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Abstract- Encryption becomes a solution and different encryption techniques which roles a significant part of data security on 

cloud. Encryption algorithms is to ensure the security of data in cloud computing. Because of a few limitations of pre-existing 

algorithms, it requires for implementing more efficient techniques for public key cryptosystems. ECC (Elliptic Curve 

Cryptography) depends upon elliptic curves defined over a finite field. ECC has several features which distinguish it from 

other cryptosystems, one of that it is relatively generated a new cryptosystem. Several developments in performance have been 

found out during the last few years for Galois Field operations both in Normal Basis and in Polynomial Basis. On the other 

hand, there is still some confusion to the relative performance of these new algorithms and very little examples of practical 

implementations of these new algorithms. Efficient implementations of the basic arithmetic operations in finite fields GF(2
m
) 

are need for the applications of coding theory and cryptography. The elements in GF(2
m

) know how to be characterized in a 

choice of  bases. A variety of basis used to represent field elements has a major impact on the performance of the field 

arithmetic. The multiplication techniques that make use of polynomial basis representations are very efficient in comparison to 

the best techniques for multiplication using the other basis representations. In this paper, focuses on user confidentiality and 

security protection in cloud, and that uses enhanced ECC technique over Galois Field GF(2
m

). The strong point of the 

proposed ECPC (Elliptical Curve and Polynomial Cryptography) algorithm is based on the complexity of computing discrete 

logarithm in a large prime modulus, and the Galois Field allows mathematical operations to mix up data effectively and easily. 

This technique is mainly used to encrypting and decrypting data to ensure security protection and user confidentiality in the 

cloud computing. Results show that the performance of ECPC over Galois Field, in two region of evaluation, it has better than 

the other technique that is used for comparison purpose. 

 

Keywords- Cloud Computing, Security, Cryptography, ECC, RSA, ECDH, ECDSA, Elliptical Curve and Polynomial 

Cryptography (ECPC)  

 

I. INTRODUCTION 

 

Security protection in cloud computing involves concepts 

like network security, control and equipment strategies 

deployed to protect data, infrastructure and applications 

correlated with cloud computing [1]. A significant feature of 

cloud is the notion of interconnection with a choice of 

materials that makes it necessary and difficult to securing 

these environments. Security problems in a cloud platform 

can lead to economic loss, also a bad reputation if the 

platform is oriented large public and are the cause behind 

the huge adoption of this new solution.  In the cloud, the 

data stored for customers are represented as very important 

information. This is issue of the infringement of such data 

by an unauthorized third party is unacceptable to access 

information. There are two ways to attack data in Cloud [2]. 

First one is outsider attack and the second one is insider 

attack. The insider attack is an administrator in which they 

can have the possibility to hack the user’s data. The insider 

attack is very complex to be recognized. So, the users must 

be very careful to analyze while saving their data in cloud 

storage. Therefore, the need to think of techniques which 

delay the use of data even though the data is accessed by the 

third party, they shouldn’t obtain the actual data. As a result, 

the entire data must be encrypted before it is sent to the 

cloud storage [3]. Security allows the integrity, 

confidentiality, availability and authenticity of information. 

The improvement of technologies and their standardization 

makes available a set of protocols and algorithms for 

responding to these problems [4]. Several encryption 

techniques have been implemented and developed in order 

to give more secured data transmission process in cloud, 

like,  RSA, Knapsack and DH for asymmetric category, 

Blowfish, RC4, AES, DES 3DES for symmetric category. 

[5, 6].  
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In this paper, focuses on user confidentiality and security 

protection in cloud, and that uses enhanced ECC (Elliptic 

Curve Cryptography) technique over Galois Field GF(2
m
) 

[7]. The strong point of the proposed ECPC algorithm is 

based on the complexity of computing discrete logarithm in 

a large prime modulus, and the Galois Field allows 

mathematical operations to mix up data effectively and 

easily. ECC Algorithm affords message authentication and 

secure message integrity, with data confidentiality and non-

repudiation of message. ECC is considered as a public key 

encryption method in which depends upon elliptic curve 

theory that can be utilized to generate more effective 

cryptographic keys [8]. ECC generates keys by using the 

properties of the elliptic curve equation rather than the 

traditional technique of key generation as the product of 

very large prime numbers. Because ECC aids to establish 

equivalent security protection with less power consumption 

and battery resource usage, it becomes broadly used for 

cloud applications. 

 

In ECC, efficient finite field squaring is essential for quick 

implementation in software environments. In the binary 

finite field GF (2
m
) Finite field arithmetic is a significant 

arithmetic operation Squaring is needed for several 

cryptographic techniques which are based on the DLP 

(Discrete Logarithm Problem) in the additive group of 

points on an Elliptic Curve defined over a finite field or the 

multiplicative group of a finite field [9]. In this paper, 

presents a new technique for performing binary finite field 

arithmetic in Polynomial Basis. 

