€
AX]JCSE International Journal of Computer Sciences and Engineering [pen Access

Research Paper Vol.-7, Issue-2, Feb 2019 E-ISSN: 2347-2693

Analyzing the Vulnerability in Open Source Software

Madanjit Singh™*, Munish Saini®, Manevpreet Kaur*

!Department of Computer Science, Guru Nanak Dev University, Amritsar 143005, India
“Department of Computer Engineering and Technology, Guru Nanak Dev University, Amritsar 143005, India

“Corresponding Author: mdnjtsingh@gmail.com, Tel.: +91-9501715960
DOI: https://doi.org/10.26438l/ijcse/v7i2.815 | Available online at: www.ijcseonline.org

Accepted: 8/Feb/2019, Published: 28/Feb/2019

Abstract— Secure code is one of the key parameters which must be taken care while software is being developed. Inspecting
the source code at the earlier stages is always a better approach. Inspection involves carefully examining the source code for
any flaws which may cause problems in the later stage of the software life cycle. The Vulnerability is a kind of weakness or
security flaws in code that can be exploited by an attacker to perform unauthorized actions. A vulnerable code will lead to
severe threats to the security of software. In this paper, we have investigated the source code of a well-known open source
software (OSS) projects written in C and C++ programming language and figure out the presence of vulnerability in the
software. The results also indicate that the vulnerabilities in the source code have shown an increasing trend with the lines of
code (LOC). It pointed to the fact that addition of new features or change request into the OSS project will cause an increase in
the vulnerability as well. It gives significant implication to the developers or project managers of OSS projects to not deny the
existence of security flaws in the software as the software evolves. The obtained results will also help the project managers and

developers to measure the state of software.

Keywords— Open Source Software, Software Quality, Hits, Flawfinder, Vulnerability, Code Scanning tools.

l. INTRODUCTION

The writing of a secure code is more concerned than simply
writing code to fulfil the purpose [1]. Every software
developer must keep care of writing a secure code for the sake
of security of particular software. Any loophole left behind in
source code will lead to serious consequences in later stages
or after implementation of the software. Most of these
software vulnerabilities can be traced back to a few mistakes
that programmers make over and over again [2]. In this case,
software inspection plays a vital role in assuring that any
security flaws should not present in the code.

Moreover, the cost of finding any security bug and fixing it in
the earlier stage is much lesser than as compared with the cost
of post-implementation process of software. ENISA
(European Union Agency for Network and Information
Security) defines vulnerability [3] as “The existence of a
weakness, design, or implementation error that can lead to an
unexpected, undesirable event compromising the security of
the software, computer system, network, application, or
protocol involved”. One of the major concerns of our research
is to find the vulnerability in the source code. The conducted
study has a high significance in terms of software quality. The
early detection of vulnerabilities or security flaws will help
the project managers and developers to measure the state of

© 2019, IJCSE All Rights Reserved

software. The existence of high vulnerability or security flaws
will degrade the quality of software and it may lead to the
major failure to the software, if not checked and removed
timely.

So, the purpose of this study is to examine the OSS projects
source code. It explores answers to the following research
questions:

1. Examining the existence of the vulnerability in the source
code of OSS.

2. Analyzing the trend in vulnerability with respect to the
addition of new features or change request into the OSS.

The rest of the paper is organized as follows. Section Il
presents the related work Section Ill gives details of the
vulnerability and its types Section IV explain the analysis
tool. Section V gives details on data collection and results
analysis. We have classified the results according to the level
of threats detected in the OSS. It also discusses and justifies
the interpretations. The last section concludes the paper.

1. RELATED WORK

The research goals are mainly aimed on how these flaws will
weaken the overall quality of the software. Although a lot of
work has been done in categorizing vulnerabilities with many
different taxonomies being made, each with its own relative

https://doi.org/10.26438/ijcse/v7i2.815

International Journal of Computer Sciences and Engineering

strengths and weaknesses, little work has been done in
categorizing the available countermeasures to some important
vulnerabilities [4], [5].

Yves Younan defines possible vulnerabilities in C and C++
applications that could lead to situations that allow for code
injection and describes the techniques generally used by
attackers to exploit them. A fairly large number of defence
techniques have been described in the literature, but still, the
satisfying results have not achieved yet. Few security flaws
can get detected automatically by the compiler, but still, a
majority of them are identified by the tedious auditing of the
source code [6]. To improve this situation, Fabian Yamaguchi
purposed a manual auditing mechanism named Chucky, a
method used to expose the missing checks in the source code.
This method proceeds by statically tainting source code and
identifying anomalous or missing conditions linked to
security critical objects. Similar to other methods for the
discovery of security flaws, Chucky cannot overcome the
inherent limitations of vulnerability identification.

