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Abstract- Encryption becomes a solution and different encryption techniques which roles a significant part of data security on
cloud. Encryption algorithms is to ensure the security of data in cloud computing. Because of a few limitations of pre-existing
algorithms, it requires for implementing more efficient techniques for public key cryptosystems. ECC (Elliptic Curve
Cryptography) depends upon elliptic curves defined over a finite field. ECC has several features which distinguish it from
other cryptosystems, one of that it is relatively generated a new cryptosystem. Several developments in performance have been
found out during the last few years for Galois Field operations both in Normal Basis and in Polynomial Basis. On the other
hand, there is still some confusion to the relative performance of these new algorithms and very little examples of practical
implementations of these new algorithms. Efficient implementations of the basic arithmetic operations in finite fields GF(2™)
are need for the applications of coding theory and cryptography. The elements in GF(2™) know how to be characterized in a
choice of bases. A variety of basis used to represent field elements has a major impact on the performance of the field
arithmetic. The multiplication techniques that make use of polynomial basis representations are very efficient in comparison to
the best techniques for multiplication using the other basis representations. In this paper, focuses on user confidentiality and
security protection in cloud, and that uses enhanced ECC technique over Galois Field GF(2™). The strong point of the
proposed ECPC (Elliptical Curve and Polynomial Cryptography) algorithm is based on the complexity of computing discrete
logarithm in a large prime modulus, and the Galois Field allows mathematical operations to mix up data effectively and easily.
This technique is mainly used to encrypting and decrypting data to ensure security protection and user confidentiality in the
cloud computing. Results show that the performance of ECPC over Galois Field, in two region of evaluation, it has better than
the other technique that is used for comparison purpose.

Keywords- Cloud Computing, Security, Cryptography, ECC, RSA, ECDH, ECDSA, Elliptical Curve and Polynomial
Cryptography (ECPC)

I. INTRODUCTION

Security protection in cloud computing involves concepts
like network security, control and equipment strategies
deployed to protect data, infrastructure and applications
correlated with cloud computing [1]. A significant feature of
cloud is the notion of interconnection with a choice of
materials that makes it necessary and difficult to securing
these environments. Security problems in a cloud platform
can lead to economic loss, also a bad reputation if the
platform is oriented large public and are the cause behind
the huge adoption of this new solution. In the cloud, the
data stored for customers are represented as very important
information. This is issue of the infringement of such data
by an unauthorized third party is unacceptable to access
information. There are two ways to attack data in Cloud [2].
First one is outsider attack and the second one is insider
attack. The insider attack is an administrator in which they
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can have the possibility to hack the user’s data. The insider
attack is very complex to be recognized. So, the users must
be very careful to analyze while saving their data in cloud
storage. Therefore, the need to think of techniques which
delay the use of data even though the data is accessed by the
third party, they shouldn’t obtain the actual data. As a result,
the entire data must be encrypted before it is sent to the
cloud storage [3]. Security allows the integrity,
confidentiality, availability and authenticity of information.
The improvement of technologies and their standardization
makes available a set of protocols and algorithms for
responding to these problems [4]. Several encryption
techniques have been implemented and developed in order
to give more secured data transmission process in cloud,
like, RSA, Knapsack and DH for asymmetric category,
Blowfish, RC4, AES, DES 3DES for symmetric category.
[5, 6].
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In this paper, focuses on user confidentiality and security
protection in cloud, and that uses enhanced ECC (Elliptic
Curve Cryptography) technique over Galois Field GF(2™)
[7]. The strong point of the proposed ECPC algorithm is
based on the complexity of computing discrete logarithm in
a large prime modulus, and the Galois Field allows
mathematical operations to mix up data effectively and
easily. ECC Algorithm affords message authentication and
secure message integrity, with data confidentiality and non-
repudiation of message. ECC is considered as a public key
encryption method in which depends upon elliptic curve
theory that can be utilized to generate more effective
cryptographic keys [8]. ECC generates keys by using the
properties of the elliptic curve equation rather than the
traditional technique of key generation as the product of
very large prime numbers. Because ECC aids to establish
equivalent security protection with less power consumption
and battery resource usage, it becomes broadly used for
cloud applications.

In ECC, efficient finite field squaring is essential for quick
implementation in software environments. In the binary
finite field GF (2™) Finite field arithmetic is a significant
arithmetic operation Squaring is needed for several
cryptographic techniques which are based on the DLP
(Discrete Logarithm Problem) in the additive group of
points on an Elliptic Curve defined over a finite field or the
multiplicative group of a finite field [9]. In this paper,
presents a new technique for performing binary finite field
arithmetic in Polynomial Basis.

