

 © 2019, IJCSE All Rights Reserved 28

International Journal of Computer Sciences and Engineering Open Access

Research Paper Vol.7, Special Issue.1, Jan 2019 E-ISSN: 2347-2693

Hardware Implementation of Fast Recursive Walsh-Hadamard

Transform

Pulak Mazumder

1
, Rajarshi Middya

2*
, Mrinal Kanti Naskar

3

1Department of Electronics and Communication Engineering, Regent Education and Research Foundation, Kolkata 700121, India

2Department of Electronics and Telecommunication Engineering, Jadavpur University, Kolkata 700032, India

*Corresponding Author: rajarshi.middya@gmail.com, Tel.: +91 9830024086

Available online at: www.ijcseonline.org

Abstract— The Walsh Hadamard Transform is an extremely relevant concept in modern digital image data compression. This

paper examines the feasibility of using a tensor product based approach to Walsh Hadamard Transfrom for implementation to

hardware architecture using FPGA technology. This paper explains the derivation of a highly parallel and very fast algorithm

for the computation of both one-dimensional and two-dimensional transforms using tensor product. Such a fast dedicated

hardware design for the Walsh Hadamard Transform will help a wide range of digital signal processing applications.

Keywords— Signal processing, VLSI, FFT, Transforms

I. INTRODUCTION

The convenience of using tensor product for implementation

of a DSP algorithm is one of the major driving forces behind

this work. When it comes to tensors, scientists and

mathematicians have applied it for theoretical studies

involving a plethora of disciplines. But a few years before, a

seminal review on the utilisation of tensors in DSP

algorithms [1] threw light on the unexplored area of

algorithm optimisation using this mathe- matical concept. It

is now an established fact that the tensor product can be used

for the implementation of DSP algorithms due to the strong

correlation between these product constructs and CPU

architectures. But it is not only mere implementation but

rather the optimisation in terms of time complexity that has

allured many to pursue this. Although previous works [2]

had focussed on modelling FFT algorithms, it was Granta’s

paper [1] which threw light onto the plethora of algorithms

involving recursion that can have similar implementation.

Having said these, the major constraint remains the

implementation of these derived architectures for practical

purposes. This had been greatly aided by Field

Programmable Gate Arrays which have experienced a

pleasant favouritism from researchers with labo- ratory

constrains. Our case revolves around a simple purpose. We

implement a very well known transform technique from the

area of DSP using tensor product and as a result we were

able achieve a parallelisation technique for the algorithms.

This has helped us to propose a new architecture for an

application specific integrated circuit (ASIC) dedicated to

this purpose. It is imperative to mention at the beginning

that the architecture we propose is supposed to work in real

time. So this could be used as a block during real time

processing of digital signals. As a result it might be able to

decrease the overall burden on the main processor. This

concept has been used recently in the name of co-processors.

The Walsh-Hadamard Transform (WHT) is a mathematical

construct that finds wide application in the fields of digital

signal processing, data compression, and encryption. It

also finds application in quantum computer information

processing and, it is more often called Hadamard gate in

this context. The transform is particularly useful in feature

extraction for pattern recognition and digital image

processing because of its easy implementation using

simple arithmetic stages. Also, the binary nature of the

Walsh functions and the Hadamard matrix allow easy

implementation. In this work, we use a tensor-product

approach. The usage of the tensor product allows

implementation of WHT using an algorithm that is both

recursive and parallel. Using tensor product allows the

decomposition of the WHT matrix into simpler arithmetic

stages. Decomposing the one-dimensional input into pairs

and applying them to the arithmetic stages allow for

parallel execution. The output obtained is stride-permuted

and applied back to the same arithmetic stages, continuing

the execution recursively. For a two-dimensional input,

we design an algorithm that works on the column-major

representation of the input. This representation is one-

dimensional in nature, allowing the computation of the two

dimensional signal similar to the one dimensional one.

Our paper is organised as follows. Section 2 gives a brief

glimpse of previous works and where our work stands now.

In section 3, we describe the concept of tensor product

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 29

and its use for devising parallel architecture for recursive

algorithms. Next, in section 4, we focus on our main work,

its procedures, the theoretical deductions and the logical

implementation. The results and observations are described

in section 5. Lastly, we draw the conclusion of our work in

section 6.

II. RELATED WORK

Fast implementation of various transforms have been done

by many before. In [3], a fast algorithm for the computation

of dis- crete Hartley transform have been given. Although

there have been numerous attempts to make the

computation of Hartley transform fast and their

implementation in VLSI, they gener- ally fall under the

categories of direct and indirect. The method described in

[3] involves a small number of arithmetic oper- ations with

simplified combinational structure and optimistic time

complexity. As a result it is well suited for hardware

implementation. Another method for the computation of

the above transform has been proposed by the same author

a few months later [4] in which the algorithms proposed is

supposed to be well suited for the subexpression sharing

technique thus reducing the hardware complexity for

parallel implementation of this algorithm. But so far, the use

of tensor product has been limited in such propositions. In

[5], an algorithm has been proposed to compute the WHT

and the Discrete Fourier Transform simultaneously using a

unified butterfly. This is supposed to reduce the number of

arithmetic operations than the traditional methods where the

transforms are computed separately. The authors have used

the Kronecker product technique in sparse matrix

factorisation to achieve the butterfly structure. But the

objective seemed to have been clouded by the combination

of these two transforms instead of making each transform

fast individually. But irrespective of the works that have

been done so far, the parallelisation of the operations using

tensor product for implementation of WHT seemed an

utouched area. This motivated us to write the present paper.