 

Elliptic Curve 

In Elliptic Curve, it has considered as a unique property that 

generates main utilization cryptography (i.e. its capability to 

obtain any two points on a specific curve), add them 

together and obtain a third point on the same curve [10]. The 

main operation of ECC is involved point multiplication 

which is multiplication of a scalar K with any point P on the 

curve to obtain another point Q on the same curve. An 

elliptic curve is termed by an equation, is of two variables, 

with coefficients. For the main intention of cryptography, 

the variable and coefficients are limited to a special type of 

set known as a FINITE FIELD. The general equation for 

an elliptic curve is: 

y
2 
+ axy + by = x

3
 + cx

2
 + dx + e 

Where a, b, c, d and e are real numbers and x and y also take 

their values from real number. A simplified elliptic curve 

equation is given as:  

y
2 
– x

8
 + dx + e 

In ECC, the Elliptic Curve is used to describe the members 

of the set over that the group is evaluated i.e. an operation 

on any two elements of the set will provide a result that is 

the member of the same set in addition to operations 

between them which defines how math work in the group. In 

real time scenario, the ECC is implemented over a finite 

prime field and in hardware, in which binary number are 

used; the finite field is represented GF (2
m
). The GF is 

termed as a finite field namely Galois Field. The field of 

finite primes provides the ECC which allows encipher to 

encrypt the data very easily however, the cryptologist the 

process of initiating to attack the encrypted message is very 

complex. The GF (p) is termed as the field of integers 

module p, in which p is a very large prime number, and that 

comprise all the integers from 0 to p-1 in such case of square 

graph, p*p in size. To implement the ECC in software to 

handle prime numbers in addition to other number, ECC 

allows the improvement of potable chips which can be 

deployed over the mobile devices and provide a processor 

friendly encryption. ECC is implicated on hardware, point 

doubling and adding on elliptic curve and scalar 

multiplication over binary finite fields.  

 

1.1 Polynomial Basis Representation 

Galois fields are described as fields with a finite field order 

q that is also the number of elements in the field [11]. Here, 

a Galois field of order q is represented as GF(q). The order q 

of the field is a prime p or a power of a prime pm [12]. In 

general, Galois fields are used for cryptography purposes, 

other than there are several applications using Galois fields 

also (for example: error-correcting codes). Field orders 

(field sizes) used for cryptography are usually massive (e.g. 

m > 150) with the intention of make crypto analysis harder. 

The security offered by the cryptosystem usually increases 

exponentially when m becomes larger. For cryptography 

applications m in GF(2
m
) must be a prime, in order to 

prevent a crypto analysis attack. Galois fields with a 

polynomial basis are most commonly used in ECC and 

therefore they are presented in detail. The other commonly 

used basis is called optimal normal basis (ONB), 

Polynomial basis has proven to be faster and easier to 

implement than optimal normal basis and it is therefore 

usually preferred to ONB. Galois field with a polynomial 

basis is generated with an irreducible polynomial over GF 

(2
N
). 

For the polynomial basis representation, each element of the 

field represents a polynomial, f(x) of the form:  

f(x) = a0 + a1x + a2 x
2
 + a3x

3
 + aix

i
 

 

All coefficients, ai, of the polynomial are either one or zero. 

Therefore, each operation consists of subtraction, addition, 

and multiplication that are defined by means of polynomial 

arithmetic with the coefficients reduced modulo 2. For 

instance, the sequence of the bit 01100101 would signify the 

polynomial:  

x
6
 + x

5
 + x

2
 + 1 

In view of the fact that operations like multiplication and 

squaring acquire inputs of size m bits and result in values 

2m-1 bits, it should be a technique for reducing the result of 

these operations into elements of the Galois field. 

Accordingly, these values are minimized by a reduction 

polynomial of order m for an m bit field. Therefore taking 

the reduction polynomial raised to any power of x and 
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adding it to a field element will result in a value congruent 

to the original field element modulo the reduction 

polynomial which is already raised. 

 

Field operations [13]: the arithmetic operations are termed 

on the elements of GF(2
m
) while using a polynomial basis 

representation with reduction polynomial p(x) as follows: 

 

Addition Operation 

It can be done only using one n-bit XOR operation (equal to 

bit wise addition module 2). The sum of two elements A, B 

  GF(2
m
) is given by below equation. 

 ( )    ( )      ( )  ∑(         )  

   

   

 

 

 

Square Operation 

The binary representation of element’s square is done by 

inserting a 0 bit between consecutive bits of the binary 

representation. The square of A   GF(2
m
) is given by below 

equation. 