In practice, checking tools such as Microsoft PREfast [7] or
PScan [8] are used to statically find vulnerabilities in source
code. These tools possess built-in information about correct
APl usage and common programming mistakes, which
severely limits the kind of vulnerabilities these tools can
detect. An alternative approach is taken by scanners such as
Splint, which allow code annotations to be supplied by
analysts. However, creating these annotations and rules
regarding API usage is both times consuming and challenging
as it requires an intimate understanding of both internal and
external APIs of a target program.

The software development is always expected to be flaws
free, but the existence of vulnerabilities will never be denied.
In this paper, we have analyzed the source code of the various
versions of MySQL-server to find the vulnerabilities and its
trends, as the software evolves. The obtained results have
shown that the number of vulnerabilities is always getting
affected with the increase in features or size of the OSS
project.

Il. METHODOLOGY

VULNERABILITY: The vulnerability is weakness or
security flaws in the code, which may results in exploited
your product to the attacker or for unauthorized access. It is
always good to find vulnerabilities from the source code at
an early stage. Otherwise, if it remains undetected it may
cause severe problems like degrading the quality of software,
security [9], software management issues and affecting the
evolution of software. The vulnerability may exist for both
static as well as dynamic code. But, our research is only
limited to static code analysis of C [10] and C++ [11]
projects. There are various kinds of vulnerabilities that might

© 2019, IJCSE All Rights Reserved

Vol.7(2), Feb 2019, E-ISSN: 2347-2693

exist in the source code of C/C++ programs. Few of them are
as follows:

(i) Stack-based Buffer Overflows Vulnerability: This type
of vulnerability occurs when large sized data are assigned or
copied to fixed length buffers that are situated on the program
without any consideration about bounds checking. This
vulnerability is known to be of high risk, as their utilization
would mostly permit alternate code execution or Denial of
Service. It allows the attacker to take direct control over
instruction pointer and may execute their arbitrary code or
may alter the normal flow of the program. Consider a scenario
below:

#include<stdio.h>

int main(int argc, char *argv[])

{
char buff[20]; // Declare a String of size 20.
printf(“"copying into buffer");
strepy(buff,argv[1]); /* Take command line argument and
put into fixed sized buff string.*/
return O;

7x|BlR[a]s] E=Ez]

Figure 1. OllyDbg debugger screenshot [12,13]

Since the program is taking command line arguments, a large
sequence of characters such as ‘A’, can be supplied in the
argument field as shown in figure 1. While opening this
executable file with the supplied arguments and continuing
execution the following results are obtained.

Fegistex= [FFLI =

ST sT=T=T=T=T=T=]
ECH OoZzaFE<
ED= 99414141
EE= TrEFFDDoo=
ESsF 8al=FEEC RASCII
EEF 41414141
E=ST OoaaaRz==
ECI OoOE@aoEs
=—IF 34143141431
= o= E= a S=bitrt GBI FFFFFFEFFF2
B2 . X C= g1 E=b it BLIEFFEEFEE2
Aa o == =3 . SE6 it @i EEFEFEFEEEE)
= i O= Goz= 325Lt Gr:FFFﬁFFC]
= &2 F= Zb it FFFDFOO@(FFF)
5 2 [EE= = ==] = HULL
o = LastExryx ERROFR_SUCCESS ([S0OoO@@sal
EFL aaolaz4s (Mo .HE.E.EBEE. H=S. FPFE. GE. LEX
=STE omptw —UNHORM EBEDOEC S1&E5E5E01E64 OO0ZEGOSES T
ST1 =emrmptw S.93
ETE emptw .8
STS semptw B.9
=ST3 sempts H.=
=ETES emptu @.3
ETE =smptu =33
=TTV =smpt= @.3
= =2 1 a9 E S P U O 2 DO
F=ST Doag Cond = Erxcxr O @ O o g o .9
FCuw =7F Freo HERR.S= Mask 1 1 1 1 1

Figure 2. Registers view after supplied arguments [12, 13]

https://dl.acm.org/author_page.cfm?id=81488641687&coll=DL&dl=ACM&trk=0

International Journal of Computer Sciences and Engineering

As shown in figure 2 the debugger register window, the
Extended Instruction Pointer(EIP) that used to points to the
next instruction to be executed, contains the value
‘41414141°. ‘41 is a hexadecimal representation of ‘A’ and
so the string ‘AAAA’ gets translated to 41414141. This
clearly signifies how the data which is being inputted by the
user can be used to overwrite the instruction pointer with
values inputted by the user and thus can control over the
execution of the program. The functions like strcat(), strcpy(),
gets() and many more that do not check the length of source
strings and copy data blindly into fixed length buffers must be
reviewed.