Elliptic Curve
In Elliptic Curve, it has considered as a unique property that
generates main utilization cryptography (i.e. its capability to
obtain any two points on a specific curve), add them
together and obtain a third point on the same curve [10]. The
main operation of ECC is involved point multiplication
which is multiplication of a scalar K with any point P on the
curve to obtain another point Q on the same curve. An
elliptic curve is termed by an equation, is of two variables,
with coefficients. For the main intention of cryptography,
the variable and coefficients are limited to a special type of
set known as a FINITE FIELD. The general equation for
an elliptic curve is:

yP+axy +by=x*+cx’ +dx +e
Where a, b, ¢, d and e are real numbers and x and y also take
their values from real number. A simplified elliptic curve
equation is given as:

Y -x3+dx+e

In ECC, the Elliptic Curve is used to describe the members
of the set over that the group is evaluated i.e. an operation
on any two elements of the set will provide a result that is
the member of the same set in addition to operations
between them which defines how math work in the group. In
real time scenario, the ECC is implemented over a finite
prime field and in hardware, in which binary number are
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used; the finite field is represented GF (2™). The GF is
termed as a finite field namely Galois Field. The field of
finite primes provides the ECC which allows encipher to
encrypt the data very easily however, the cryptologist the
process of initiating to attack the encrypted message is very
complex. The GF (p) is termed as the field of integers
module p, in which p is a very large prime number, and that
comprise all the integers from 0 to p-1 in such case of square
graph, p*p in size. To implement the ECC in software to
handle prime numbers in addition to other number, ECC
allows the improvement of potable chips which can be
deployed over the mobile devices and provide a processor
friendly encryption. ECC is implicated on hardware, point
doubling and adding on elliptic curve and scalar
multiplication over binary finite fields.

1.1 Polynomial Basis Representation
Galois fields are described as fields with a finite field order
g that is also the number of elements in the field [11]. Here,
a Galois field of order q is represented as GF(q). The order q
of the field is a prime p or a power of a prime pm [12]. In
general, Galois fields are used for cryptography purposes,
other than there are several applications using Galois fields
also (for example: error-correcting codes). Field orders
(field sizes) used for cryptography are usually massive (e.g.
m > 150) with the intention of make crypto analysis harder.
The security offered by the cryptosystem usually increases
exponentially when m becomes larger. For cryptography
applications m in GF(2™ must be a prime, in order to
prevent a crypto analysis attack. Galois fields with a
polynomial basis are most commonly used in ECC and
therefore they are presented in detail. The other commonly
used basis is called optimal normal basis (ONB),
Polynomial basis has proven to be faster and easier to
implement than optimal normal basis and it is therefore
usually preferred to ONB. Galois field with a polynomial
bah?is is generated with an irreducible polynomial over GF
2.
For the polynomial basis representation, each element of the
field represents a polynomial, f(x) of the form:

f(X) = ag + a;x + @ X° + axx° + ax’

All coefficients, a;, of the polynomial are either one or zero.
Therefore, each operation consists of subtraction, addition,
and multiplication that are defined by means of polynomial
arithmetic with the coefficients reduced modulo 2. For
instance, the sequence of the bit 01100101 would signify the
polynomial:
XX+ X2+ 1

In view of the fact that operations like multiplication and
squaring acquire inputs of size m bits and result in values
2m-1 bits, it should be a technique for reducing the result of
these operations into elements of the Galois field.
Accordingly, these values are minimized by a reduction
polynomial of order m for an m bit field. Therefore taking
the reduction polynomial raised to any power of x and
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adding it to a field element will result in a value congruent
to the original field element modulo the reduction
polynomial which is already raised.

Field operations [13]: the arithmetic operations are termed
on the elements of GF(2™) while using a polynomial basis
representation with reduction polynomial p(x) as follows:

Addition Operation
It can be done only using one n-bit XOR operation (equal to
bit wise addition module 2). The sum of two elements A, B
€ GF(2™) is given by below equation.
m-1
C(x) = A(x) Xor B(x) = Z (a; Xor b)x;

i=0

Square Operation

The binary representation of element’s square is done by
inserting a O bit between consecutive bits of the binary
representation. The square of A € GF(2™) is given by below
equation.

m-—1

A%(x) = Z a;x%

i=0

Multiplication Operation
In such case, two elements A(x), B(x) belongs to binary
field GF(2™) with irreducible polynomial P(x). Field
multiplication done by two steps [14]:
1. Polynomial multiplication of A(x) and B(x)
C(x) = A(x). B(x)

2. Reduction using irreducible polynomial p(x)

C(x) = C’(x) mod P(x)
Reduction Operation
Square and Multiplication operations require as above a
reduction process, which is the process to decrease the order
of resulting values from larger than m to less or equal to m.

