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Abstract— The Walsh Hadamard Transform is an extremely relevant concept in modern digital image data compression. This 

paper examines the feasibility of using a tensor product based approach to Walsh Hadamard Transfrom for implementation to 

hardware architecture using FPGA technology. This paper explains the derivation of a highly parallel and very fast algorithm 

for the computation of both one-dimensional and two-dimensional transforms using tensor product. Such a fast dedicated 

hardware design for the Walsh Hadamard Transform will help a wide range of digital signal processing applications.  
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I.  INTRODUCTION  

 

The convenience of using tensor product for implementation 

of a DSP algorithm is one of the major driving forces behind 

this work. When it comes to tensors, scientists and 

mathematicians have applied it for theoretical studies 

involving a plethora of disciplines.  But a few years before, a 

seminal review on the utilisation of tensors in DSP 

algorithms [1] threw light on the unexplored area of 

algorithm optimisation using this mathe- matical concept.  It 

is now an established fact that the tensor product can be used 

for the implementation of DSP algorithms due to the strong 

correlation between these product constructs and CPU 

architectures. But it is not only mere implementation but 

rather the optimisation in terms of time complexity that has 

allured many to pursue this. Although previous works [2] 

had focussed on modelling FFT algorithms, it was Granta’s 

paper [1] which threw light onto the plethora of algorithms 

involving recursion that can have similar implementation.  

Having said these, the major constraint remains the 

implementation of these derived architectures for practical 

purposes.   This had been greatly aided by Field 

Programmable Gate Arrays which have experienced a 

pleasant favouritism from researchers with labo- ratory 

constrains. Our case revolves around a simple purpose. We 

implement a very well known transform technique from the 

area of DSP using tensor product and as a result we were 

able achieve a parallelisation technique for the algorithms.   

This has helped us to propose a new architecture for an 

application specific integrated circuit (ASIC) dedicated to 

this purpose. It is imperative to mention at the beginning 

that the architecture we propose is supposed to work in real  

 

time. So this could be used as a block during real time 

processing of digital signals. As a result it might be able to 

decrease the overall burden on the main processor. This 

concept has been used recently in the name of co-processors. 

The Walsh-Hadamard Transform (WHT) is a mathematical 

construct that finds wide application in the fields of digital 

signal processing, data compression, and encryption.  It 

also finds application in quantum computer information 

processing and, it is more often called Hadamard gate in 

this context. The transform is particularly useful in feature 

extraction for pattern recognition and digital image 

processing because of its easy implementation using 

simple arithmetic stages. Also, the binary nature of the 

Walsh functions and the Hadamard matrix allow easy 

implementation.   In this work, we use a tensor-product 

approach.   The usage of the tensor product allows 

implementation of WHT using an algorithm that is both 

recursive and parallel.  Using tensor product allows the 

decomposition of the WHT matrix into simpler arithmetic 

stages. Decomposing the one-dimensional input into pairs 

and applying them to the arithmetic stages allow for 

parallel execution. The output obtained is stride-permuted 

and applied back to the same arithmetic stages, continuing 

the execution recursively.    For  a  two-dimensional input,  

we  design  an algorithm that works on the column-major 

representation of the input.  This representation is one-

dimensional in nature, allowing the computation of the two 

dimensional signal similar to the one dimensional one. 

 

Our paper is organised as follows.  Section 2 gives a brief 

glimpse of previous works and where our work stands now. 

In section 3, we describe the concept of tensor product 
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and its use for devising parallel architecture for recursive 

algorithms. Next, in section 4, we focus on our main work, 

its procedures, the theoretical deductions and the logical 

implementation. The results and observations are described 

in section 5. Lastly, we draw the conclusion of our work in 

section 6. 

 

II. RELATED WORK  

 

Fast implementation of various transforms have been done 

by many before. In [3], a fast algorithm for the computation 

of dis- crete Hartley transform have been given. Although 

there have been numerous attempts to make the 

computation of Hartley transform fast and their 

implementation in VLSI, they gener- ally fall under the 

categories of direct and indirect. The method described in 

[3] involves a small number of arithmetic oper- ations with 

simplified combinational structure and optimistic time 

complexity.  As a result it is well suited for hardware 

implementation.  Another method for the computation of 

the above transform has been proposed by the same author 

a few months later [4] in which the algorithms proposed is 

supposed to be well suited for the subexpression sharing 

technique thus reducing the hardware complexity for 

parallel implementation of this algorithm. But so far, the use 

of tensor product has been limited in such propositions. In 

[5], an algorithm has been proposed to compute the WHT 

and the Discrete Fourier Transform simultaneously using a 

unified butterfly. This is supposed to reduce the number of 

arithmetic operations than the traditional methods where the 

transforms are computed separately. The authors have used 

the Kronecker product technique in sparse matrix 

factorisation to achieve the butterfly structure. But the 

objective seemed to have been clouded by the combination 

of these two transforms instead of making each transform 

fast individually. But irrespective of the works that have 

been done so far, the parallelisation of the operations using 

tensor product for implementation of WHT seemed an 

utouched area. This motivated us to write the present paper. 

 

III. CONCEPT OF TENSOR PRODUCTS 

 

Previously used in the area of applied mathematics and 

physics, tensors have a very elegant representation for multi 

dimensional systems. Although represented as matrices, the 

definition of tensor products is somewhat different. 