(if) Heap-based buffer Overflows Vulnerability: Dynamic
allocated data and global variables are stored using heap
memory by providing them dynamic space. Each chunk of
memory in heap comprises of boundary tags that contain
memory management information. Just like the case with
stack-based arrays, arrays on the heap can be over flown as
well. Heap use to grow upwards in memory and stack grows
in descending way. In any case, no return address (from
where it is being called or from where it should proceed with
its execution after the stack task) is put away onto store so
attacker utilized distinctive strategy to pick up authority over
the system. One technique for exploiting a buffer overflow
situated on the heap is by overwriting heap-stored function
pointers that are situated after the buffer that is being over
flown. Function pointers are not constantly accessible
however, so different methods for misusing heap-based
overflows are by overwriting a heap-allocated object’s virtual
function pointer and directing it toward an attacker created
virtual function table. At the point when the application
endeavors to execute one of these virtual techniques, it will
execute the code to which the attacker-controlled pointer
refers.

Dynamic memory allocators: Overwriting the memory
management information which is generally associated with a
dynamically allocated block is more general way of
attempting to exploit a heap-based overflow rather than using
function pointers or virtual function pointers as they are not
always available when an attacker encounters a heap-based
buffer overflow The ‘dlmalloc’ (dynamic memory allocator)
library is a run-time memory allocator that isolates the heap
memory available to its into contiguous chunks, that change
size as the various allocation and free routines are called. An
invariant is that a free chunk never borders another free chunk
when one of these routines has finished: if two free lumps had
bordered, they would have been consolidated into a bigger
free chunk. These free chunks are kept in a doubly linked list
of free chunks, arranged by size. At the point when the
memory allocator at a later time asks for a chunk of the same
size from one of these free chunks, the first chunk in the list
will be expelled from the list and will be accessible for use in
the program (for example it will transform into an allotted
chunk).

© 2019, IJCSE All Rights Reserved

Vol.7(2), Feb 2019, E-ISSN: 2347-2693

(iii) Dangling pointer references: A pointer to a memory
area could allude to a memory area that has been de-allocated
either unequivocally by the developer (for example by calling
free) or by code produced by the compiler (for example a
function epilogue, where the stack frame of the function is
expelled from the stack). Dereferencing of this pointer is
commonly unchecked in a C compiler, causing the dangling
pointer reference to wind up an issue. In ordinary cases, this
would make the program crash or show uncontrolled conduct
as the value could have been changed at wherever in the
program. In any case, double free vulnerabilities are a
particular variant of the dangling pointer reference issue that
could prompt misuse. A double free vulnerability occurs
when previously free memory is de-allocated a second time.
This could again enable an assailant to overwrite

discretionary memory areas.

Lower Addresses

chunk1 chunk2 chunk3

Size of previous Size of previous
chunk chunk

Size of previous
chunk

Size of chunk Size of chunk

Size of chunk

— Forward Pointer
Forward Pointer d Forward Pointer

Backward Pointer Backward Pointer — Backward Pointer

Old User Data Old User Data

Old User
Data

Higher Addresses

Figure 3. List of free chunks [14]

Figure 3 depicts what the list of free chunks of memory will
look like when using the dimalloc memory allocator. Chunk1
is bigger than the chunk2 and chunk3, meaning that chunk2 is
the first chunk in the list of free chunks of its size. When a
new chunk of the same size as chunk2 is freed it is placed at
the beginning of this list of chunks of the same size by
modifying the backward pointer of chunkl and the forward
pointer of chunk2. When a chunk is freed twice it will
overwrite the forward and backward pointers and could allow
an attacker to overwrite arbitrary memory locations at some
later point in the program.

(iv) Format String Vulnerability: This vulnerability
specifies how to test for format string attacks. These attacks
can be used to crash a program or to execute harmful code
[15]. The problem stems from the use of unfiltered user input
as the format string parameter in certain C functions that
perform formatting, such as printf(). The various C-Style
languages provision formatting of output by means of
functions like printf(), fprintf() etc. The formatting is
governed by a parameter to these functions termed as a format
type specifier, typically %s, %c etc. The vulnerability arises

10

International Journal of Computer Sciences and Engineering

when format functions are called with inadequate parameters
validation and user controlled data.