C(x) = C’(x) mod P(x)
Inversion Operation
Inversion process is described the most time-consuming
process while computing the scalar multiplication in ECC
using Montgomery technique. In binary finite field,
inversion process is obtaining a™* for performing a non-zero
element a e GF(2™):

(A. A =1 mod f(x)

Il. SECURITYALGORTIHMS

A. Elliptic Curve Cryptography (ECC)

ECC is considered one of the public key encryption
methods that produce best cryptographic keys in accordance
with the elliptic curve theory. It generates smaller keys
within a short time. Before using the large prime numbers
for key generation, ECC uses the properties of elliptic
curves to produce keys. Elliptic curve is a nonsingular cubic
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curve with two variables in a certain field and an infinite
rational point [15, 16]. Each and every user produces a
public- private key pair, where the public key is applied for
performing the signature verification and encryption process
and the private key is also applied for signature generation
and decryption process. In ECC, the high level of data
security recognizes how to be achieved using a 164 bit key,
where the traditional techniques require 1024 bit key. Data
security using ECC algorithm

Key generation
e A selects random integer dA, which is A’s private
key
e A generates a public key PA=dA *B
e B selects a private key dB and generates a public
key PB=dB * B
e A generates the security key Key = dA * PB
o B generates the security key Key = dB * PA
Signature Generation
e For signing a message m by sender of cloud A,
using A’s private key dA
e Calculate e = HASH(m), where HASH is a
cryptographic hash function, such as SHA-1
e Select a random integer k from [1, n-1]
e Calculate r = x1 (mod n), where (x1, y1) =k * B. If
r=20, go to step Il
e Calculates=k*(e +dA *r) (mod n). If s=0, go to
step 111
e The signature is the pair (r, s)
e Finally, send signature (r, s) to B
Encryption algorithm
Assume A sends an encrypted message to B
e A takes plaintext message m, and encodes it onto a
point, pm,
o from the elliptic group
e A chooses another random integer, k from interval
[11 p'l]
e The cipher text is a pair of points pc = [(kB), (pm +
k*PB)]
e Send cipher text pc to B
Decryption algorithm
B will decrypt cipher text pc
e B computes the product of the first point from pc
and its private key dB, which is kB * dB
e B takes this product and subtracts it from the
second point from pc, (pm + k * PB) — kB * dB,
since PB = dB * B, so the difference is pm
o Finally, B decodes pm to get the message m
Signature Verification
If B wants to authenticate A’s signature, B must have A’s
public key pA
o  Verify that r and s are integers in [1, n-1]
e Calculate e = HASH(m), where HASH is the same
function used in the signature generation
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e Calculatew=(s-1)%n
e Calculateul =e*w%nandu2=r*w%n
e Calculate (x1,y1l) =ul *B +u2 *PA
e The signature is valid if X1 = r % n, otherwise
invalid
EXAMPLE:

1. Curve Size: Small , Curve Type: Real number, Curve
attributes: a=6, b=20, Curve: y2 = x3 + 6x + 20,Point P =
(1.3]5.47),Point Q = (-1.97|0.66),Point R = P + Q = (2083]-
7.72)

Fig. 1

2. Curve Size: Large, Curve Type: F(p), Select curve
attributes: ANSI X9.62,Curve: primel92vl, Radix: 16
hexadecimal, Curve attributes: y* = x* + 6x + 20, where

a = fFfffrrrr e rfe frrfrrrrerrrefc

b =
64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1
B

Base point G: Point P

x = 188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012
y=7192h95ffc8da78631011ed6b24cdd573f977a11e794811
Base point G: point Q

x = 188da80eb03090f67chf20eb43a18800f4ff0afd82ff1012
y=7192b95ffc8da78631011ed6b24cdd573f977a11e794811
PointR:R=P+Q

x= dafebf5828783f2ad35534631588a3f629a70fh 169822888
y:
dd6bda0d993da0fa46b27bbc141b868f59331afa5c7e93ab

3. Curve Size: Large, Curve Type: F(2”m), Select curve
attributes : ANSI X9.62, Curve: c2pnb163vl, Radix : 16
hexadecimal

a = 72546h5435234a422e0789675f432¢89435de5242

b = ¢9517d06d5240d3cff38¢c74b20b6cd4d6f9dd4d9

m =163

Base Point P:

X = 00000007 af699895 46103d79 329fcc3d 74880133
bbe803cbh
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y= 00000001 ec23211b 5966adea 1d3f87f7 ea5848ae
fOb7cadf