III. CONCEPT OF TENSOR PRODUCTS

Previously used in the area of applied mathematics and

physics, tensors have a very elegant representation for multi

dimensional systems. Although represented as matrices, the

definition of tensor products is somewhat different.

Considering two tensors A and B with structures as

 [

] ; [

]

the tensor product can be defined as

 [

]

When implementing this in a computer program, the fact that

a larger matrix can be represented as the decomposed

version of two smaller matrices and , becomes very

useful. An important property of this tensor product is that

the tensor matrix has its inverse as . So to

compute the inverse of a large matrix (\mathbf{C}), one

can calculate the inverse of its decomposed tensor product (

and). This acts as an advantage in the case of minimising

time complexity.

IV. FORMULATION AND ARCHITECTURE

IV.a Walsh-Hadamard Transform

One-dimensional Transform

The WHT performs an orthogonal, symmetric, involution,

linear operation in a set of real numbers. For one

dimensional WHT, the set of real numbers is represented as a

vector and the transform is given by

 (1)

The Hadamard matrix for where is an integer,

can be recursively defined as

 [

]

where *

+ . Alternatively, can be defined

using tensor product as follows

Solving the recurrence for using the method of

substitution, we get

Now, the product rule [6,7] implies

 ∏(

)

Modifying the above generalised product rule for the WHT

we get,

 ∏()

Further, using commutation theorem, product rule and the

properties of stride permutation matrices, we can obtain

 ∏ ()

 (2)

Using this result in the definition of the WHT (Eq. 1), we get

 ∏ ()

 (3)

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 30

This formulation gives way to an efficient algorithm for

computing the Hadamard matrix where, is

a parallel operation and is a - point stride 2

permutation matrix.

Two-dimensional Transform

The WHT of a square matrix of order is given by

 (4)

Since has the same transpose i.e
 , from Eq. 2,

we get

 ∏()

If this we represent the matrix as a column matrix od

order , we can rewrite Eq. 3 for obtaining two-

dimensional WHT as

where is a column matrix representation of . Now, as

 , from Eq. 4, we can write

 ∏ ()

 (5)

Eq. 5 gives an efficient algorithm for computation of two-

dimensional DWT where is a parallel operation

and is a - point, stride 2 permutation matrix.

IV.b Proposed Architecture

One-dimensional Transform

Eq. (3) is composed of the following two steps -

(a) The parallel operation , and

(b) Multiplication of the result of the previous operation with

the stride permutation matrix.

The operation in step (a) requires only addition and

subtraction of the real values of the vector - which can be

considered to be the input vector. The next step i.e (b) is

responsible for changing the order of the output of the

previous step. Relating to this, a hardware architecture is

presented where each iteration in Eq. 3 is completed in the

positive half-cycle and the negative half-cycle witnesses the

operation in step (b).

The circuit for 8-point WHT is presented in a block level in

Fig. 1. As can be seen, the hardware implementation requires

the following devices -

(i) four Arithmetic Units (AU) each consisting of an adder

and a subtractor for step (a), and

(ii) one stride permutation block (SBP) for the operation in

step (b)

The output of the SBP i.e the bits to are again loaded

into the input bits to and fed back to the AUs in the

next clock cycle for computation of the next iteration of the

Eq. 3. The number of AUs required depends in the dimension

of the input vector, . If , then number of AU

units are required. The number of clock cycles required is

equal to the number of iterations in Eq. 3. So, for point

one dimensional WHT, the number of clock cycles required

is .

Figure 1 : The Block Diagram of the proposed architecture

Two-dimensional Transform

It can be observed that Eq. 3 and Eq. 5 have the same

formulation with in the former one, replaced by in the

latter. So, the hardware architecture is the same. Only one

extra device is required which can preprocess the two

dimensional signal and convert it into a single column vector.

The single column vector can then be fed to the block for the

one dimensional (1-D) transform. One thing that needs to be

kept in mind is that the output from the 1-D block would be

column vector. So one needs to convert this to a two

dimensional form to get the final output.

IV.c Algorithms

Following subsections give a glimpse of the pseudocode for

the two variations of the transforms which have been

developed.

One-dimensional Transform

(i) input of real numbers

(ii) For every rising edge of the circuit clock,

(iii) For the corresponding falling edge of the circuit clock,

(iv)

(v) Repeat steps (ii) to (iv) for times.

Two-dimensional Transform

(i) input of real numbers

(ii) Convert into a column major representation

(iii) For every rising edge of the clock pulse,

 .

(iv) For the corresponding falling edge of the circuit clock,

 .
(v) .

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 31

(vi) Repeat steps (iii) to (v) for times.

