@
AX]JCSE International Journal of Computer Sciences and Engineering [pen Access

Research Paper Vol.7, Special Issue.1, Jan 2019 E-ISSN: 2347-2693

Hardware Implementation of Fast Recursive Walsh-Hadamard
Transform

Pulak Mazumder®, Rajarshi Middya®", Mrinal Kanti Naskar®

!Department of Electronics and Communication Engineering, Regent Education and Research Foundation, Kolkata 700121, India
?Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata 700032, India

“Corresponding Author: rajarshi.middya@gmail.com, Tel.: +91 9830024086

Available online at: www.ijcseonline.org

Abstract— The Walsh Hadamard Transform is an extremely relevant concept in modern digital image data compression. This
paper examines the feasibility of using a tensor product based approach to Walsh Hadamard Transfrom for implementation to
hardware architecture using FPGA technology. This paper explains the derivation of a highly parallel and very fast algorithm
for the computation of both one-dimensional and two-dimensional transforms using tensor product. Such a fast dedicated

hardware design for the Walsh Hadamard Transform will help a wide range of digital signal processing applications.

Keywords— Signal processing, VLSI, FFT, Transforms

l. INTRODUCTION

The convenience of using tensor product for implementation
of a DSP algorithm is one of the major driving forces behind
this work. When it comes to tensors, scientists and
mathematicians have applied it for theoretical studies
involving a plethora of disciplines. But a few years before, a
seminal review on the utilisation of tensors in DSP
algorithms [1] threw light on the unexplored area of
algorithm optimisation using this mathe- matical concept. It
is now an established fact that the tensor product can be used
for the implementation of DSP algorithms due to the strong
correlation between these product constructs and CPU
architectures. But it is not only mere implementation but
rather the optimisation in terms of time complexity that has
allured many to pursue this. Although previous works [2]
had focussed on modelling FFT algorithms, it was Granta’s
paper [1] which threw light onto the plethora of algorithms
involving recursion that can have similar implementation.
Having said these, the major constraint remains the
implementation of these derived architectures for practical
purposes. This had been greatly aided by Field
Programmable Gate Arrays which have experienced a
pleasant favouritism from researchers with labo- ratory
constrains. Our case revolves around a simple purpose. We
implement a very well known transform technique from the
area of DSP using tensor product and as a result we were
able achieve a parallelisation technique for the algorithms.
This has helped us to propose a new architecture for an
application specific integrated circuit (ASIC) dedicated to
this purpose. It is imperative to mention at the beginning
that the architecture we propose is supposed to work in real

© 2019, IJCSE All Rights Reserved

time. So this could be used as a block during real time
processing of digital signals. As a result it might be able to
decrease the overall burden on the main processor. This
concept has been used recently in the name of co-processors.
The Walsh-Hadamard Transform (WHT) is a mathematical
construct that finds wide application in the fields of digital
signal processing, data compression, and encryption. It
also finds application in quantum computer information
processing and, it is more often called Hadamard gate in
this context. The transform is particularly useful in feature
extraction for pattern recognition and digital image
processing because of its easy implementation using
simple arithmetic stages. Also, the binary nature of the
Walsh functions and the Hadamard matrix allow easy
implementation. In this work, we use a tensor-product
approach. The usage of the tensor product allows
implementation of WHT using an algorithm that is both
recursive and parallel. Using tensor product allows the
decomposition of the WHT matrix into simpler arithmetic
stages. Decomposing the one-dimensional input into pairs
and applying them to the arithmetic stages allow for
parallel execution. The output obtained is stride-permuted
and applied back to the same arithmetic stages, continuing
the execution recursively. For a two-dimensional input,
we design an algorithm that works on the column-major
representation of the input. This representation is one-
dimensional in nature, allowing the computation of the two
dimensional signal similar to the one dimensional one.

Our paper is organised as follows. Section 2 gives a brief

glimpse of previous works and where our work stands now.
In section 3, we describe the concept of tensor product

28

International Journal of Computer Sciences and Engineering

and its use for devising parallel architecture for recursive
algorithms. Next, in section 4, we focus on our main work,
its procedures, the theoretical deductions and the logical
implementation. The results and observations are described
in section 5. Lastly, we draw the conclusion of our work in
section 6.