  ( )   ∑    
  

   

   

 

 

Multiplication Operation 

In such case, two elements A(x), B(x) belongs to binary 

field GF(2
m
) with irreducible polynomial P(x). Field 

multiplication done by two steps [14]: 

1. Polynomial multiplication of A(x) and B(x) 

C’(x) = A(x). B(x) 

2. Reduction using irreducible polynomial p(x) 

C(x) = C’(x) mod P(x) 

Reduction Operation 

Square and Multiplication operations require as above a 

reduction process, which is the process to decrease the order 

of resulting values from larger than m to less or equal to m. 

C(x) = C’(x) mod P(x) 

Inversion Operation 

Inversion process is described the most time-consuming 

process while computing the scalar multiplication in ECC 

using Montgomery technique. In binary finite field, 

inversion process is obtaining a
-1

 for performing a non-zero 

element a є GF(2
m
): 

(A. A
-1

) = 1 mod f(x) 

 

II. SECURITYALGORTIHMS 

 

A.  Elliptic Curve Cryptography (ECC) 

 ECC is considered one of the public key encryption 

methods that produce best cryptographic keys in accordance 

with the elliptic curve theory. It generates smaller keys 

within a short time. Before using the large prime numbers 

for key generation, ECC uses the properties of elliptic 

curves to produce keys. Elliptic curve is a nonsingular cubic 

curve with two variables in a certain field and an infinite 

rational point [15, 16]. Each and every user produces a 

public- private key pair, where the public key is applied for 

performing the signature verification and encryption process 

and the private key is also applied for signature generation 

and decryption process. In ECC, the high level of data 

security recognizes how to be achieved using a 164 bit key, 

where the traditional techniques require 1024 bit key. Data 

security using ECC algorithm 

 

Key generation 

 A selects random integer dA, which is A’s private 

key 

 A generates a public key PA = dA * B 

 B selects a private key dB and generates a public 

key PB = dB * B 

 A generates the security key Key = dA * PB 

 B generates the security key Key = dB * PA 

Signature Generation 

 For signing a message m by sender of cloud A, 

using A’s private key dA 

 Calculate e = HASH(m), where HASH is a 

cryptographic hash function, such as SHA-1 

 Select a random integer k from [1, n-1] 

 Calculate r = x1 (mod n), where (x1, y1) = k * B. If 

r = 0, go to step III 

 Calculate s = k
-1

(e + dA * r) (mod n). If s = 0, go to 

step III 

 The signature is the pair (r, s) 

 Finally, send signature (r, s) to B 

Encryption algorithm 
Assume A sends an encrypted message to B 

 A takes plaintext message m, and encodes it onto a 

point, pm, 

 from the elliptic group 

 A chooses another random integer, k from interval 

[1, p-1] 

 The cipher text is a pair of points pc = [(kB), (pm + 

k * PB)] 

 Send cipher text pc to B 

Decryption algorithm 

B will decrypt cipher text pc 

 B computes the product of the first point from pc 

and its private key dB, which is kB * dB 

 B takes this product and subtracts it from the 

second point from pc, (pm + k * PB) – kB * dB, 

since PB = dB * B, so the difference is pm 

 Finally, B decodes pm to get the message m 

Signature Verification 

If B wants to authenticate A’s signature, B must have A’s 

public key pA 

 Verify that r and s are integers in [1, n-1] 

 Calculate e = HASH(m), where HASH is the same 

function used in the signature generation 
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 Calculate w = (s – 1) % n 

 Calculate u1 = e*w % n and u2 = r*w % n 

 Calculate (x1,y1) = u1 * B + u2 * PA 

 The signature is valid if x1 = r % n, otherwise 

invalid 

 

EXAMPLE: 

1. Curve Size: Small , Curve Type: Real number, Curve 

attributes: a=6, b=20, Curve: y² = x³ + 6x + 20,Point P = 

(1.3|5.47),Point Q = (-1.97|0.66),Point R = P + Q = (2083|-

7.72) 

 

 
Fig. 1 

 

2. Curve Size: Large, Curve Type: F(p), Select curve 

attributes: ANSI X9.62,Curve: prime192v1, Radix: 16 

hexadecimal, Curve attributes: y
2
 = x

3
 + 6x + 20, where 

a = fffffffffffffffffffffffffffffffefffffffffffffffc 

b = 

64210519e59c80e70fa7e9ab72243049feb8deecc146b9b1 

 p = fffffffffffffffffffffffffffffffeffffffffffffffff 

Base point G: Point P  

x = 188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012 

y= 7192b95ffc8da78631011ed6b24cdd573f977a11e794811 

Base point G: point Q 

x = 188da80eb03090f67cbf20eb43a18800f4ff0afd82ff1012 

 y=7192b95ffc8da78631011ed6b24cdd573f977a11e794811 

Point R : R = P + Q 

x= dafebf5828783f2ad35534631588a3f629a70fb16982a888 

 y= 

dd6bda0d993da0fa46b27bbc141b868f59331afa5c7e93ab 

 