Base point Q:

X=00000007 af699895 46103d79 329fcc3d 74880f33
bbe803ch

Y=00000001 ec23211b 5966adea 1d3f87f7 ea5848ae
fOb7caof

PointR:R=P+Q

X=00000007 ee35173a 4ae9f401 c42fe4f6 01338998
bb745a37

Y= 00000003 6639922b a4e6c208 dclf73b5 bl37fc51
4a275c7d

4. Curve Size: Small, Curve Type: F(2"m), curve attributes :
m=4, f = xM+x+1,a=1,b=1,Curve: y2 + xy = x3 + x2 + 1,
Point P = (g12|g16), Point Q = (g6|g3), Point R =P + Q =
(1|910)

g14
a1

g12
g1y
a1t

" 4
+ T 1
1 a a2 a3 a4 a5 a6 a7 a8 a9 al0d all al2 al3 al4 0O

Fig. 2

B. ECDSA (Elliptic Curve Digital Signature Algorithms)
Signature algorithm is mainly used for authenticating a
device or a message transmitted by the device. For instance,
two devices are considered as A and B. The device A signs
the message using the private key, to authenticate a message
transmit by A. The device A sends the message and the
signature to the device B. This signature can be verified only
by using the public key of device A. Because the device B
recognizes A"s public key, it can be verified that the
message is transmitted by A or not. ECDSA is a variant of
the DSA (Digital Signature Algorithm) that works on elliptic
curve groups. A signed message is sent from A to B, both
have to agree up on Elliptic Curve domain parameters.
Transmitter “A” have a key pair consisting of a private key
dA (a randomly chosen integer less than n, where n is the
order of the curve, an elliptic curve domain parameter) and a
public key QA = dA * G (G is the generator point, an
elliptic curve domain parameter) [17]. An overview of
ECDSA process is defined below:

Signature Generation

For signing a message m by sender A, using A“s private key
dA

324



International Journal of Computer Sciences and Engineering

e Calculate e = HASH (m), where HASH is a
cryptographic hash function, such as SHA-1
Select a random integer k from [1,n — 1]
Calculate r = x1 (mod n), where (x1,yl) =k *
Ifr=0, gotostep 2
Calculate s = k — 1(e + dAr)(mod n). If s = 0, go to
step 2

e  The signature is the pair (r, s)
Signature Verification
For B to authenticate A's signature, B must have A“s public
key QA

e  Verify that r and s are integers in [1,n — 1]. If not,

the signature is invalid

e Calculate e = HASH (m), where HASH is the same
function used in the signature generation
Calculate w =s —1 (mod n)
Calculate ul = ew (mod n) and u2 = rw (mod n)
Calculate (x1, y1) = ulG + u2QA
The signature is valid if x1 = r(mod n), invalid
otherwise

EXAMPLE:

Signature originator: parkavi parkavi

Domain parameters to be used 'EC-prime239v1"

Chosen signature algorithm: ECSP-DSA with hash function
SHA-1

Size of message M to be signed: 800 bytes

Bit length of ¢ + bit length of d = 478 bits

Message = “Cloud — The technology of distributed data
processing in which some scalable information resources
and capacities are provided as a service to multiple external
customers through Internet technology”.

Encrypted Data:

20 43 6C 6F 75 64 20 96 20 54 68 65 20 74 65 63 68 6E 6F
6C 6F 67 79 20 6F 66 20 64 69 73 74 72 69 62 75 74 65 64
20 64 61 74 61 20 70 72 6F 63 65 73 73 69 6E 67 20 69 6E
20 77 68 69 63 68 20 73 6F 6D 65 20 73 63 61 6C 61 62 6C
65 20 69 6E 66 6F 72 6D 61 74 69 6F 6E 20 72 65 73 6F 75
72 63 65 73 20 61 6E 64 20 63 61 70 61 63 69 74 69 65 73
20 61 72 65 20 70 72 6F 76 69 64 65 64 20 61 73 20 61 20
736572 76 69 63 65 20 74 6F 20 6D 75 6C 74 69 70 6C 65
206578746572 6E 61 6C 20 63 75 73 74 6F 6D 65 72 73
20 74 68 72 6F 75 67 68 20 49 6E 74 65 72 6E 65 74 20 74
65 63 68 6E 6F 6C 6F 67 79 2E

Elliptic curve E described through the curve equation: y*2 =
x"3 +ax + b (mod p) :

a =
883423532389192164791648750360308885314476597252
960362792450860609699836

b =
738525217406992417348596088038781724164860971797
098971891240423363193866

Private key = 1545029212

Public key W=(Wx,WYy) (W is a point on the elliptic curve)
of the signature originator:
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W =
339214281597464032556847389887550928141978861389
490192243649358977026794