1. RELATED WORK

Fast implementation of various transforms have been done
by many before. In [3], a fast algorithm for the computation
of dis- crete Hartley transform have been given. Although
there have been numerous attempts to make the
computation of Hartley transform fast and their
implementation in VLSI, they gener- ally fall under the
categories of direct and indirect. The method described in
[3] involves a small number of arithmetic oper- ations with
simplified combinational structure and optimistic time
complexity. As a result it is well suited for hardware
implementation. Another method for the computation of
the above transform has been proposed by the same author
a few months later [4] in which the algorithms proposed is
supposed to be well suited for the subexpression sharing
technique thus reducing the hardware complexity for
parallel implementation of this algorithm. But so far, the use
of tensor product has been limited in such propositions. In
[5], an algorithm has been proposed to compute the WHT
and the Discrete Fourier Transform simultaneously using a
unified butterfly. This is supposed to reduce the number of
arithmetic operations than the traditional methods where the
transforms are computed separately. The authors have used
the Kronecker product technique in sparse matrix
factorisation to achieve the butterfly structure. But the
objective seemed to have been clouded by the combination
of these two transforms instead of making each transform
fast individually. But irrespective of the works that have
been done so far, the parallelisation of the operations using
tensor product for implementation of WHT seemed an
utouched area. This motivated us to write the present paper.

I11. CONCEPT OF TENSOR PRODUCTS

Previously used in the area of applied mathematics and
physics, tensors have a very elegant representation for multi
dimensional systems. Although represented as matrices, the
definition of tensor products is somewhat different.
Considering two tensors A and B with structures as

a;; Qi o Ay by by, 0 by

A1 Az azn b b w. b
A= : ;B= |72 T2 2

ayi1 Aan2 - AnN byi bu bmm

© 2019, IJCSE All Rights Reserved

Vol.7(1), Jan 2019, E-ISSN: 2347-2693

the tensor product ® can be defined as

a;1B a,B a,nyB
C=A®B = az:lB az:zB aZ?,B
ayiB an,B aynB

When implementing this in a computer program, the fact that
a larger matrix C can be represented as the decomposed
version of two smaller matrices A and B, becomes very
useful. An important property of this tensor product is that
the tensor matrix C has its inverse as A"!®B~1. So to
compute the inverse of a large matrix (\mathbf{C}), one
can calculate the inverse of its decomposed tensor product (4
and B). This acts as an advantage in the case of minimising
time complexity.

IV. FORMULATION AND ARCHITECTURE

IV.a Walsh-Hadamard Transform
One-dimensional Transform
The WHT performs an orthogonal, symmetric, involution,
linear operation in a set X,, of N = 2% real numbers. For one
dimensional WHT, the set of real numbers is represented as a
vector Xy, and the transform is given by

Yvx1 = WyXyxa 1)
The Hadamard matrix W), for N = 2% where « is an integer,
can be recursively defined as

Wy Wy
_ 2 2
2 2

where W, = [1 _11] Alternatively, W, can be defined

using tensor product as follows

Wza = W2®W2a—1

Wza—l = W2®W2a—2
Solving the recurrence for W,a using the method of
substitution, we get

Woa = W,QW,QW,Q - QW,QW,
Now, the product rule [6,7] implies
t
A1 ® ... ®Apy; = 1_[<1N(k—1)®ANk®IL)
k=1 N (k)
Modifying the above generalised product rule for the WHT
we get,
a—-1

Wye = l—[(lzi@ANk@Iza_i_l)
i=0

Further, using commutation theorem, product rule and the
properties of stride permutation matrices, we can obtain

Wae = 155 (Paep (e QW))
Using this result in the definition of the WHT (Eq. 1), we get
Yyx1 = H?:_ol(Pz"‘,z(12“—1®W2)XN><1) 3)

29

International Journal of Computer Sciences and Engineering

This formulation gives way to an efficient algorithm for
computing the Hadamard matrix where, (I,a-1®@W,) Xy, IS
a parallel operation and P,«, is a 2% - point stride 2
permutation matrix.

Two-dimensional Transform

The WHT of a square matrix X, of order N is given by

Yy = WNXNWI\’; 4)
Since W) has the same transpose i.e Wy = W, , from Eq. 2,
we get

a-1

Wy = Wy = H (Pae 2 (1,1 @WS))
i=0

If this we represent the matrix X, as a column matrix X¢ od
order 22¢ x 1, we can rewrite Eq. 3 for obtaining two-
dimensional WHT as

Y¢ = Wy®@WIHXe¢
where Y¢ is a column matrix representation of Yy. Now, as
N = 2%, from Eq. 4, we can write

WN®WI\7; = W2, W5,

= Wy®@W,I = W,z

b Y =TI (Pyzey (12e1 ®W,)) X ()

Eg. 5 gives an efficient algorithm for computation of two-
dimensional DWT where (I,2a-1®W,) is a parallel operation
and Pza , is a 22 - point, stride 2 permutation matrix.

IV.b Proposed Architecture

One-dimensional Transform

Eqg. (3) is composed of the following two steps -

(a) The parallel operation (I,a-1®@W,)Xy«1, and

(b) Multiplication of the result of the previous operation with
the stride permutation matrix.

