

 © 2019, IJCSE All Rights Reserved 8

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.-7, Issue-2, Feb 2019 E-ISSN: 2347-2693

Analyzing the Vulnerability in Open Source Software

Madanjit Singh

1
*, Munish Saini

2
, Manevpreet Kaur

1

1
Department of Computer Science, Guru Nanak Dev University, Amritsar 143005, India

2
Department of Computer Engineering and Technology, Guru Nanak Dev University, Amritsar 143005, India

*Corresponding Author: mdnjtsingh@gmail.com, Tel.: +91-9501715960

 DOI: https://doi.org/10.26438/ijcse/v7i2.815 | Available online at: www.ijcseonline.org

Accepted: 8/Feb/2019, Published: 28/Feb/2019

Abstract— Secure code is one of the key parameters which must be taken care while software is being developed. Inspecting

the source code at the earlier stages is always a better approach. Inspection involves carefully examining the source code for

any flaws which may cause problems in the later stage of the software life cycle. The Vulnerability is a kind of weakness or

security flaws in code that can be exploited by an attacker to perform unauthorized actions. A vulnerable code will lead to

severe threats to the security of software. In this paper, we have investigated the source code of a well-known open source

software (OSS) projects written in C and C++ programming language and figure out the presence of vulnerability in the

software. The results also indicate that the vulnerabilities in the source code have shown an increasing trend with the lines of

code (LOC). It pointed to the fact that addition of new features or change request into the OSS project will cause an increase in

the vulnerability as well. It gives significant implication to the developers or project managers of OSS projects to not deny the

existence of security flaws in the software as the software evolves. The obtained results will also help the project managers and

developers to measure the state of software.

Keywords— Open Source Software, Software Quality, Hits, Flawfinder, Vulnerability, Code Scanning tools.

I. INTRODUCTION

The writing of a secure code is more concerned than simply

writing code to fulfil the purpose [1]. Every software

developer must keep care of writing a secure code for the sake

of security of particular software. Any loophole left behind in

source code will lead to serious consequences in later stages

or after implementation of the software. Most of these

software vulnerabilities can be traced back to a few mistakes

that programmers make over and over again [2]. In this case,

software inspection plays a vital role in assuring that any

security flaws should not present in the code.

Moreover, the cost of finding any security bug and fixing it in

the earlier stage is much lesser than as compared with the cost

of post-implementation process of software. ENISA

(European Union Agency for Network and Information

Security) defines vulnerability [3] as “The existence of a

weakness, design, or implementation error that can lead to an

unexpected, undesirable event compromising the security of

the software, computer system, network, application, or

protocol involved”. One of the major concerns of our research

is to find the vulnerability in the source code. The conducted

study has a high significance in terms of software quality. The

early detection of vulnerabilities or security flaws will help

the project managers and developers to measure the state of

software. The existence of high vulnerability or security flaws

will degrade the quality of software and it may lead to the

major failure to the software, if not checked and removed

timely.

So, the purpose of this study is to examine the OSS projects

source code. It explores answers to the following research

questions:

1. Examining the existence of the vulnerability in the source

code of OSS.

2. Analyzing the trend in vulnerability with respect to the

addition of new features or change request into the OSS.

The rest of the paper is organized as follows. Section II

presents the related work Section III gives details of the

vulnerability and its types Section IV explain the analysis

tool. Section V gives details on data collection and results

analysis. We have classified the results according to the level

of threats detected in the OSS. It also discusses and justifies

the interpretations. The last section concludes the paper.

II. RELATED WORK

The research goals are mainly aimed on how these flaws will

weaken the overall quality of the software. Although a lot of

work has been done in categorizing vulnerabilities with many

different taxonomies being made, each with its own relative

https://doi.org/10.26438/ijcse/v7i2.815

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 9

strengths and weaknesses, little work has been done in

categorizing the available countermeasures to some important

vulnerabilities [4], [5].

Yves Younan defines possible vulnerabilities in C and C++

applications that could lead to situations that allow for code

injection and describes the techniques generally used by

attackers to exploit them. A fairly large number of defence

techniques have been described in the literature, but still, the

satisfying results have not achieved yet. Few security flaws

can get detected automatically by the compiler, but still, a

majority of them are identified by the tedious auditing of the

source code [6]. To improve this situation, Fabian Yamaguchi

purposed a manual auditing mechanism named Chucky, a

method used to expose the missing checks in the source code.