A simple example would be printf(argv[1]). In this case, the
type specifier has not been explicitly declared, allowing a user
to pass characters such as %s, %n, %x to the application by
means of command line argument (argv[1]). This situation
tends to become precarious since a user who can supply
format specifiers can perform the following malicious actions:
Enumerate Process Stack: This allows an adversary to view
stack organization of the vulnerable process by supplying
format strings, such as %x(print the hex value of an integer)
or %p, which can lead to leakage of sensitive information. It
can also be used to extract canary values when the application
is protected with a stack protection mechanism. Coupled with
a stack overflow, this information can be used to bypass the
stack protector.

Control Execution Flow: This vulnerability can also facilitate
arbitrary code execution since it allows writing 4 bytes of data
to an address supplied by the adversary. The specifier %n
comes handy for overwriting various function pointers in
memory with the address of the malicious payload. When
these overwritten function pointers get called, execution
passes to the malicious code.

Denial of Service: If the adversary is not in a position to
supply malicious code for execution, the wvulnerable
application can be crashed by supplying a sequence of %x
followed by %n. Format string vulnerabilities manifest
mainly in web servers, application servers, or web
applications utilizing C/C++ based code or CGI scripts
written in C. In most of these cases, an error reporting or
logging function like syslog () has been called insecurely.
When testing CGI scripts for the format string vulnerabilities,
the input parameters can be manipulated to include %x or %n
type specifiers. For example, the legitimate request is like:
http://hostname/cgi-bin/query.cgi?name=john&code=45765
can be altered to

http://hostname/cgi-
bin/query.cgi?name=john%x.%x.%x&code=45765%x.%Xx

If a format string vulnerability exists in the routine processing
this request, the tester will be able to see stack data being
printed out to the browser.

If code is unavailable, the process of reviewing assembly
fragments (also known as reverse engineering binaries) would
yield substantial information about format string bugs. Take
the instance of code below:

int main(int argc, char **argv)

{

printf("The string entered is\n");

printf(“%s”,argv[1]);

return 0;}

© 2019, IJCSE All Rights Reserved

Vol.7(2), Feb 2019, E-ISSN: 2347-2693

text 88481010 arg_4 = dword ptr HCh
L text:po481010
* text:00401010 push ebp
* text:00401011 moy ebp, esp
* text:804810913 sub esp, 48h
° text:80481816 push ebx
* text:@pu1017 push esi
* text:00401018 push edi
* text:o0401019 lea edi, [ebp+var_u0]
* text:80481091C mov ecx, 16h
* text:80481821 mov eax, BCCCCCCCCh
* text:80401026 rep stosd
* text:00401028 push offset ??_CR OBHEHGKHAThe?5string?Sentered?Si
* text:0040102D call printf
* text:804610932 add esp, 4
° text:80481035 moy eax, [ebprarg_4]
* text:80401038 moy ecx, [eax+h]
° text:0046103B push BCX
* text:g049103C “_push__offset 77_0Q o2pILL@TfersTSARE =
* text:BB4E1A call — prin

7 C@_020ILL@?3CFS7$ARR db 25h ; %

dix]

db (]

Figure 4. IDA view of Stack[12,16]

When the disassembly is examined using IDA Pro[16] in
Figure 4, the address of a format type specifier being pushed
on the stack is clearly visible before a call to printf is made.
On the other hand, when the same code is compiled without
“%s” as an argument, the variation in assembly is apparent.
As seen below in figure 5, there is no offset being pushed on
the stack before calling printf.

E DA View-A CEK
L arg_h = dword ptr 6Ch ~
f push ebp
® noy ebp, esp
sub esp, 40h
push ebx
push esi
push edi
lea edi, [ebptvar_48]
moy ecx, 10h
nov eax, BCCCCCCCCh
rep stosd
push offset ?7_C@_BBHEHGKHEThe?Sstring?Sentered?5is?624ARR ; “Th
call printf
add esp
nou eax, [ebp+ari-
nov ecx, [eax+h]
push ecx
call printf
atd esp
Xor eax, eax
pop edi
pop esi B
$ >

Figure 5. IDA view without using %s as an argument [12,16]

The functions that are primarily responsible for format string
vulnerabilities are ones that treat format specifiers as optional.
Therefore when manually reviewing code, emphasis can be
given to functions such as: printf, fprintf, sprintf, snprintf,
vfprintf, vprintf, vsprintf, vsnprintf. There can be several
formatting functions that are specific to the development
platform. These functions should also be reviewed for the
absence of format strings once their argument usage has been
understood.