3. Curve Size: Large, Curve Type: F(2^m), Select curve 

attributes : ANSI X9.62, Curve: c2pnb163v1, Radix : 16 

hexadecimal 

a = 72546b5435234a422e0789675f432c89435de5242 

b = c9517d06d5240d3cff38c74b20b6cd4d6f9dd4d9 

m = 163 

 

Base Point P: 

x = 00000007 af699895 46103d79 329fcc3d 74880f33 

bbe803cb 

y= 00000001 ec23211b 5966adea 1d3f87f7 ea5848ae 

f0b7ca9f 

 

Base point Q: 

X=00000007 af699895 46103d79 329fcc3d 74880f33 

bbe803cb  

Y= 00000001 ec23211b 5966adea 1d3f87f7 ea5848ae 

f0b7ca9f 

Point R : R = P + Q 

X= 00000007 ee35173a 4ae9f401 c42fe4f6 01338998 

bb745a37 

Y= 00000003 6639922b a4e6c208 dc1f73b5 b137fc51 

4a275c7d 

 

4. Curve Size: Small, Curve Type: F(2^m), curve attributes : 

m=4, f = x^4+x+1,a=1,b=1,Curve: y² + xy = x³ + x² + 1 , 

Point P = (g12|g16), Point Q = (g6|g3), Point R = P + Q = 

(1|g10) 

 

 
Fig. 2 

 

B. ECDSA (Elliptic Curve Digital Signature Algorithms) 

Signature algorithm is mainly used for authenticating a 

device or a message transmitted by the device. For instance, 

two devices are considered as A and B. The device A signs 

the message using the private key, to authenticate a message 

transmit by A. The device A sends the message and the 

signature to the device B. This signature can be verified only 

by using the public key of device A. Because the device B 

recognizes A‟s public key, it can be verified that the 

message is transmitted by A or not. ECDSA is a variant of 

the DSA (Digital Signature Algorithm) that works on elliptic 

curve groups. A signed message is sent from A to B, both 

have to agree up on Elliptic Curve domain parameters. 

Transmitter “A” have a key pair consisting of a private key 

dA (a randomly chosen integer less than n, where n is the 

order of the curve, an elliptic curve domain parameter) and a 

public key QA = dA * G (G is the generator point, an 

elliptic curve domain parameter) [17]. An overview of 

ECDSA process is defined below: 

 

Signature Generation 

For signing a message m by sender A, using A‟s private key 

dA 
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 Calculate e = HASH (m), where HASH is a 

cryptographic hash function, such as SHA-1 

 Select a random integer k from [1,n − 1] 

 Calculate r = x1 (mod n), where (x1, y1) = k * 

 If r = 0, go to step 2 

 Calculate s = k − 1(e + dAr)(mod n). If s = 0, go to 

step 2 

 The signature is the pair (r, s) 

Signature Verification 

For B to authenticate A's signature, B must have A‟s public 

key QA 

 Verify that r and s are integers in [1,n − 1]. If not, 

the signature is invalid 

 Calculate e = HASH (m), where HASH is the same 

function used in the signature generation 

 Calculate w = s −1 (mod n) 

 Calculate u1 = ew (mod n) and u2 = rw (mod n) 

 Calculate (x1, y1) = u1G + u2QA 

 The signature is valid if x1 = r(mod n), invalid 

otherwise 

 

EXAMPLE: 

Signature originator:  parkavi parkavi 

Domain parameters to be used 'EC-prime239v1': 

Chosen signature algorithm: ECSP-DSA with hash function 

SHA-1 

Size of message M to be signed: 800 bytes 

Bit length of c + bit length of d = 478 bits 

Message = “Cloud – The technology of distributed data 

processing in which some scalable information resources 

and capacities are provided as a service to multiple external 

customers through Internet technology”. 

Encrypted Data: 

20 43 6C 6F 75 64 20 96 20 54 68 65 20 74 65 63 68 6E 6F 

6C 6F 67 79 20 6F 66 20 64 69 73 74 72 69 62 75 74 65 64 

20 64 61 74 61 20 70 72 6F 63 65 73 73 69 6E 67 20 69 6E 

20 77 68 69 63 68 20 73 6F 6D 65 20 73 63 61 6C 61 62 6C 

65 20 69 6E 66 6F 72 6D 61 74 69 6F 6E 20 72 65 73 6F 75 

72 63 65 73 20 61 6E 64 20 63 61 70 61 63 69 74 69 65 73 

20 61 72 65 20 70 72 6F 76 69 64 65 64 20 61 73 20 61 20 

73 65 72 76 69 63 65 20 74 6F 20 6D 75 6C 74 69 70 6C 65 

20 65 78 74 65 72 6E 61 6C 20 63 75 73 74 6F 6D 65 72 73 

20 74 68 72 6F 75 67 68 20 49 6E 74 65 72 6E 65 74 20 74 

65 63 68 6E 6F 6C 6F 67 79 2E 

Elliptic curve E described through the curve equation: y^2 = 

x^3 + ax + b (mod p) : 