This method proceeds by statically tainting source code and

identifying anomalous or missing conditions linked to

security critical objects. Similar to other methods for the

discovery of security flaws, Chucky cannot overcome the

inherent limitations of vulnerability identification.

In practice, checking tools such as Microsoft PREfast [7] or

PScan [8] are used to statically find vulnerabilities in source

code. These tools possess built-in information about correct

API usage and common programming mistakes, which

severely limits the kind of vulnerabilities these tools can

detect. An alternative approach is taken by scanners such as

Splint, which allow code annotations to be supplied by

analysts. However, creating these annotations and rules

regarding API usage is both times consuming and challenging

as it requires an intimate understanding of both internal and

external APIs of a target program.

The software development is always expected to be flaws

free, but the existence of vulnerabilities will never be denied.

In this paper, we have analyzed the source code of the various

versions of MySQL-server to find the vulnerabilities and its

trends, as the software evolves. The obtained results have

shown that the number of vulnerabilities is always getting

affected with the increase in features or size of the OSS

project.

III. METHODOLOGY

VULNERABILITY: The vulnerability is weakness or

security flaws in the code, which may results in exploited

your product to the attacker or for unauthorized access. It is

always good to find vulnerabilities from the source code at

an early stage. Otherwise, if it remains undetected it may

cause severe problems like degrading the quality of software,

security [9], software management issues and affecting the

evolution of software. The vulnerability may exist for both

static as well as dynamic code. But, our research is only

limited to static code analysis of C [10] and C++ [11]

projects. There are various kinds of vulnerabilities that might

exist in the source code of C/C++ programs. Few of them are

as follows:

(i) Stack-based Buffer Overflows Vulnerability: This type

of vulnerability occurs when large sized data are assigned or

copied to fixed length buffers that are situated on the program

without any consideration about bounds checking. This

vulnerability is known to be of high risk, as their utilization

would mostly permit alternate code execution or Denial of

Service. It allows the attacker to take direct control over

instruction pointer and may execute their arbitrary code or

may alter the normal flow of the program. Consider a scenario

below:

#include<stdio.h>

int main(int argc, char *argv[])

{

 char buff[20]; // Declare a String of size 20.

 printf("copying into buffer");

 strcpy(buff,argv[1]); /* Take command line argument and

put into fixed sized buff string.*/

return 0;

}

Figure 1. OllyDbg debugger screenshot [12,13]

Since the program is taking command line arguments, a large

sequence of characters such as ‘A’, can be supplied in the

argument field as shown in figure 1. While opening this

executable file with the supplied arguments and continuing

execution the following results are obtained.

Figure 2. Registers view after supplied arguments [12, 13]

https://dl.acm.org/author_page.cfm?id=81488641687&coll=DL&dl=ACM&trk=0

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 10

As shown in figure 2 the debugger register window, the

Extended Instruction Pointer(EIP) that used to points to the

next instruction to be executed, contains the value

‘41414141’. ‘41’ is a hexadecimal representation of ‘A’ and

so the string ‘AAAA’ gets translated to 41414141. This

clearly signifies how the data which is being inputted by the

user can be used to overwrite the instruction pointer with

values inputted by the user and thus can control over the

execution of the program. The functions like strcat(), strcpy(),

gets() and many more that do not check the length of source

strings and copy data blindly into fixed length buffers must be

reviewed.

(ii) Heap-based buffer Overflows Vulnerability: Dynamic

allocated data and global variables are stored using heap

memory by providing them dynamic space. Each chunk of

memory in heap comprises of boundary tags that contain

memory management information. Just like the case with

stack-based arrays, arrays on the heap can be over flown as

well. Heap use to grow upwards in memory and stack grows

in descending way. In any case, no return address (from

where it is being called or from where it should proceed with

its execution after the stack task) is put away onto store so

attacker utilized distinctive strategy to pick up authority over

the system. One technique for exploiting a buffer overflow

situated on the heap is by overwriting heap-stored function

pointers that are situated after the buffer that is being over

flown. Function pointers are not constantly accessible

however, so different methods for misusing heap-based

overflows are by overwriting a heap-allocated object’s virtual

function pointer and directing it toward an attacker created

virtual function table. At the point when the application

endeavors to execute one of these virtual techniques, it will

execute the code to which the attacker-controlled pointer

refers.