Wx =
484991443796850980360798175808921247277365493475
419629782116460133815756

Wy =
112887102563797242312427681894133296215223477833
624991967041647927204875

Calculate a 'hash value' f (message representative) from
message M, using the chosen hash function SHA-1.

f =
122924418786777293044827568045959118710646237791
7

e ECDSA SIGNATURE as follows:
G has the prime order r and the cofactor k (r*k is the number
of points on E):
k=1
Point G on curve E (described through its (x,y) coordinates):
Gx =
110282003749548856476348533541186204577905061504
881242240149511594420911
Gy =
869078407435509378747351873793058868500210384946
040694651368759217025454
r =
883423532389192164791648750360308884807550341691
627752275345424702807307
The secret key s is the solution of the EC discrete log
problem W=x*G(x unknown)
S=
867394451498200440756814680713079325021677452565
139760374640511533239520
Signature:
Convert the group element VVx (x co-ordinates of point V on
elliptic curve) to the number i:

| =

874844795342404242242970406879030982109625529775
978715975802989639190378
Calculate the number ¢ =i mod r (c not equal to 0):
c=
874844795342404242242970406879030982109625529775
978715975802989639190378
Calculate the number d = ur(-1)*(f + s*c) mod r (d not equal
to 0):
d=
499738226452546966560511315664527861087957747388
769657020350357516812889

e ECDSA VERIFICATION as follows:
If c or d does not fall within the interval [1, r-1] then the
signature is invalid:
c and d fall within the required interval [1, r-1].
Calculate the number h = d*(-1) mod r:
h =
391702945635414917822160942289261042032913196840
703179415463124230896239
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Calculate the number h1 = f*h mod r:
hl=
328051527420541012757503247282799137806351247889
454854436481123921149057
Calculate the elliptic curve point P =hl G + h2 W
Calculate the number h2 = ¢c*h mod r:
h2 =
250945703657321186443879133837810133503609087586
98873699945097098298437
(If P = (Px, Py) = (inf, inf) then the signature is invalid):

Px =
874844795342404242242970406879030982109625529775
978715975802989639190378

Py =
533920364062706920253636484590149343512641444097
875092523867378538193185
Convert the group element Px (x co-ordinates of point P on
elliptic curve) to the number i:

i =
874844795342404242242970406879030982109625529775
978715975802989639190378
Calculate the number ¢' =i mod r:
c'=
874844795342404242242970406879030982109625529775
978715975802989639190378
If ¢' = ¢ then the signature is correct; otherwise the signature
is invalid

C. ECDH (Elliptic Curve Diffie Hellman Algorithm)
ECDH is considered into a key agreement protocol which
allows two parties communication to establish using a
shared secret key that can be used for performing private
key techniques. Both parties exchange some public
information to each other [18]. Using this public data and
their own private data these parties calculates the shared
secret. Any third party, who doesn’t have access permission
to the private details of each device, will not be capable to
analyze the shared secret from the available public
information. An overview of ECDH process is defined
below. A shared secret between A and B is generated using
ECDH, both have to agree up on Elliptic Curve domain
parameters. Both the sender and receiver have a key pair
consisting of a private key d (a randomly chosen integer less
than n, in which n is the order of the curve, an elliptic curve
domain parameter) and a public key = d * G (G is the
generator point, an elliptic curve domain parameter).

Algorithm: Elliptical Curve Diffie-Hellman
e Alex and Benny agree on the elliptic curve E and
base point G(xXy,Yy1)

e Alex generates a random integer a
€ {1,.......,n—1}where n is the order of the
group and number a is called private key of the
Alex.
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e Alex sends to Benny her public key
Qa:aG:a(X1:y1):(XaIYa)

e Benny generates the random integer b €
{1,.........,n—1} and b number is called private
key of the Benny

e Benny sends to Alex his public key

Qa=bG=B(X1,y1)=(Xs,Yb)
e  Alex can then compute (Xy,yx)=aQp=a(bG)=abG.
o Likewise, Benny can compute
(Xk,Yi)=bQs=b(aG)=abG.
e The shared session key is X, which is the x —
coordinate of the point.
EXAMPLE:
Step 1: Set public parameters
Curve type: F (p), Curve Size: Small, Domain parameters:
a=2,b=2,p=29, generator G=(1,11)
Step 2: Choose Secrets
Alex=3
Benny=5
Step 3: Generate shared keys
Secret key (d): Q=d*G ,
Alex=(3,8)
Benny=(4,4)
Step 4: Exchange shared keys
Step 5: Generate common key
Key = sA*QB and key=sB*QA
S=(23,8)