a  = 

883423532389192164791648750360308885314476597252

960362792450860609699836 

b  = 

738525217406992417348596088038781724164860971797

098971891240423363193866 

Private key = 1545029212 

Public key W=(Wx,Wy) (W is a point on the elliptic curve) 

of the signature originator: 

W  = 

339214281597464032556847389887550928141978861389

490192243649358977026794 

Wx = 

484991443796850980360798175808921247277365493475

419629782116460133815756 

Wy  = 

112887102563797242312427681894133296215223477833

624991967041647927204875 

Calculate a 'hash value' f (message representative) from 

message M, using the chosen hash function SHA-1. 

f  = 

122924418786777293044827568045959118710646237791

7 

 ECDSA SIGNATURE as follows:  

G has the prime order r and the cofactor k (r*k is the number 

of points on E): 

k  = 1 

Point G on curve E (described through its (x,y) coordinates): 

Gx = 

110282003749548856476348533541186204577905061504

881242240149511594420911 

Gy = 

869078407435509378747351873793058868500210384946

040694651368759217025454 

r  = 

883423532389192164791648750360308884807550341691

627752275345424702807307 

The secret key s is the solution of the EC discrete log 

problem W=x*G(x unknown) 

S= 

867394451498200440756814680713079325021677452565

139760374640511533239520 

Signature: 

Convert the group element Vx (x co-ordinates of point V on 

elliptic curve) to the number i: 

  i  = 

874844795342404242242970406879030982109625529775

978715975802989639190378 

Calculate the number c = i mod r (c not equal to 0): 

c = 

874844795342404242242970406879030982109625529775

978715975802989639190378 

Calculate the number d = u^(-1)*(f + s*c) mod r (d not equal 

to 0): 

d = 

499738226452546966560511315664527861087957747388

769657020350357516812889 

 ECDSA VERIFICATION as follows: 

If c or d does not fall within the interval [1, r-1] then the 

signature is invalid: 

c and d fall within the required interval [1, r-1]. 

Calculate the number h = d^(-1) mod r: 

h  = 

391702945635414917822160942289261042032913196840

703179415463124230896239 
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Calculate the number h1 = f*h mod r: 

h1 = 

328051527420541012757503247282799137806351247889

454854436481123921149057 

Calculate the elliptic curve point P = h1 G + h2 W  

Calculate the number h2 = c*h mod r: 

h2 = 

250945703657321186443879133837810133503609087586

98873699945097098298437 

(If P = (Px, Py) = (inf, inf) then the signature is invalid): 

  Px = 

874844795342404242242970406879030982109625529775

978715975802989639190378 

  Py = 

533920364062706920253636484590149343512641444097

875092523867378538193185 

Convert the group element Px (x co-ordinates of point P on 

elliptic curve) to the number i: 

 i  = 

874844795342404242242970406879030982109625529775

978715975802989639190378 

Calculate the number c' = i mod r: 

c' = 

874844795342404242242970406879030982109625529775

978715975802989639190378 

If c' = c then the signature is correct; otherwise the signature 

is invalid 

 

C. ECDH (Elliptic Curve Diffie Hellman Algorithm) 

ECDH is considered into a key agreement protocol which 

allows two parties communication to establish using a 

shared secret key that can be used for performing private 

key techniques. Both parties exchange some public 

information to each other [18]. Using this public data and 

their own private data these parties calculates the shared 

secret. Any third party, who doesn’t have access permission 

to the private details of each device, will not be capable to 

analyze the shared secret from the available public 

information. An overview of ECDH process is defined 

below. A shared secret between A and B is generated using 

ECDH, both have to agree up on Elliptic Curve domain 

parameters. Both the sender and receiver have a key pair 

consisting of a private key d (a randomly chosen integer less 

than n, in which n is the order of the curve, an elliptic curve 

domain parameter) and a public key = d * G (G is the 

generator point, an elliptic curve domain parameter). 

  

Algorithm: Elliptical Curve Diffie-Hellman  

 Alex and Benny agree on the elliptic curve E and 

base point G(x1,y1)  

 Alex generates a random integer a 

   {           } where n is the order of the 

group and number a is called private key of the 

Alex.   

 Alex sends to Benny her public key 

Qa=aG=a(x1,y1)=(xa,ya) 

 Benny generates the random integer b  
  {           } and b number is called private 

key of the Benny 

 Benny sends to Alex his public key . 