Dynamic memory allocators: Overwriting the memory

management information which is generally associated with a

dynamically allocated block is more general way of

attempting to exploit a heap-based overflow rather than using

function pointers or virtual function pointers as they are not

always available when an attacker encounters a heap-based

buffer overflow The ‘dlmalloc’ (dynamic memory allocator)

library is a run-time memory allocator that isolates the heap

memory available to its into contiguous chunks, that change

size as the various allocation and free routines are called. An

invariant is that a free chunk never borders another free chunk

when one of these routines has finished: if two free lumps had

bordered, they would have been consolidated into a bigger

free chunk. These free chunks are kept in a doubly linked list

of free chunks, arranged by size. At the point when the

memory allocator at a later time asks for a chunk of the same

size from one of these free chunks, the first chunk in the list

will be expelled from the list and will be accessible for use in

the program (for example it will transform into an allotted

chunk).

 (iii) Dangling pointer references: A pointer to a memory

area could allude to a memory area that has been de-allocated

either unequivocally by the developer (for example by calling

free) or by code produced by the compiler (for example a

function epilogue, where the stack frame of the function is

expelled from the stack). Dereferencing of this pointer is

commonly unchecked in a C compiler, causing the dangling

pointer reference to wind up an issue. In ordinary cases, this

would make the program crash or show uncontrolled conduct

as the value could have been changed at wherever in the

program. In any case, double free vulnerabilities are a

particular variant of the dangling pointer reference issue that

could prompt misuse. A double free vulnerability occurs

when previously free memory is de-allocated a second time.

This could again enable an assailant to overwrite

discretionary memory areas.

Figure 3. List of free chunks [14]

Figure 3 depicts what the list of free chunks of memory will

look like when using the dlmalloc memory allocator. Chunk1

is bigger than the chunk2 and chunk3, meaning that chunk2 is

the first chunk in the list of free chunks of its size. When a

new chunk of the same size as chunk2 is freed it is placed at

the beginning of this list of chunks of the same size by

modifying the backward pointer of chunk1 and the forward

pointer of chunk2. When a chunk is freed twice it will

overwrite the forward and backward pointers and could allow

an attacker to overwrite arbitrary memory locations at some

later point in the program.

(iv) Format String Vulnerability: This vulnerability

specifies how to test for format string attacks. These attacks

can be used to crash a program or to execute harmful code

[15]. The problem stems from the use of unfiltered user input

as the format string parameter in certain C functions that

perform formatting, such as printf(). The various C-Style

languages provision formatting of output by means of

functions like printf(), fprintf() etc. The formatting is

governed by a parameter to these functions termed as a format

type specifier, typically %s, %c etc. The vulnerability arises

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 11

when format functions are called with inadequate parameters

validation and user controlled data.

A simple example would be printf(argv[1]). In this case, the

type specifier has not been explicitly declared, allowing a user

to pass characters such as %s, %n, %x to the application by

means of command line argument (argv[1]). This situation

tends to become precarious since a user who can supply

format specifiers can perform the following malicious actions:

Enumerate Process Stack: This allows an adversary to view

stack organization of the vulnerable process by supplying

format strings, such as %x(print the hex value of an integer)

or %p, which can lead to leakage of sensitive information. It

can also be used to extract canary values when the application

is protected with a stack protection mechanism. Coupled with

a stack overflow, this information can be used to bypass the

stack protector.

Control Execution Flow: This vulnerability can also facilitate

arbitrary code execution since it allows writing 4 bytes of data

to an address supplied by the adversary. The specifier %n

comes handy for overwriting various function pointers in

memory with the address of the malicious payload. When

these overwritten function pointers get called, execution

passes to the malicious code.

Denial of Service: If the adversary is not in a position to

supply malicious code for execution, the vulnerable

application can be crashed by supplying a sequence of %x

followed by %n. Format string vulnerabilities manifest

mainly in web servers, application servers, or web

applications utilizing C/C++ based code or CGI scripts

written in C. In most of these cases, an error reporting or

logging function like syslog () has been called insecurely.

When testing CGI scripts for the format string vulnerabilities,

the input parameters can be manipulated to include %x or %n

type specifiers. For example, the legitimate request is like:

http://hostname/cgi-bin/query.cgi?name=john&code=45765

can be altered to

 http://hostname/cgi-

bin/query.cgi?name=john%x.%x.%x&code=45765%x.%x

If a format string vulnerability exists in the routine processing

this request, the tester will be able to see stack data being

printed out to the browser.