Public parameters

Set public parameters | Elliptic curve = (y*2) mod 29 = (x*3 + 2%x + 2) mod 29
Generator G = (1,11)

Alice Bob

3= esssesescscscsces b= esececcsccsccsccce
Create shared keys
Calculate
A= (3,8 B= (4,4)
Exchange shared keys
S= (23.8) S= (23,8
% Asad o o
Fig.3

D. Proposed ECPC (Elliptical Curve and Polynomial
Cryptography)

Polynomial basis multiplication is based on two main
arithmetic operations over the binary polynomials. There are
modulo reduction and polynomial multiplication irreducible
polynomials. In this work, the so-called Mastrovito matrix is
constructed from the coefficients of the first multiplicand
and the irreducible polynomial defining the field. After that,
the polynomial multiplication and modulo reduction steps
are implemented together using matrix. Irreducible
polynomials with special structures and low hamming

326



International Journal of Computer Sciences and Engineering

weights have been used to design efficient finite field
multipliers.
In this section, illustrate the representation and
multiplication of GF(2™) elements in the polynomial basis.
The finite field GF(2™) is an extension field of GF(2) and
constitutes a dimension m vector space over it. The finite
field GF(2) has only the elements 0 and 1. In this binary
field, the addition and the subtraction are defined as XOR
operation while the multiplication is defined as AND
operation.
Step 1:
Let x € GF(2™) and be a root of the degree m irreducible
polynomial over GF(2)
wx) = XM+ wy_ x4+ ewx+ wy =0
Then, the following set constitutes the polynomial basis in
GF(2™M):
{1,% e, x™ 1}
With polynomial basis, GF(2™) elements can be signified as
degree m-1 polynomials as follows:
GF2™) = {a(®)|a(X) = ap (X 1+ . +a;x+ ay a;
€ GF(2)},
Where the coefficients a; are the polynomial basis
coordinates in GF(2). When the elements of GF(2™) are
represented as polynomials over GF(2), their addition and
subtraction are equivalent to the coefficient-wise XOR,
denoted dy “+” in this paper. Also, because of the above
equation, all arithmetic operations in GF(2™) are performed
modulo the irreducible polynomial w(x) chosen to construct
the field. Let a(x) and b(x) be two field elements and c(x) be
their product. Then,
c(x) = a(x)b(x)mod w(x).
Therefore, the polynomial basis multiplication has two
steps: reduction modulo an irreducible polynomial and
polynomial multiplication.
Step 2: Polynomial multiplication
Let d(x)=a(x)b(x) be the product of the polynomials
representing the field elements. D(x) is the degree 2m-2
polynomial

d(x) = a(x)b(x) = (ZmoaX) (Zmo”f"’)
= Zzo_zdkx"
Where

dy = Z ab;, 0<ij,<m-1,0<k<2m-2.

i+j=k
Step 3: Modular Reduction
In the modular reduction c(x)=d(x) mod w(x), the degree
2m-2 polynomial d(x) is reduced by the degree m
irreducible polynomial w(x) iteratively. The partial
remainder after each reduction can be computed by the
following iteration:

d®m=2 (x) = d(x),d* ()

= d®(x) + w(x)d]((k)xk‘m,m <k
<?2m-2,
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Here, d®(x) is a partial remainder of degree k and
d™1(x)=c(x). the iteration in above equation reduces
d®(x) from degree k to k-1, since adding (coefficientwise
XORing) d® (x) with polynomial

m-1

W(X)dl((k)xk_m — (Xm + Z WiXi> dl((k)Xk_m
i=0
— dl((k)Xk
m-1

n Z Ay i them

i=0

k-1
k k i
= dl(( )Xk + Z d](( )Wi_(k_m)Xl

i=k—-m
Cancels its term with the order k.

Step 4:

The range of the irreducible polynomial w(x) may ease the

modular reduction. Sparse irreducible polynomials having

fewer nonzero terms are usually preferred for efficiency. A

degree m irreducible polynomial over GF(2) which has r

nonzero terms are in the form

x™ 4 x™+ x™2 4 x4 xMre2z 4 ]

Step 5:

At this point, r > 1 should be an odd number like 3 and 5.