Qa=bG=B(x1,y1)=(xb,yb) 

 Alex can then compute (xk,yk)=aQb=a(bG)=abG. 

 Likewise, Benny can compute 

(xk,yk)=bQa=b(aG)=abG. 

 The shared session key is xk which is the x –

coordinate of the point. 

EXAMPLE: 

Step 1: Set public parameters 

Curve type: F (p), Curve Size: Small, Domain parameters: 

a=2,b=2,p=29, generator G=(1,11) 

Step 2: Choose Secrets 

Alex= 3 

Benny=5 

Step 3: Generate shared keys 

Secret key (d): Q=d*G , 

Alex=(3,8) 

Benny=(4,4) 

Step 4: Exchange shared keys 

Step 5: Generate common key 

Key = sA*QB and key=sB*QA 

S= (23,8) 

 

 
Fig.3 

 

D. Proposed ECPC (Elliptical Curve and Polynomial 

Cryptography) 

Polynomial basis multiplication is based on two main 

arithmetic operations over the binary polynomials. There are 

modulo reduction and polynomial multiplication irreducible 

polynomials. In this work, the so-called Mastrovito matrix is 

constructed from the coefficients of the first multiplicand 

and the irreducible polynomial defining the field. After that, 

the polynomial multiplication and modulo reduction steps 

are implemented together using matrix.  Irreducible 

polynomials with special structures and low hamming 
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weights have been used to design efficient finite field 

multipliers. 

In this section, illustrate the representation and 

multiplication of GF(2
m
) elements in the polynomial basis. 

The finite field GF(2
m
) is an extension field of GF(2) and 

constitutes a dimension m vector space over it. The finite 

field GF(2) has only the elements 0 and 1. In this binary 

field, the addition and the subtraction are defined as XOR 

operation while the multiplication is defined as AND 

operation.  

Step 1: 

Let x   GF(2
m
) and be a root of the degree m irreducible 

polynomial over GF(2) 

 ( )           
               

Then, the following set constitutes the polynomial basis in 

GF(2
m
): 

{              } 
With polynomial basis, GF(2

m
) elements can be signified as 

degree m-1 polynomials as follows: 

  (  )   { ( )  ( )        
                      

   ( )}   

Where the coefficients    are the polynomial basis 

coordinates in GF(2). When the elements of  GF(2
m
) are 

represented as polynomials over GF(2), their addition and 

subtraction are equivalent to the coefficient-wise XOR, 

denoted dy “+” in this paper. Also, because of the above 

equation, all arithmetic operations in GF(2
m
) are performed 

modulo the irreducible polynomial w(x) chosen to construct 

the field. Let a(x) and b(x) be two field elements and c(x) be 

their product. Then, 

 ( )    ( ) ( )     ( )  
Therefore, the polynomial basis multiplication has two 

steps: reduction modulo an irreducible polynomial and 

polynomial multiplication. 

Step 2: Polynomial multiplication 

Let d(x)=a(x)b(x) be the product of the polynomials 

representing the field elements. D(x) is the degree 2m-2 

polynomial 

 ( )   ( ) ( )  (∑    
 

   

   
) (∑    

 
   

   
)

   ∑    
 

    

   
 

Where 

    ∑                                

     

 

Step 3: Modular Reduction 

In the modular reduction c(x)=d(x) mod w(x), the degree 

2m-2 polynomial d(x) is reduced by the degree m 

irreducible polynomial w(x) iteratively. The partial 

remainder after each reduction can be computed by the 

following iteration: 

 (    ) ( )    ( )  (   )( )

   ( )( )    ( )  
( )        

       

Here,  ( )( )  is a partial remainder of degree k and 

    ( )=c(x).  the iteration in above equation reduces 

 ( )( )   from degree k to k-1, since adding (coefficientwise 

XORing)  ( )( )  with polynomial 

 ( )  
( )       (    ∑    

 

   

   

)   
( )    

    
( )  

 ∑   
( )   

     

   

   

    
( )   ∑   

( )   (   ) 
 

   

     

  

Cancels its term with the order k. 

 

Step 4: 

The range of the irreducible polynomial w(x) may ease the 

modular reduction. Sparse irreducible polynomials having 

fewer nonzero terms are usually preferred for efficiency. A 

degree m irreducible polynomial over GF(2) which has r 

nonzero terms are in the form 

       +                            
Step 5: 

At this point, r > 1 should be an odd number like 3 and 5. 

The sparse polynomials with three or five nonzero are 

named as shown below are known as trinomial and 

pentanomial respectively: 

       + 1,                    
Step 6: 

Equally spaced irreducible polynomials are another option 

for efficient modular reduction. An equally spaced 

polynomial is represented in the form 

     (   )           
Where ns=m. 