If code is unavailable, the process of reviewing assembly

fragments (also known as reverse engineering binaries) would

yield substantial information about format string bugs. Take

the instance of code below:

int main(int argc, char **argv)

{

printf("The string entered is\n");

printf(“%s”,argv[1]);

return 0;}

 Figure 4. IDA view of Stack[12,16]

When the disassembly is examined using IDA Pro[16] in

Figure 4, the address of a format type specifier being pushed

on the stack is clearly visible before a call to printf is made.

On the other hand, when the same code is compiled without

“%s” as an argument, the variation in assembly is apparent.

As seen below in figure 5, there is no offset being pushed on

the stack before calling printf.

Figure 5. IDA view without using %s as an argument [12,16]

The functions that are primarily responsible for format string

vulnerabilities are ones that treat format specifiers as optional.

Therefore when manually reviewing code, emphasis can be

given to functions such as: printf, fprintf, sprintf, snprintf,

vfprintf, vprintf, vsprintf, vsnprintf. There can be several

formatting functions that are specific to the development

platform. These functions should also be reviewed for the

absence of format strings once their argument usage has been

understood.

(v) Integer Errors: Integer errors [17] are not exploitable

vulnerabilities by themselves, but the exploitation of these

errors could lead to a situation where the program becomes

vulnerable to one of the previously described vulnerabilities.

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 12

Integer overflows and integer signedness errors are two kinds

of integer errors that lead to exploitable vulnerabilities. An

integer overflow occurs when an integer grows larger than its

capacity or the maximum value it can hold. Integer

signedness errors on the other side are minuter: A simply

defined integer is assumed to be signed integer unless

explicitly declared unsigned. When the programmer later

passes this integer as an argument to a function expecting an

unsigned value, an implicit cast will occur. This can lead to a

situation where a negative argument passes a maximum size

test but is used as a large unsigned value afterward, possibly

causing a buffer or heap overflow if used in conjunction with

a copy operation (e.g. memcpy3 expects an unsigned integer

as size argument and when passed a negative signed integer, it

will assume this is a large unsigned value).

IV. TOOLS FOR VULNERABILITY SCANNING

There are numerous static code analyzers [18] available over

the web for e.g ITS4[19], Flawinder[20], VisualCodeGrepper

[21] etc. The all have some significance to find security issues

in the source code. We have chosen an open source tool

named as ‘Flawfinder’. The code for this tool is written in

python and is executed over python 2.7 or higher. This tool is

free to use and easily available over the web. The main reason

for using this tool is its simplicity as well as its performance

to find out the vulnerable code and then categorize them into

various levels based on the severity of their risk. This tool

works as a lexical analyzer and finds out the functions or

methods that might be exploited for risk.

The vulnerability scanning tool Flawfinder works on some

well-known problems, such as buffer overflow which is

mostly due to use of functions like strcpy(), gets(), strcat(),

scanf() and sprint() family. The format string problems, race

conditions, potential shell metacharacter dangers, and many

other problems are also gets checked by this tool. This tool

works by using built-in database of C and C++ functions.

This tool takes the source code text and matches the text with

function names mentioned above. The tool ignores all the text

which is inside the strings or in comments. Flawfinder also

uses the gettext to pass the constant strings and thus reduce

the number of false hits. This tool produces the result as a list

of “hits”(potential security flaws), sorted by risk type. Hits

mean here the number of times security flaw has been found,

it works as counter here, which counts the number of flaws in

sorted order. The level of the risk not only depends on the

function but also on the values of the parameters in that

function. Here examples of strings can be taken where

constant strings are often less risky than fully variable string

in many contexts. The only drawback of this tool is that it

does not understand the semantics of the code, it just do

simple text pattern matching. But still it is a very helpful in

finding vulnerability and help developer to remove the

vulnerabilities.

V. RESULTS AND DISCUSSION

The development repositories of various versions (see Table

1) of OSS project (MySQL) are obtained from GIT Hub [22].

A repository is downloaded by making the clone of the

original repository onto the local machine by using GIT Bash.