The sparse polynomials with three or five nonzero are

named as shown below are known as trinomial and

pentanomial respectively:
x™ 4+ x™i4+ 1, x™ + x™ 4 x™M2 4+ x™3 4 1,

Step 6:

Equally spaced irreducible polynomials are another option

for efficient modular reduction. An equally spaced

polynomial is represented in the form
x™ +x Vs o xS 41,

Where ns=m.
Step7: The proposed polynomial interpolation technique
in the elliptic curve EIGamal cryptosystem:
To discuss the algorithm of the modified elliptic curve
ElGamal cryptosystem is performed. It will be transmitted
the set of encrypted points as two polynomials that are
constructed using Lagrange polynomial interpolation
technique. The first polynomial will be encrypted as well to
ensure the additional steps in this modified algorithm is
meaningful for implementation. Here the algorithm:

e Alex selects her secret key, kA such thatl<k,<n. The
gcd (ka, n) = 1. She publishes her public key as kaP

e Benny selects kg such thatl<kg<n. The gcd (kg, n) = 1.
He encrypts each points such that (Xg, Yg) = Pm + kg
(kaP).

e Benny makes polynomial A(x) based on the points (1,
Xe1), (2, Xez), (8, Xgs), (I, Xg) where | indicates the
number of encrypted points. Another polynomial B(x)
is constructed based on the encrypted points (Xg1, Ye1),
(Xe2, Ye2), (Xes, Yea)s- ., (Xen, Yer). Both polynomials are
constructed using Lagrange polynomial interpolation.
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e Benny adds the x-coordinate of kg (kaP) to each of the
coefficients modulo p of the polynomial A(x) while the
coefficients of polynomial B(x) remain unchanged. The
encrypted polynomial A(x) denoted as A’ (x). Benny
transmits (kgP, A’(x), B(x)) to Alex.

e Alex decrypts by multiplying her secret key such that
ka(ksP). Polynomial A(x) is obtained from A’(x) by
deducting each coefficients using the x coordinate of
ka(ksP).

e Alex achieves x-coordinate of encrypted points by
substituting x = 1, 2,...,I into A(x). Then x coordinate
of encrypted points obtained is substituting into B(X) to
get the y-coordinate of encrypted points.

e Alex obtains Pm such that P, + kg (KaP) - ka (ksP)

EXAMPLE:

The exponent can be indicated by preceding it by the
character E or e, as you can see in the example. Data must
consist of two columns, xandy, to get the polynomial
regression y=a,x™+an.. X" +...+a,x*+a; x+ao.

Number of Data Points: 3

Polynomial Degree: 2

X y Calculated y Error
1.112 16 16 0
2. |6 3 3 0
3.11 10 10 0
Result: vy = 3.242424242.10" x* - 3.66969697 x +
13.34545455

Residual Sum of Squares: rss =0
Coefficient of Determination: R? = 1
Chart

Polynomial degree 2 with 3 data points.

Fig. 4

Result

Mode: normal x,y analysis

Polynomial degree 2, 3 x, y data pairs.

Correlation coefficient (r2) = 0.9999999999999987
Standard error = 3.162713435991701e-14
Coefficient output form: mathematical function:
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f(x) = 1.3345454545454507e+001 * x"0
+-3.6696969696969535e+000 * x"1
+ 3.2424242424242311e-001 * x"2

Table

X, Y, %
1.00, 10.00, 0.00
155, 844, 5.00
210, 7.07, 10.00
2.65, 5.90, 15.00
3.20, 4.92, 20.00
3.75, 4.4, 25.00
430, 3.56, 30.00
485, 3.17, 35.00
5.40, 2.98, 40.00
5.95, 299, 45.00
6.50, 3.19, 50.00
7.05, 359, 55.00
7.60, 4.18, 60.00
8.15, 4.97, 65.00
8.70, 5.96, 70.00
9.25, 7.14, 75.00
9.80, 8.2, 80.00
10.35, 10.10, 85.00
10.90, 11.87, 90.00
11.45, 13.84, 95.00
12.00, 16.00, 100.00

I1l. EXPREMENTAL RESULTS

In this experimental performance analysis, the given
algorithms perform on the basis of the following parameters
on local system at different input size. In this phase, it
describes the experimental parameters, platforms and key
management of experimental algorithms.

Evaluation Parameters Performance of encryption algorithm

is evaluated the following parameters.

o Key Generation time: In Key Generation Time
considered the time that a key generation produces a
keys.

e Encryption Time: The encryption time considered the
time that an encryption technique generates a cipher
text from a plain text.

e Decryption Time: The decryption time considered the
time that a decryption technique generates a plain text
from a cipher text.

Evaluation Platforms Performance of encryption algorithm

is evaluated the following system configuration.

e Software Specification: Experimental evaluation on
Eclipse Jee Mars with Java Development Kit (JDK) 8
Update 65, Matlab version 2014, Windows 8.1 Pro 64
bit Operating System.
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e Hardware Specification: The entire algorithms are
tested on Intel Core i5 (2.40 GHz) (fourth generation
processor with 4GB of RAM) with 1 TB-HDD.