Step7: The proposed polynomial interpolation technique 

in the elliptic curve ElGamal cryptosystem:  

To discuss the algorithm of the modified elliptic curve 

ElGamal cryptosystem is performed. It will be transmitted 

the set of encrypted points as two polynomials that are 

constructed using Lagrange polynomial interpolation 

technique. The first polynomial will be encrypted as well to 

ensure the additional steps in this modified algorithm is 

meaningful for implementation. Here the algorithm: 

 Alex selects her secret key, kA such that1≤kA<n. The 

gcd (kA, n) = 1. She publishes her public key as kAP 

 Benny selects kB such that1≤kB<n. The gcd (kB, n) = 1. 

He encrypts each points such that (xE, yE) = Pm + kB 

(kAP). 

 Benny makes polynomial A(x) based on the points (1, 

xE1), (2, xE2), (3, xE3), (I, xEI) where l indicates the 

number of encrypted points. Another polynomial B(x) 

is constructed based on the encrypted points (xE1, yE1), 

(xE2, yE2), (xE3, yE3),…, (xEI, yEI). Both polynomials are 

constructed using Lagrange polynomial interpolation.  



   International Journal of Computer Sciences and Engineering                                     Vol.7(2), Feb 2019, E-ISSN: 2347-2693 

  © 2019, IJCSE All Rights Reserved                                                                                                                                        328 

 Benny adds the x-coordinate of kB (kAP) to each of the 

coefficients modulo p of the polynomial A(x) while the 

coefficients of polynomial B(x) remain unchanged. The 

encrypted polynomial A(x) denoted as A’ (x). Benny 

transmits (kBP, A’(x), B(x)) to Alex.  

 Alex decrypts by multiplying her secret key such that 

kA(kBP). Polynomial A(x) is obtained from A’(x) by 

deducting each coefficients using the x coordinate of 

kA(kBP).  

 Alex achieves x-coordinate of encrypted points by 

substituting x = 1, 2,…,I into A(x). Then x coordinate 

of encrypted points obtained is substituting into B(x) to 

get the y-coordinate of encrypted points.  

 Alex obtains Pm such that Pm + kB (kAP) - kA (kBP) 

 

EXAMPLE: 

The exponent can be indicated by preceding it by the 

character E or e, as you can see in the example. Data must 

consist of two columns, x and y, to get the polynomial 

regression y=anx
n
+an-1x

n-1
+...+a2x

2
+a1x+a0.  

Number of Data Points: 3 

Polynomial Degree: 2 

 
 

Result:  y = 3.242424242·10
-1

 x
2
 - 3.66969697 x + 

13.34545455 

Residual Sum of Squares: rss = 0 

Coefficient of Determination: R
2
 = 1 

Chart  

 
Fig. 4 

 

Result 

Mode: normal x,y analysis 

Polynomial degree 2, 3 x, y data pairs. 

Correlation coefficient (r^2) = 0.9999999999999987 

Standard error = 3.162713435991701e-14 

Coefficient output form: mathematical function: 

f(x) =  1.3345454545454507e+001 * x^0 

     + -3.6696969696969535e+000 * x^1 

     +  3.2424242424242311e-001 * x^2 

 

Table 

x, y, % 

1.00, 10.00, 0.00 

1.55, 8.44, 5.00 

2.10, 7.07, 10.00 

2.65, 5.90, 15.00 

3.20, 4.92, 20.00 

3.75, 4.14, 25.00 

4.30, 3.56, 30.00 

4.85, 3.17, 35.00 

5.40, 2.98, 40.00 

5.95, 2.99, 45.00 

6.50, 3.19, 50.00 

7.05, 3.59, 55.00 

7.60, 4.18, 60.00 

8.15, 4.97, 65.00 

8.70, 5.96, 70.00 

9.25, 7.14, 75.00 

9.80, 8.52, 80.00 

10.35, 10.10, 85.00 

10.90, 11.87, 90.00 

11.45, 13.84, 95.00 

12.00, 16.00, 100.00 

 

 

III. EXPREMENTAL RESULTS 

 

In this experimental performance analysis, the given 

algorithms perform on the basis of the following parameters 

on local system at different input size. In this phase, it 

describes the experimental parameters, platforms and key 

management of experimental algorithms.  

Evaluation Parameters Performance of encryption algorithm 

is evaluated the following parameters.  

 Key Generation time: In Key Generation Time 

considered the time that a key generation produces a 

keys. 

 Encryption Time: The encryption time considered the 

time that an encryption technique generates a cipher 

text from a plain text.  

 Decryption Time: The decryption time considered the 

time that a decryption technique generates a plain text 

from a cipher text.  

Evaluation Platforms Performance of encryption algorithm 

is evaluated the following system configuration.  