The operation in step (a) requires only addition and
subtraction of the real values of the vector X - which can be
considered to be the input vector. The next step i.e (b) is
responsible for changing the order of the output of the
previous step. Relating to this, a hardware architecture is
presented where each iteration in Eq. 3 is completed in the
positive half-cycle and the negative half-cycle witnesses the
operation in step (b).

The circuit for 8-point WHT is presented in a block level in
Fig. 1. As can be seen, the hardware implementation requires
the following devices -

(i) four Arithmetic Units (AU) each consisting of an adder
and a subtractor for step (a), and

(ii) one stride permutation block (SBP) for the operation in
step (b)

The output of the SBP i.e the bits Q; to Qg are again loaded
into the input bits X; to X4 and fed back to the AUs in the
next clock cycle for computation of the next iteration of the
Eq. 3. The number of AUs required depends in the dimension
of the input vector, E. If N = 2%, then 2* number of AU
units are required. The number of clock cycles required is
equal to the number of iterations in Eq. 3. So, for 2% point

© 2019, IJCSE All Rights Reserved

Vol.7(1), Jan 2019, E-ISSN: 2347-2693

one dimensional WHT, the number of clock cycles required
is a.

X @b ——f— Q
\ AU Y1 S \
X e —3- Q2
P e Yoo o
& fo— —-—
' AU Vs P !
X i —> Qi
H oo TTTTE T T Ya--) :)
E S T A
Z D —a—1— Q. =
< i AU vs B ! —
X @ 4 QO
________________ Y6__ ——
x,_—,-.—>: ; '—"'-: = Qr
I AU v7 |
X gl @ Qs

Figure 1 : The Block Diagram of the proposed architecture

Two-dimensional Transform

It can be observed that Eq. 3 and Eq. 5 have the same
formulation with « in the former one, replaced by 2% in the
latter. So, the hardware architecture is the same. Only one
extra device is required which can preprocess the two
dimensional signal and convert it into a single column vector.
The single column vector can then be fed to the block for the
one dimensional (1-D) transform. One thing that needs to be
kept in mind is that the output from the 1-D block would be
column vector. So one needs to convert this to a two
dimensional form to get the final output.

IV.c Algorithms

Following subsections give a glimpse of the pseudocode for
the two variations of the transforms which have been
developed.

One-dimensional Transform

(i) Xy < input of N = 2 real numbers

(ii) For every rising edge of the circuit clock, Yy < AU(Xy)
(iii) For the corresponding falling edge of the circuit clock,
Yy < SPB(Y)

(iv) Xy < Yy

(v) Repeat steps (ii) to (iv) for & — 1 times.

Two-dimensional Transform

(i) Xyxy < input of N X N = 2% x 2% real numbers

(ii) Convert Xy into a column major representation X ¢

(iii) For every rising edge of the clock pulse,
YT « AUXC).

(iv) For the corresponding falling edge of the circuit clock,
Y€ « SPB((Y)T).

(V) X¢ « Y€,

30

International Journal of Computer Sciences and Engineering

(vi) Repeat steps (iii) to (v) for 2a — 1 times.
(vii) Convert the column vector Y¢ to the two dimensional
matrixX Yyxu-

IV.d Time Complexity Analysis
For the analysis presented below, one clock cycle has been
considered the unit of time and has been denoted by “t'.

One-dimensional Transform

The time complexity analysis can be obtained from the
algorithm in Sec I1Vc. The steps (ii) and (iii) get executed in
time t. After these steps are executed, step (v) requires them
to be executed ¢ — 1 times more. So, the total time for
execution T is given by = (1 + (a — 1))t = at . Again we
know that N = 2% ie a =log, N. Therefore from this
calculation, the asymptotic representation for the time
complexity of the algorithm for one-dimensional transform
can be given by O(log, N).

Two-dimensional Transform

In the algorithm for the two-dimensional signal, the time
taken for the steps (iii) and (iv) is t. After these steps, step
(iv) requires them to be executed another 2a — 1 times.
Ignoring the pre-processing in step (ii) and the post
processing in step (vii), the total time required for the
computation T can be given by T = (1+ Qa—1))t=
2a = (2log, N)t. As the input signal is a matrix of order
N X N, the total input size M comes to be N2. In terms of the
total input size, the total time T comes to be log, M .
Therefore the asymptotic representation of the time
complexity for this algorithm can be given by 0(log, M).

V. RESULTS AND OBSERVATIONS

The proposed architectures have been tested in Verilog HDL.
Different bit stream patterns have been employed to see the
variation in the time required for computation. Fig. 2 shows
the VHDL output for the bit stream of size 24.

