of random forest for predicting
fault prone classes,” in: International Conference on Advanced
Computer Theory and Engineering, Thailand, December 20-22,
2008.

[19] T. Khoshgoftaar, E. Allen, “Model software quality with
classification trees,” Recent Adv. Reliab. Qual. Eng., 2001.

[20] A. Bener, B. Turhan, “Analysis of Naive Bayes’ assumptions on
software fault data: an empirical study,” Data Knowl. Eng. 68,
2009.

[21] K. Dejaeger, T. Verbraken, B. Baesens, “Prediction Models Using
Bayesian Network Classifiers,” 39, 2013.

[22] A. Okutan, O.T. Yildiz, “Software defect prediction using
Bayesian networks,” Empirical Softw. Eng., 2012.

[23] T. Khoshgaftaar, E.D. Allen, J.P. Hudepohl, S.J. Aud,
“Application of neural networks to software quality modeling of a
very large telecommunications system,” IEEE Trans. Neural Netw.
8 (4), 1997.

[24] A.T. Misirli, A.B. Bener, B. Turhan, “An industrial case study of
classifier ensembles for locating software defects,” Softw. Qual. J.
19, 2011.

898