(vii) Convert the column vector to the two dimensional

matrix .

IV.d Time Complexity Analysis

For the analysis presented below, one clock cycle has been

considered the unit of time and has been denoted by ` '.

One-dimensional Transform

The time complexity analysis can be obtained from the

algorithm in Sec IVc. The steps (ii) and (iii) get executed in

time . After these steps are executed, step (v) requires them

to be executed times more. So, the total time for

execution is given by () . Again we

know that i.e . Therefore from this

calculation, the asymptotic representation for the time

complexity of the algorithm for one-dimensional transform

can be given by .

Two-dimensional Transform

In the algorithm for the two-dimensional signal, the time

taken for the steps (iii) and (iv) is . After these steps, step

(iv) requires them to be executed another times.

Ignoring the pre-processing in step (ii) and the post

processing in step (vii), the total time required for the

computation can be given by ()

 . As the input signal is a matrix of order

 , the total input size comes to be . In terms of the

total input size, the total time comes to be .

Therefore the asymptotic representation of the time

complexity for this algorithm can be given by .

V. RESULTS AND OBSERVATIONS

The proposed architectures have been tested in Verilog HDL.

Different bit stream patterns have been employed to see the

variation in the time required for computation. Fig. 2 shows

the VHDL output for the bit stream of size .

Figure 2 : OUTPUT

 As can be seen, after the input to each consisting of

bits are applied to the block, the output is generated in a very

small time. The time required for different bit length - 16, 24

and 32 - have been shown in the Table. 1.

Table 1 : Table for time taken for computation of different bit

streams of varying length

Input

Length

Total Time

16-bit 3.401ns (1.534ns logic, 1.867ns route, 45.1%

logic, 54.9% route)

24-bit 5.531ns (5.111ns logic, 0.420ns route, 92.4%

logic, 7.6% route)

32-bit 5.642ns (5.111ns logic, 0.531ns route, 90.6%

logic, 9.4% route)

VI. CONCLUSION

The proposed architecture is completely new for WHT as no

one has proposed this kind of fast implementation of this

transform. The results got from the simulations have been

quite promising. The next step of work would be to

implement this in an Field Programmable Gate Array for

experiment.

REFERENCES

[1] J. Granata, M. Conner, and R. Tolimieri, “Recursive fast algorithm

and the role of the tensor product,” IEEE Transactions on Signal

Processing, vol. 40, no. 12, pp. 2921–2930, Dec 1992.

[2] J. R. Johnson, R. W. Johnson, D. Rodriguez, and R. Tolimieri,

“A methodology for designing, modifying, and implementing fourier

transform algorithms on various architectures,” Circuits, Systems

and Signal Processing, vol. 9, no. 4, pp. 449–500, Dec 1990.

[3] D. F. Chiper, “Radix-2 fast algorithm for computing discrete hartley

trans- form of type iii,” IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 59, no. 5, pp. 297–301, May 2012.

[4] D. F. Chiper, “A novel vlsi dht algorithm for a highly modular and

parallel archi- tecture,” IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 60, no. 5, pp. 282–286, May 2013.

[5] M. T. Hamood and S. Boussakta, “Fast walsh-hadamard-fourier

transform algorithm,” IEEE Transactions on Signal Processing, vol.

59, no. 11, pp. 5627–5631, Nov 2011.

[6] J. R. Johnson and A. F. Breitzman, “Automatic derivation and

implemen- tation of fast convolution algorithms,” Journal of Symbolic

Computation, vol. 37, no. 2, pp. 261 – 293, 2004.

[7] M. A. Richard Tolimieri and C. Lu, Algorithms for Discrete Fourier

Transform and Convolution. Springer-Verlag New York, 1997.

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 32

Authors Profile

Mr Pulak Mazumder received his M.Tech from
West Bengal University of Tech- nology, Kolkata
and his B.Tech degree in Electronics and
Communication Engineering from IET, New
Delhi, India. Presently he is the Head of the
Department of Electronics and Communication
Engineering in Regent Institute of Technology,
Kolkata, India. His research interests include digital
signalprocessing, microwave and em theory.

Mr Rajarshi Middya received his PhD from the
School of Mobile Computing and
Communications, Jadavpur University, Kolkata,
India, his Master’s Degree in Science and
Technology from Paristech, Paris, France and
his B.Tech degree in Electronics and
Communication Engineering from West Bengal
University of Technology, Kolkata, India.
Presently he is attached with the Department of E.T.C.E, Jadavpur
University, Kolkata, India. His research interests include wireless
sensor networks, signal processing and nonlinear dynamics.

Mr Mrinal Kanti Naskar holds a PhD in
Electronics and Telecommunications Engineering
from Jadavpur University, Kolkata, India and an
M.Tech degree and a B.Tech degree in
Electronics and Electrical Communications
Department, Indian Institute of Technology,
Kharagpur. His research interests include Wire-
less Sensor Networks, Computer Architecture and
Digital Design. At present, he is a Professor in the
Department of Electronics and Telecommunication Engineering,
Jadavpur University, Kolkata, India.