The vulnerability scanner tool (FlawFinder) is used to load all

the source code files of the OSS project. Finally, the various

security flaws (Hits or vulnerabilities) are obtained by

analyzing the source code of the OSS project. We have

considered the different versions of the MySQL project (see

Table 1). The Flawfinder tool is utilized to inspect the source

code of every one of these versions, to discover security flaws

in the code. After getting the results, we have arranged them

in order as indicated by their risk level as appeared in Table 1

(as 0, 1, 2, 3… … ,0+, 1+… ., 5+). The hits of type constant

character, constant string, and the constant maximum length

in the source are placed in level 1 of the hits list classification

as they are not of high risk or rarely cause the issue in the

execution process of any software. However, the issues like

format string parameter, unchecked buffer overflow while

concatenation to the destination, confound in the real and

formal parameter's format(data types) are viewed as of great

threat, so they are placed in a more elevated amount of risk

category(i.e. level4 and level 5). Level 2 and 3 are viewed as

moderate sort of risks. The security flaws of type: unchecked

buffer overflow while copying a value from source to

destination, or functions which do not check buffer overflow

condition or no protection against internal buffer overflow are

put in these classes. In our analysis, there are a lot of hits are

experienced in every release of the product, which points to

the presence of the vulnerability in the code of OSS (see

Table 1). Level 1 of hits gradually increases over every

version released; whereas level 2 increases at fast rate because

of ignorance of coding guidelines. Level 4 and 5 are of higher

risk, the increment in the hits value mirrors a risk to the

software.

In Table 2(see below), we analyzed the different parameters

(Total lines in code, Physical SLOC, Time Duration, Lines

scanned every second and Hits/KSLOC) of the OSS.

Hits/KSLOC figures the normal number of lines after which

the hit of a specific type will happen. Lines analyzed connotes

the total number of lines present in one version of the OSS

which includes the real source code, preprocess directives,

constant definitions and comments, though the values in the

physical source lines of code represent the real lines of code

excluding comments or other documentation. Time span

speaks to the time taken by the scanner to examine the OSS in

addition to lines scanned every second. From Table2 we

collected values for the total number of hits and the total

number of physical lines present in every version of the

chosen OSS. These two parameters will additionally be

utilized in the depiction of our research aim.

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 13

Table 1: Hits Classification into different levels

. Hits@level

version 1 2 3 4 5 0+ 1+ 2+ 3+ 4+ 5+

mysql-server-8.0.0 3659 9686 360 1337 81 15118 15118 11646 1778 1418 81

mysql-server-8.0.1 3729 9571 359 1316 86 15061 15061 11332 1761 1402 86

mysql-server-8.0.2 3888 9950 369 1370 86 15663 15663 11775 1825 1456 86

mysql-server-8.0.3 3922 10117 304 1404 86 15914 15914 11992 1875 1490 86

mysql-server-8.0.4 4066 10704 417 1457 89 16733 16733 12667 1963 1546 89

mysql-server-8.0.11 3857 10697 402 1691 84 16731 16731 12874 2177 1775 84

mysql-server-8.0.12 3765 10608 401 1694 84 16552 16552 12787 2179 1778 84

mysql-server-8.0.13 3956 10730 439 1762 103 16990 16990 13034 2304 1865 103

Table 2: Various Statistics of the code

 Hits/KSLOC

versio

n

0+ 1+ 2+ 3+ 4+ 5+ Hits Lines

analyze

d

Physical

source

lines of

code(SLO

C)

Time

Duratio

n

(seconds

)

Lines

per

Secon

d

8.0.0 7.0004

8

7.0004

8

5.3084

7

0.82331

4

0.65661

3

0.037537

5

1511

8

308332

7

2159566 289.05 10667

8.0.1 5.8869

5

5.8869

5

4.4293

8

0.68832

9

0.54800

5

0.033615

2

1506

1

352902

4

2558370 334.58 10548

8.0.2 5.9637

9

5.9637

9

4.4834

1

0.69488

1

0.55438

2

0.032745

1

1566

3

363926

6

2626348 367.27 9909

8.0.3 5.9524

3

5.9524

3

4.4854

6

0.70132 0.55731

6

0.032167

2

1591

4

371801

5

2673530 442.23 8407

8.0.4 5.5440

7

5.5440

7

4.1969 0.65039

2

0.51223 0.029488 1673

3

433954

6

3018178 423.30 10252

8.0.11 5.9855

4

5.9855

4

4.6057 0.77882

5

0.63500

9

0.030051

1

1673

1

409248

3

2795235 477.34 8574

8.0.12 5.9822

6

5.9822

6

4.6215 0.78753

8

0.64260

8

0.030359

4

1655

2

405445

7

2766849 438.75 9241

8.0.13 5.8124

8

5.8124

8

4.4590

8

0.78822

5

0.63803

8

0.035237

5

1699

0

430849

6

2923023 424.41 10152

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 14

 Fig 6.1: Physical source lines of code Fig 6.2: Total hits present in each version