(v) Integer Errors: Integer errors [17] are not exploitable
vulnerabilities by themselves, but the exploitation of these
errors could lead to a situation where the program becomes
vulnerable to one of the previously described vulnerabilities.

11

International Journal of Computer Sciences and Engineering

Integer overflows and integer signedness errors are two kinds
of integer errors that lead to exploitable vulnerabilities. An
integer overflow occurs when an integer grows larger than its
capacity or the maximum value it can hold. Integer
signedness errors on the other side are minuter: A simply
defined integer is assumed to be signed integer unless
explicitly declared unsigned. When the programmer later
passes this integer as an argument to a function expecting an
unsigned value, an implicit cast will occur. This can lead to a
situation where a negative argument passes a maximum size
test but is used as a large unsigned value afterward, possibly
causing a buffer or heap overflow if used in conjunction with
a copy operation (e.g. memcpy3 expects an unsigned integer
as size argument and when passed a negative signed integer, it
will assume this is a large unsigned value).

IV. TOOLSFORVULNERABILITY SCANNING

There are numerous static code analyzers [18] available over
the web for e.g ITS4[19], Flawinder[20], VisualCodeGrepper
[21] etc. The all have some significance to find security issues
in the source code. We have chosen an open source tool
named as ‘Flawfinder’. The code for this tool is written in
python and is executed over python 2.7 or higher. This tool is
free to use and easily available over the web. The main reason
for using this tool is its simplicity as well as its performance
to find out the vulnerable code and then categorize them into
various levels based on the severity of their risk. This tool
works as a lexical analyzer and finds out the functions or
methods that might be exploited for risk.

The vulnerability scanning tool Flawfinder works on some
well-known problems, such as buffer overflow which is
mostly due to use of functions like strcpy(), gets(), strcat(),
scanf() and sprint() family. The format string problems, race
conditions, potential shell metacharacter dangers, and many
other problems are also gets checked by this tool. This tool
works by using built-in database of C and C++ functions.
This tool takes the source code text and matches the text with
function names mentioned above. The tool ignores all the text
which is inside the strings or in comments. Flawfinder also
uses the gettext to pass the constant strings and thus reduce
the number of false hits. This tool produces the result as a list
of “hits”(potential security flaws), sorted by risk type. Hits
mean here the number of times security flaw has been found,
it works as counter here, which counts the number of flaws in
sorted order. The level of the risk not only depends on the
function but also on the values of the parameters in that
function. Here examples of strings can be taken where
constant strings are often less risky than fully variable string
in many contexts. The only drawback of this tool is that it
does not understand the semantics of the code, it just do
simple text pattern matching. But still it is a very helpful in
finding wvulnerability and help developer to remove the
vulnerabilities.

© 2019, IJCSE All Rights Reserved

Vol.7(2), Feb 2019, E-ISSN: 2347-2693

V. RESULTS AND DISCUSSION

The development repositories of various versions (see Table
1) of OSS project (MySQL) are obtained from GIT Hub [22].
A repository is downloaded by making the clone of the
original repository onto the local machine by using GIT Bash.
The vulnerability scanner tool (FlawFinder) is used to load all
the source code files of the OSS project. Finally, the various
security flaws (Hits or vulnerabilities) are obtained by
analyzing the source code of the OSS project. We have
considered the different versions of the MySQL project (see
Table 1). The Flawfinder tool is utilized to inspect the source
code of every one of these versions, to discover security flaws
in the code. After getting the results, we have arranged them
in order as indicated by their risk level as appeared in Table 1
(as0,1,2,3... ... L0+, 1+... ., 5+). The hits of type constant
character, constant string, and the constant maximum length
in the source are placed in level 1 of the hits list classification
as they are not of high risk or rarely cause the issue in the
execution process of any software. However, the issues like
format string parameter, unchecked buffer overflow while
concatenation to the destination, confound in the real and
formal parameter's format(data types) are viewed as of great
threat, so they are placed in a more elevated amount of risk
category(i.e. level4 and level 5). Level 2 and 3 are viewed as
moderate sort of risks. The security flaws of type: unchecked
buffer overflow while copying a value from source to
destination, or functions which do not check buffer overflow
condition or no protection against internal buffer overflow are
put in these classes. In our analysis, there are a lot of hits are
experienced in every release of the product, which points to
the presence of the vulnerability in the code of OSS (see
Table 1). Level 1 of hits gradually increases over every
version released; whereas level 2 increases at fast rate because
of ignorance of coding guidelines. Level 4 and 5 are of higher
risk, the increment in the hits value mirrors a risk to the
software.