 Software Specification: Experimental evaluation on 

Eclipse Jee Mars with Java Development Kit (JDK) 8 

Update 65, Matlab version 2014, Windows 8.1 Pro 64 

bit Operating System.  
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 Hardware Specification: The entire algorithms are 

tested on Intel Core i5 (2.40 GHz) (fourth generation 

processor with 4GB of RAM) with 1 TB-HDD. 

 

Experimental result for encryption algorithm ECC, ECDH, 

ECDSA, and ECPC are shown in table-1 that has been 

implemented many input file sizes: 889 bytes, 430 bytes, 

and 3159 bytes. In this experiment, key size of each 

algorithm that is used also mentioned in the below table. All 

the results are obtained with double time, for achieving 

higher accuracy hundred (100) examples of total execution 

time were taken afterward an average of hundred samples 

were taken for the comparative analysis and measurement 

among techniques and for the graph plotting as well. 

Encryption and Decryption time is evaluated in 

millisecond and the input size is taken in kilobytes. All the 

respective observation readings and graph are shown for all 

the analyzed algorithms on Cloud systems. 

 

Table 1: Performance Comparison of Different 

algorithms 

Algo

rithm 

Key 

Size

(bit) 

File 

Size(

bytes

) 

Key 

Generatio

n 

Time(Mill

iseconds) 

Encryptio

n 

Time(Mill

iseconds) 

Decryptio

n 

Time(Mill

iseconds) 

ECC 521 430 272 215 300 

889 303 237 352 

3159 345 288 381 

ECD

H 

384 430 224 183 257 

889 233 229 301 

3159 256 277 338 

ECD

SA 

256 430 185 124 212 

889 211 164 258 

3159 207 228 291 

ECP

C 

163 430 110 97 175 

889 175 134 210 

3159 197 198 271 

 

Key Generation Time: 

The results of the experimentation of key generation time 

for different node sizes, threshold values and key sizes for 

ECC, ECDSA, ECDH, and ECPC are completed in efficient 

manner. The key sizes of ECPC 163 are comparable with 

other algorithms. This originally appears that ECPC is 

storage efficient. From the experimental results, it is the key 

generation time that gradually increases for a given key size 

with increase in threshold‘t’ and node ‘n’. As the key size 

increases, the generation time also exponentially increases. 

The key generation time for all the four algorithms are 

illustrated in Figure 1. ECPC demonstrates desirable results 

compared to ECC. 

 

 
Figure 1: Comparison of Key Generation Time 

 

Encryption Time: 

Encryption throughput is capable to be determined by 

evaluating the total plaintext encrypted on total encryption 

time of various encryption techniques. Increased throughput 

results in decrease of power consumption. The encryption 

time for different size of files are illustrated in Table -1. The 

corresponding curves for the encryption time illustrate in 

figure 2. In encryption graph (figure 2), analyze that ECC 

curve consume time than other encryption techniques. 

ECDH, ECDSA curve is related to other method for 

performing small amount of load however, while the load is 

high then it obtain much time to encrypt data. ECPC curves 

show linearity while the data load increases. 

 

 
Figure 2: Comparison of Encryption Time 

 

Decryption Time: 
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Decryption throughput can be determined by evaluating the 

total cipher text decrypted over the decryption time. It is 

format from the figure which ECPC algorithm is superior of 

all other algorithms. ECDSA has benefit over others as it 

can be seen over 256 bit key size and ECC has low 

performance in terms of power consumption and throughput 

than others. Also, in decrypting the different document files 

ECPC algorithm is superior of all other algorithms in 

terms of throughput and power consumption. ECPC has 

performed double throughput as it is compared to others so 

that it takes less time to decrypt the document file. 

 

 
Figure 3: Comparison of Decryption Time 

 

IV. CONCLUSION 

 

Encryption and decryption algorithm keeps very significant 

contribution in security communication. This research paper 

emphasizes on the security of cloud user’s information 

confidentiality protection using enhanced ECC (elliptic 

curve cryptography) algorithm over Galois Field 𝐺𝐹 (2 ). 

The strong point of the proposed ECPC algorithm is based 

on the complexity of computing discrete logarithm in a 

large prime modulus, and the Galois Field allows 

mathematical operations to mix up data effectively and 

easily. The Galois Field permits mathematical operations to 

merge data easily and effectively. From this paper 

illustrates, the security performance comparison for 

broadly used encryption and decryption techniques such as 

ECC, ECDSA, ECDH, with our proposed ECPC 

algorithms. Depending on the text files used and the 

experimental result it has been decided that ECPC algorithm 

consumes least encryption time and ECC and other 

algorithms consume longest encryption time. Moreover, that 

least decryption time of ECPC algorithm is performed better 

than other algorithms. 
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