Experimental result for encryption algorithm ECC, ECDH,
ECDSA, and ECPC are shown in table-1 that has been
implemented many input file sizes: 889 bytes, 430 bytes,
and 3159 bytes. In this experiment, key size of each
algorithm that is used also mentioned in the below table. All
the results are obtained with double time, for achieving
higher accuracy hundred (100) examples of total execution
time were taken afterward an average of hundred samples
were taken for the comparative analysis and measurement
among techniques and for the graph plotting as well.
Encryption and Decryption time is evaluated in
millisecond and the input size is taken in kilobytes. All the
respective observation readings and graph are shown for all
the analyzed algorithms on Cloud systems.

Table 1: Performance Comparison of Different

algorithms
Algo | Key | File Key Encryptio | Decryptio
rithm | Size | Size( | Generatio n n
(bit) | bytes n Time(Mill | Time(Mill
) Time(Mill | iseconds) | iseconds)
iseconds)
ECC | 521 | 430 272 215 300
889 303 237 352
3159 345 288 381
ECD | 384 | 430 224 183 257
H
889 233 229 301
3159 256 277 338
ECD | 256 | 430 185 124 212
SA
889 211 164 258
3159 207 228 291
ECP | 163 | 430 110 97 175
C
889 175 134 210
3159 197 198 271

Key Generation Time:

The results of the experimentation of key generation time
for different node sizes, threshold values and key sizes for
ECC, ECDSA, ECDH, and ECPC are completed in efficient
manner. The key sizes of ECPC 163 are comparable with
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other algorithms. This originally appears that ECPC is
storage efficient. From the experimental results, it is the key
generation time that gradually increases for a given key size
with increase in threshold‘t’ and node ‘n’. As the key size
increases, the generation time also exponentially increases.
The key generation time for all the four algorithms are
illustrated in Figure 1. ECPC demonstrates desirable results
compared to ECC.

400

350

File Size
== 480KB
889 KB*
M 3150KB

300+
2501

2001

1501

Key generation Time

100+
50+

ECC ECDH ECDSA ECPC
Algorithms

Figure 1: Comparison of Key Generation Time

Encryption Time:

Encryption throughput is capable to be determined by
evaluating the total plaintext encrypted on total encryption
time of various encryption techniques. Increased throughput
results in decrease of power consumption. The encryption
time for different size of files are illustrated in Table -1. The
corresponding curves for the encryption time illustrate in
figure 2. In encryption graph (figure 2), analyze that ECC
curve consume time than other encryption techniques.
ECDH, ECDSA curve is related to other method for
performing small amount of load however, while the load is
high then it obtain much time to encrypt data. ECPC curves
show linearity while the data load increases.

File Size
= = 480KB*

B 83KB
B 3159KB

EncryptionTime

ECC ECDH ECDSA ECPC
Algorithms

Figure 2: Comparison of Encryption Time

Decryption Time:
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Decryption throughput can be determined by evaluating the
total cipher text decrypted over the decryption time. It is
format from the figure which ECPC algorithm is superior of
all other algorithms. ECDSA has benefit over others as it
can be seen over 256 bit key size and ECC has low
performance in terms of power consumption and throughput
than others. Also, in decrypting the different document files
ECPC algorithm is superior of all other algorithms in
terms of throughput and power consumption. ECPC has
performed double throughput as it is compared to others so
that it takes less time to decrypt the document file.

450

File Size
ML 480KB*

P | 889 KB
_ | 3153KB

DecryptionTime

ECC ECDH ECDSA ECPC
Algorithms

Figure 3: Comparison of Decryption Time
IVV. CONCLUSION

Encryption and decryption algorithm keeps very significant
contribution in security communication. This research paper
emphasizes on the security of cloud user’s information
confidentiality protection using enhanced ECC (elliptic
curve cryptography) algorithm over Galois Field GF (2™).
The strong point of the proposed ECPC algorithm is based
on the complexity of computing discrete logarithm in a
large prime modulus, and the Galois Field allows
mathematical operations to mix up data effectively and
easily. The Galois Field permits mathematical operations to
merge data easily and effectively. From this paper
illustrates, the security performance comparison for
broadly used encryption and decryption techniques such as
ECC, ECDSA, ECDH, with our proposed ECPC
algorithms. Depending on the text files used and the
experimental result it has been decided that ECPC algorithm
consumes least encryption time and ECC and other
algorithms consume longest encryption time. Moreover, that
least decryption time of ECPC algorithm is performed better
than other algorithms.
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