In Table 2(see below), we analyzed the different parameters
(Total lines in code, Physical SLOC, Time Duration, Lines
scanned every second and Hits/KSLOC) of the OSS.
Hits/KSLOC figures the normal number of lines after which
the hit of a specific type will happen. Lines analyzed connotes
the total number of lines present in one version of the OSS
which includes the real source code, preprocess directives,
constant definitions and comments, though the values in the
physical source lines of code represent the real lines of code
excluding comments or other documentation. Time span
speaks to the time taken by the scanner to examine the OSS in
addition to lines scanned every second. From Table2 we
collected values for the total number of hits and the total
number of physical lines present in every version of the
chosen OSS. These two parameters will additionally be
utilized in the depiction of our research aim.

12

International Journal of Computer Sciences and Engineering

Vol.7(2), Feb 2019, E-ISSN: 2347-2693

Table 1: Hits Classification into different levels

Hits@level
version 1 2 3 4 5 0+ 1+ 2+ 3+ 4+ | 5+
mysql-server-8.0.0 3659 9686 360 | 1337 |81 15118 | 15118 11646 | 1778 1418 | 81
mysql-server-8.0.1 3729 9571 359 | 1316 | 86 15061 | 15061 11332 | 1761 1402 | 86
mysql-server-8.0.2 3888 | 9950 369 | 1370 | 86 15663 | 15663 11775 | 1825 1456 | 86
mysql-server-8.0.3 3922 | 10117 304 | 1404 | 86 15914 | 15914 11992 | 1875 1490 | 86
mysql-server-8.0.4 4066 10704 417 | 1457 | 89 16733 | 16733 12667 | 1963 1546 | 89
mysql-server-8.0.11 3857 10697 402 | 1691 | 84 16731 | 16731 12874 | 2177 1775 | 84
mysql-server-8.0.12 3765 10608 401 | 1694 | 84 16552 | 16552 12787 | 2179 1778 | 84
mysql-server-8.0.13 3956 10730 439 | 1762 | 103 | 16990 | 16990 13034 | 2304 1865 | 103
Table 2: Various Statistics of the code
Hits/KSLOC
versio 0+ 1+ 2+ 3+ 4+ 5+ Hits | Lines Physical Time Lines
n analyze | source Duratio | per
d lines of n Secon
code(SLO | (seconds | d
C))
8.0.0 7.0004 | 7.0004 | 5.3084 | 0.82331 | 0.65661 | 0.037537 | 1511 | 308332 | 2159566 289.05 10667
8 8 7 4 3 5 8 7
8.0.1 5.8869 | 5.8869 | 4.4293 | 0.68832 | 0.54800 | 0.033615 | 1506 | 352902 | 2558370 334.58 10548
5 5 8 9 5 2 1 4
8.0.2 5.9637 | 5.9637 | 4.4834 | 0.69488 | 0.55438 | 0.032745 | 1566 | 363926 | 2626348 367.27 9909
9 9 1 1 2 1 3 6
8.0.3 59524 | 5.9524 | 4.4854 | 0.70132 | 0.55731 | 0.032167 | 1591 | 371801 | 2673530 442.23 8407
3 3 6 6 2 4 5
8.0.4 55440 | 5.5440 | 4.1969 | 0.65039 | 0.51223 | 0.029488 | 1673 | 433954 | 3018178 423.30 10252
7 7 2 3 6
8.0.11 | 59855 | 5.9855 | 4.6057 | 0.77882 | 0.63500 | 0.030051 | 1673 | 409248 | 2795235 477.34 8574
4 4 5 9 1 1 3
8.0.12 | 59822 | 5.9822 | 4.6215 | 0.78753 | 0.64260 | 0.030359 | 1655 | 405445 | 2766849 438.75 9241
6 6 8 8 4 2 7
8.0.13 | 5.8124 | 5.8124 | 4.4590 | 0.78822 | 0.63803 | 0.035237 | 1699 | 430849 | 2923023 424.41 10152
8 8 8 5 8 5 0 6

© 2019, IJCSE All Rights Reserved

13

International Journal of Computer Sciences and Engineering

Physical source lines of
code(SLOC)

3500000
3000000
2500000 -
2000000 -

1500000 -
1000000 -
500000 -

0 -

M Physical source lines of code(SLOC)

Fig 6.1: Physical source lines of code

Fig 6.1 represents the number of physical lines present in each
version of the code. The total physical source lines of code
vary from 21 million to 30 million. Figure 6.2 represents the
graphical view of the number of hits in all the software
releases. As we can see the size of the code gets increased
with each release of the software because of the new features
get added with each release so as the number of hits.