0 0 N N L3 13 60 s s s

e YOO i}

Ly 000000000MB0000N
A"’EIZ” JOCO00O000C0A0NNNKL
LY X0O0CO000N00000
Lk X0O0CO0OR0B0N00N
i"f{ﬁ: 00O0C0O00O00M000000KL

LYy XOC0O00O0OM0OBNN

LY 000000000000

i

Figure 2 : OUTPUT

© 2019, IJCSE All Rights Reserved

Vol.7(1), Jan 2019, E-ISSN: 2347-2693

As can be seen, after the input X; to X, each consisting of 24
bits are applied to the block, the output is generated in a very
small time. The time required for different bit length - 16, 24
and 32 - have been shown in the Table. 1.

Table 1 : Table for time taken for computation of different bit
streams of varying length

Input Total Time

Length

16-bit 3.401ns (1.534ns logic, 1.867ns route, 45.1%

logic, 54.9% route)

24-bit 5.531ns (5.111ns logic, 0.420ns route, 92.4%
logic, 7.6% route)

32-bit 5.642ns (5.111ns logic, 0.531ns route, 90.6%
logic, 9.4% route)

VI. CONCLUSION

The proposed architecture is completely new for WHT as no
one has proposed this kind of fast implementation of this
transform. The results got from the simulations have been
quite promising. The next step of work would be to
implement this in an Field Programmable Gate Array for
experiment.

REFERENCES

[1] J. Granata, M. Conner, and R. Tolimieri, “Recursive fast algorithm
and the role of the tensor product,” IEEE Transactions on Signal
Processing, vol. 40, no. 12, pp. 2921-2930, Dec 1992.

[2] J.R. Johnson, R.W. Johnson, D. Rodriguez, and R. Tolimieri,
“A methodology for designing, modifying, and implementing fourier
transform algorithms on various architectures,” Circuits, Systems
and Signal Processing, vol. 9, no. 4, pp. 449-500, Dec 1990.

[3] D. F. Chiper, “Radix-2 fast algorithm for computing discrete hartley
trans- form of type iii,” IEEE Transactions on Circuits and Systems II:
Express Briefs, vol. 59, no. 5, pp. 297-301, May 2012.

[4] D. F. Chiper, “A novel visi dht algorithm for a highly modular and
parallel archi- tecture,” IEEE Transactions on Circuits and Systems Il
Express Briefs, vol. 60, no. 5, pp. 282-286, May 2013.

[(] M. T. Hamood and S. Boussakta, “Fast walsh-hadamard-fourier
transform algorithm,” IEEE Transactions on Signal Processing, vol.
59, no. 11, pp. 5627-5631, Nov 2011.

[6] J. R. Johnson and A. F. Breitzman, “Automatic derivation and
implemen- tation of fast convolution algorithms,” Journal of Symbolic
Computation, vol. 37, no. 2, pp. 261 — 293, 2004.

[71 M. A. Richard Tolimieri and C. Lu, Algorithms for Discrete Fourier
Transform and Convolution. Springer-Verlag New York, 1997.

31

International Journal of Computer Sciences and Engineering

Authors Profile

Mr Pulak Mazumder received his M.Tech from
West Bengal University of Tech- nology, Kolkata
and his B.Tech degree in Electronics and ‘ﬁ

Communication Engineering from IET, New
Delhi, India. Presently he is the Head of the
Department of Electronics and Communication
Engineering in Regent Institute of Technology, I

Kolkata, India. His research interests include digital
signalprocessing, microwave and em theory.

Mr Rajarshi Middya received his PhD from the
School of Mobile Computing and
Communications, Jadavpur University, Kolkata,
India, his Master’s Degree in Science and !)
Technology from Paristech, Paris, France and -~
his B.Tech degree in Electronics and \ 2 \
Communication Engineering from West Bengal 2
University of Technology, Kolkata, India.
Presently he is attached with the Department of E.T.C.E, Jadavpur
University, Kolkata, India. His research interests include wireless
sensor networks, signal processing and nonlinear dynamics.

-

Mr Mrinal Kanti Naskar holds a PhD in

Electronics and Telecommunications Engineering

from Jadavpur University, Kolkata, India and an

M.Tech degree and a B.Tech degree in J
: ,-
| A

Electronics and Electrical Communications

Department, Indian Institute of Technology,

Kharagpur. His research interests include Wire-

less Sensor Networks, Computer Architecture and

Digital Design. At present, he is a Professor in the

Department of Electronics and Telecommunication Engineering,
Jadavpur University, Kolkata, India.

© 2019, IJCSE All Rights Reserved

Vol.7(1), Jan 2019, E-ISSN: 2347-2693

32