Fig 6.1 represents the number of physical lines present in each

version of the code. The total physical source lines of code

vary from 21 million to 30 million. Figure 6.2 represents the

graphical view of the number of hits in all the software

releases. As we can see the size of the code gets increased

with each release of the software because of the new features

get added with each release so as the number of hits.

The Table3 below represents the regression equation, from

which we can conclude the rate at which the hits of each level

will get increased in the next release of the product. The

regression analysis is utilized to discover the trend and

equation of the regression for hits, (level insightful) in the

ongoing releases of the OSS. In Table3 we demonstrate the

outcomes after the regression analysis. From the regression

equation of each level, we have observed that all the

regression have a positive slope, which implies the increasing

trends in all hit level.

Table 3: Trend analysis of hit level for all the version of

MySQL
Level of Hits Regression Equation Trend

Level 1 y = 27.5x + 3731.5 Increasing

Level 2 y = 182.39x + 9437.1 Increasing

Level 3 y = 11.607x + 329.14 Increasing

Level 4 y = 70.012x + 1188.8 Increasing

Level 5 y = 1.6786x + 79.821 Increasing

We also process the relationship by utilizing Karl Pearson

technique for correlation between the physical source lines of

code and all the hits experienced in all previously mentioned

version of the OSS. The estimation of R (Karl Pearson

Coefficient unit) is 0.8608. The value is nearer to the 1, which

connotes that there is a strong positive relationship. This

outcome suggests that higher the source lines of code there

are equivalent odds of getting higher number of hits.

VI. CONCLUSION AND FUTURE SCOPE

Quality software must be sound in both: its purpose and its

security. Vulnerabilities present in the code have an adverse

impact on the quality of the software so these should be

removed. Here in this research work, we took a well-known

OSS and check it against a series of vulnerabilities and found

out that there are numbers of flaws present in the code. Our

main aim in this paper is to found the vulnerability in the

source code and afterward notice the relationship between the

size of the software and the number of flaws. The results

show that there is a strong relationship present between the

size of the software and number of security flaws. So, the

main job for developers of the software should not be just to

adding new features to the existing product but also to

improve the quality of the software by writing code which

should be secure against vulnerabilities, which are mentioned

in this paper. Our future work will be one stage ahead starting

here, which is to apply a similar technique for vulnerability

scanning on all sizes of the OSS and will endeavor to

establish out that the relationship between the size of product

and number of hits will stay same for all sort of sizes of OSS

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

Physical source lines of
code(SLOC)

Physical source lines of code(SLOC)

14000

14500

15000

15500

16000

16500

17000

17500

 Hits

 Hits

 International Journal of Computer Sciences and Engineering Vol.7(2), Feb 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 15

or not, and furthermore we need to add some commitment to

expel the vulnerable code without influencing the actual

working of the code. As we have mentioned earlier a

vulnerable code will always remain a threat for the developer.

There is a lot of work had already done around there, yet the

vast majority of the work had been performed on the web

application or dynamic code. Our point will be to decrease

workload of the dynamic scanner by making the code

vulnerability free at the static end.

REFERENCES

[1] Younan, Y., W. Joosen, and F. Piessens. "Code Injection in C and

C++: A Survey of Vulnerabilities and Countermeasures (Tech.

Rep. No. CW 386)." Leuven, Belgium: Departement

Computerwetenschappen, Katholieke Universiteit Leuven (2004)

[2] Piessens, Frank. "A taxonomy of causes of software vulnerabilities

in internet software." Supplementary Proceedings of the 13th

International Symposium on Software Reliability Engineering.

2002.

[3] “Glossary.” Risk Management & Information Security

Management Systems - ENISA, 20 Jan. 2016,

www.enisa.europa.eu/topics/threat-risk-management/risk-

management/current-risk/risk-management-

inventory/glossary#G52.