The Table3 below represents the regression equation, from
which we can conclude the rate at which the hits of each level
will get increased in the next release of the product. The
regression analysis is utilized to discover the trend and
equation of the regression for hits, (level insightful) in the
ongoing releases of the OSS. In Table3 we demonstrate the
outcomes after the regression analysis. From the regression
equation of each level, we have observed that all the
regression have a positive slope, which implies the increasing
trends in all hit level.

Table 3: Trend analysis of hit level for all the version of
MySQL

Level of Hits Regression Equation Trend

Level 1 y =27.5x+ 37315 Increasing
Level 2 y =182.39x +9437.1 Increasing
Level 3 y =11.607x + 329.14 Increasing
Level 4 y =70.012x + 1188.8 Increasing
Level 5 y =1.6786x + 79.821 Increasing

© 2019, IJCSE All Rights Reserved

Vol.7(2), Feb 2019, E-ISSN: 2347-2693

Hits
17500
17000
16500 l/,/ —
16000 "____,
15500
15000 S
14500
14000 T T T T T T T 1
XYY
BT @ @ @ @ O O 0
NN N T A SN
*“J *‘9 \\“) *‘7 \\“) *(70\ *(_)Qs A(_)Os
& & & &Y
e Hits

Fig 6.2: Total hits present in each version

We also process the relationship by utilizing Karl Pearson
technique for correlation between the physical source lines of
code and all the hits experienced in all previously mentioned
version of the OSS. The estimation of R (Karl Pearson
Coefficient unit) is 0.8608. The value is nearer to the 1, which
connotes that there is a strong positive relationship. This
outcome suggests that higher the source lines of code there
are equivalent odds of getting higher number of hits.

VI. CONCLUSION AND FUTURE SCOPE

Quality software must be sound in both: its purpose and its
security. Vulnerabilities present in the code have an adverse
impact on the quality of the software so these should be
removed. Here in this research work, we took a well-known
OSS and check it against a series of vulnerabilities and found
out that there are numbers of flaws present in the code. Our
main aim in this paper is to found the vulnerability in the
source code and afterward notice the relationship between the
size of the software and the number of flaws. The results
show that there is a strong relationship present between the
size of the software and number of security flaws. So, the
main job for developers of the software should not be just to
adding new features to the existing product but also to
improve the quality of the software by writing code which
should be secure against vulnerabilities, which are mentioned
in this paper. Our future work will be one stage ahead starting
here, which is to apply a similar technique for vulnerability
scanning on all sizes of the OSS and will endeavor to
establish out that the relationship between the size of product
and number of hits will stay same for all sort of sizes of OSS

14

International Journal of Computer Sciences and Engineering

or not, and furthermore we need to add some commitment to
expel the vulnerable code without influencing the actual
working of the code. As we have mentioned earlier a
vulnerable code will always remain a threat for the developer.
There is a lot of work had already done around there, yet the
vast majority of the work had been performed on the web
application or dynamic code. Our point will be to decrease
workload of the dynamic scanner by making the code
vulnerability free at the static end.

REFERENCES

[1] ‘Younan, Y., W. Joosen, and F. Piessens. "Code Injection in C and
C++: A Survey of Vulnerabilities and Countermeasures (Tech.
Rep. No. CW 386)." Leuven, Belgium: Departement
Computerwetenschappen, Katholieke Universiteit Leuven (2004)

[2] Piessens, Frank. "A taxonomy of causes of software vulnerabilities
in internet software." Supplementary Proceedings of the 13th
International Symposium on Software Reliability Engineering.
2002.

[3] “Glossary.” Risk Management & Information
Management ~ Systems - ENISA, 20 Jan.
Www.enisa.europa.eu/topics/threat-risk-management/risk-
management/current-risk/risk-management-
inventory/glossary#G52.

[4] Abbott, Robert P., et al. Security analysis and enhancements of
computer operating systems. No. NBSIR-76-1041. NATIONAL
BUREAU OF STANDARDS WASHINGTONDC INST FOR
COMPUTER SCIENCES AND TECHNOLOGY, 1976.

[5] Aslam, Taimur. "A taxonomy of security faults in the unix
operating system." Master's thesis, Purdue University 199.5
(1995).

[6] ‘Yamaguchi, Fabian, et al. "Chucky: Exposing missing checks in
source code for vulnerability discovery." Proceedings of the 2013
ACM SIGSAC conference on Computer & communications
security. ACM, 2013.

[7]1 Ball, Thomas, et al. "Thorough static analysis of device drivers."
ACM SIGOPS Operating Systems Review 40.4 (2006): 73-85.

[8] DeKok, Alan. "PScan: A limited problem scanner for C source
files." (2013).

[9] Evans, David, and David Larochelle. "Improving security using
extensible lightweight static analysis." IEEE software 1 (2002):
42-51.

[10] Kernighan, Brian W., and M. Dennis.
Programming Language." (1988).

[11] Stroustrup, Bjarne. The C++ programming language. Pearson
Education India, 2000.

[12] HeapOverflow:https://www.owasp.org/index.php/Testing_for_Hea
p_Overflow,StackOverflow:https://www.owasp.org/index.php/Tes
ting_for_Stack_Overflow,FormatString:https://www.owasp.org/in
dex.php/Testing_for_Format_String .

[13] Conover, Matt. "w0OwO0O0 on heap overflows." (1999).

[14] Intel Corporation. 1A-32 Intel Architecture Software Developer’s
Manual VVolume 1: Basic Architecture, 2001. Order Nr 245470.

[15] scut. Exploiting format string vulnerabilities. http://www.team-
teso.net/articles/formatstring/, 2001

[16] IDA PRO, https://www.hex-rays.com/products/ida/overview.html

[17] Brumley, David, et al. "RICH: Automatically protecting against
integer-based vulnerabilities." Department of Electrical and
Computing Engineering (2007): 28.

[18] Zzitser, Misha, Richard Lippmann, and Tim Leek. "Testing static
analysis tools using exploitable buffer overflows from open source

Security
2016,

"Ritchie.

The C

© 2019, IJCSE All Rights Reserved

Vol.7(2), Feb 2019, E-ISSN: 2347-2693

code." ACM SIGSOFT Software Engineering Notes. Vol. 29. No.
6. ACM, 2004.

[19] Viega, John, et al. "ITS4: A static vulnerability scanner for C and
C++ code." Computer Security Applications, 2000. ACSAC'00.
16th Annual Conference. IEEE, 2000.

[20] Flawfindetr: https://dwheeler.com/flawfinder/flawfinder.pdf and A
book entitled as “Secure Programming HOWTO” by David A.
Wheeler.

[21] Fatima, Anum, Shazia Bibi, and Rida Hanif. "Comparative study
on static code analysis tools for C/C++." Applied Sciences and
Technology (IBCAST), 2018 15th International Bhurban
Conference on. IEEE, 2018.

[22] GIT HUB, https://github.com/mysgl/mysql-server.

Authors Profile

Madanjit Singh completed Bachelor of
Computer Applications from Punjab
Technical University, Jalandhar, Punjab,
India in 2012 and Master of Computer
Applications from Guru Nanak Dev
University, Amritsar, Punjab, India in year
2015. He is currently working as Assistant Professor in
Department of Computer Science, Guru Nanak Dev
University, Amritsar, Punjab, India since 2015. His main
research work focuses on Software Security, Open Source
Software and Natural Language Processing. He has 3 years
of teaching experience.

Munish Saini works as an Assistant Professor
in Department of Computer Engineering and
Technology, Guru Nanak Dev University,
Amritsar. He had completed his P.hd in 2018.
His main research work focuses on Software
Engineering, Open Source Software. He has 2 years of
teaching experience and 4 years of Research Experience.

Manevpreet kaur completed her Master of —
Computer Applications from Guru Nanak
Dev University, Amritsar, Punjab, India in
year 2015. She is currently working as
Assistant Professor in Department of s
Computer Science, Guru Nanak Dev University, Amritsar,
Punjab, India since 2015. Her main research work focuses on
Software Security and Open Source Software. He has 3 years
of teaching experience.

15

https://www.owasp.org/index.php/Testing_for_Heap_Overflow
https://www.owasp.org/index.php/Testing_for_Heap_Overflow
https://www.owasp.org/index.php/Testing_for_Stack_Overflow
https://www.owasp.org/index.php/Testing_for_Stack_Overflow