[4] Abbott, Robert P., et al. Security analysis and enhancements of

computer operating systems. No. NBSIR-76-1041. NATIONAL

BUREAU OF STANDARDS WASHINGTONDC INST FOR

COMPUTER SCIENCES AND TECHNOLOGY, 1976.

[5] Aslam, Taimur. "A taxonomy of security faults in the unix

operating system." Master's thesis, Purdue University 199.5

(1995).

[6] Yamaguchi, Fabian, et al. "Chucky: Exposing missing checks in

source code for vulnerability discovery." Proceedings of the 2013

ACM SIGSAC conference on Computer & communications

security. ACM, 2013.

[7] Ball, Thomas, et al. "Thorough static analysis of device drivers."

ACM SIGOPS Operating Systems Review 40.4 (2006): 73-85.

[8] DeKok, Alan. "PScan: A limited problem scanner for C source

files." (2013).

[9] Evans, David, and David Larochelle. "Improving security using

extensible lightweight static analysis." IEEE software 1 (2002):

42-51.

[10] Kernighan, Brian W., and M. Dennis. "Ritchie. The C

Programming Language." (1988).

[11] Stroustrup, Bjarne. The C++ programming language. Pearson

Education India, 2000.

[12] HeapOverflow:https://www.owasp.org/index.php/Testing_for_Hea

p_Overflow,StackOverflow:https://www.owasp.org/index.php/Tes

ting_for_Stack_Overflow,FormatString:https://www.owasp.org/in

dex.php/Testing_for_Format_String .

[13] Conover, Matt. "w00w00 on heap overflows." (1999).

[14] Intel Corporation. IA-32 Intel Architecture Software Developer’s

Manual Volume 1: Basic Architecture, 2001. Order Nr 245470.

[15] scut. Exploiting format string vulnerabilities. http://www.team-

teso.net/articles/formatstring/, 2001

[16] IDA PRO, https://www.hex-rays.com/products/ida/overview.html

[17] Brumley, David, et al. "RICH: Automatically protecting against

integer-based vulnerabilities." Department of Electrical and

Computing Engineering (2007): 28.

[18] Zitser, Misha, Richard Lippmann, and Tim Leek. "Testing static

analysis tools using exploitable buffer overflows from open source

code." ACM SIGSOFT Software Engineering Notes. Vol. 29. No.

6. ACM, 2004.

[19] Viega, John, et al. "ITS4: A static vulnerability scanner for C and

C++ code." Computer Security Applications, 2000. ACSAC'00.

16th Annual Conference. IEEE, 2000.

[20] Flawfindetr: https://dwheeler.com/flawfinder/flawfinder.pdf and A

book entitled as “Secure Programming HOWTO” by David A.

Wheeler.

[21] Fatima, Anum, Shazia Bibi, and Rida Hanif. "Comparative study

on static code analysis tools for C/C++." Applied Sciences and

Technology (IBCAST), 2018 15th International Bhurban

Conference on. IEEE, 2018.

[22] GIT HUB, https://github.com/mysql/mysql-server.

Authors Profile

Madanjit Singh completed Bachelor of

Computer Applications from Punjab

Technical University, Jalandhar, Punjab,

India in 2012 and Master of Computer

Applications from Guru Nanak Dev

University, Amritsar, Punjab, India in year

2015. He is currently working as Assistant Professor in

Department of Computer Science, Guru Nanak Dev

University, Amritsar, Punjab, India since 2015. His main

research work focuses on Software Security, Open Source

Software and Natural Language Processing. He has 3 years

of teaching experience.

Munish Saini works as an Assistant Professor

in Department of Computer Engineering and

Technology, Guru Nanak Dev University,

Amritsar. He had completed his P.hd in 2018.

His main research work focuses on Software

Engineering, Open Source Software. He has 2 years of

teaching experience and 4 years of Research Experience.

Manevpreet kaur completed her Master of

Computer Applications from Guru Nanak

Dev University, Amritsar, Punjab, India in

year 2015. She is currently working as

Assistant Professor in Department of

Computer Science, Guru Nanak Dev University, Amritsar,

Punjab, India since 2015. Her main research work focuses on

Software Security and Open Source Software. He has 3 years

of teaching experience.

https://www.owasp.org/index.php/Testing_for_Heap_Overflow
https://www.owasp.org/index.php/Testing_for_Heap_Overflow
https://www.owasp.org/index.php/Testing_for_Stack_Overflow
https://www.owasp.org/index.php/Testing_for_Stack_Overflow