Considering two tensors A and B with structures as 

   [

          

          

    
          

] ;    [

          

          

    
          

] 

 

the tensor product   can be defined as  

           [

             
             

    
             

] 

When implementing this in a computer program, the fact that 

a larger matrix   can be represented as the decomposed 

version of two smaller matrices   and  , becomes very 

useful. An important property of this tensor product is that 

the tensor matrix   has its inverse as        . So to 

compute the inverse of a large matrix ($\mathbf{C}$), one 

can calculate the inverse of its decomposed tensor product (  

and  ). This acts as an advantage in the case of minimising 

time complexity.  

IV. FORMULATION AND ARCHITECTURE 

 

IV.a Walsh-Hadamard Transform 

One-dimensional Transform 

The WHT performs an orthogonal, symmetric, involution, 

linear operation in a set    of      real numbers. For one 

dimensional WHT, the set of real numbers is represented as a 

vector      and the transform is given by  

                (1) 

The Hadamard matrix    for      where   is an integer, 

can be recursively defined as 

   [

  
 

  
 

  
 

   
 

] 

where    *
  
   

+ . Alternatively,     can be defined 

using tensor product as follows 

             

               

Solving the recurrence for     using the method of 

substitution, we get 

                     
Now, the product rule [6,7] implies  

          ∏(              
    

)

 

   

 

Modifying the above generalised product rule for the WHT 

we get, 

    ∏(               )

   

   

 

Further, using commutation theorem, product rule and the 

properties of stride permutation matrices, we can obtain 

    ∏ (               )
   
      (2) 

 

Using this result in the definition of the WHT (Eq. 1), we get 

     ∏ (                   )
   
     (3) 
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This formulation gives way to an efficient algorithm for 

computing the Hadamard matrix where,                is 

a parallel operation and       is a    - point stride 2 

permutation matrix.  

 

Two-dimensional Transform 

The WHT of a square matrix    of order   is given by 

         
      (4) 

Since    has the same transpose i.e      
  , from Eq. 2, 

we get  

     
  ∏(               )

   

   

 

If this we represent the matrix    as a column matrix    od 

order      , we can rewrite Eq. 3 for obtaining two-

dimensional WHT as  

         
      

where    is a column matrix representation of   . Now, as 

    , from  Eq. 4, we can write 

     
          

      
       

     ∏ (                 )       

      (5) 

Eq. 5 gives an efficient algorithm for computation of two-

dimensional DWT where             is a parallel operation 

and        is a     - point, stride 2 permutation matrix. 

 

IV.b Proposed Architecture 

One-dimensional Transform 

Eq. (3) is composed of the following two steps -  

(a) The parallel operation               , and 

(b) Multiplication of the result of the previous operation with 

the stride permutation matrix. 

The operation in step (a) requires only addition and 

subtraction of the real values of the vector   - which can be 

considered to be the input vector. The next step i.e (b) is 

responsible for changing the order of the output of the 

previous step. Relating to this, a hardware architecture is 

presented where each iteration in Eq. 3 is completed in the 

positive half-cycle and the negative half-cycle witnesses the 

operation in step (b).  

The circuit for 8-point WHT is presented in a block level in 

Fig. 1. As can be seen, the hardware implementation requires 

the following devices - 

(i) four Arithmetic Units (AU) each consisting of an adder 

and a subtractor for step (a), and 

(ii) one stride permutation block (SBP) for the operation in 

step (b) 

The output of the SBP i.e the bits    to    are again loaded 

into the input bits    to    and fed back to the AUs in the 

next clock cycle for computation of the next iteration of the 

Eq. 3. The number of AUs required depends in the dimension 

of the input vector,  . If     , then    number of AU 

units are required. The number of clock cycles required is 

equal to the number of iterations in Eq. 3. So, for     point 

one dimensional WHT, the number of clock cycles required 

is  . 

 
Figure 1 : The Block Diagram of the proposed architecture 

Two-dimensional Transform 

It can be observed that Eq. 3 and Eq. 5 have the same 

formulation with   in the former one, replaced by    in the 

latter. So, the hardware architecture is the same. Only one 

extra device is required which can preprocess the two 

dimensional signal and convert it into a single column vector. 

The single column vector can then be fed to the block for the 

one dimensional (1-D) transform. One thing that needs to be 

kept in mind is that the output from the 1-D block would be 

column vector. So one needs to convert this to a two 

dimensional form to get the final output. 

 

IV.c Algorithms 

Following subsections give a glimpse of the pseudocode for 

the two variations of the transforms which have been 

developed. 

  

One-dimensional Transform 

(i)     input of      real numbers 

(ii) For every rising edge of the circuit clock,           

(iii) For the corresponding falling edge of the circuit clock, 

         
   

(iv)       

(v) Repeat steps (ii) to (iv) for     times. 

 

Two-dimensional Transform 

(i)       input of           real numbers 

(ii) Convert      into a column major representation    

(iii) For every rising edge of the clock pulse,  

              . 

(iv) For the corresponding falling edge of the circuit clock, 

               . 
(v)      . 
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(vi) Repeat steps (iii) to (v) for      times. 

(vii) Convert the column vector    to the two dimensional 

matrix     . 

 

IV.d Time Complexity Analysis 

For the analysis presented below, one clock cycle has been 

considered the unit of time and has been denoted by ` '. 

 

One-dimensional Transform 

The time complexity analysis can be obtained from the 

algorithm in Sec IVc. The steps (ii) and (iii) get executed in 

time  . After these steps are executed, step (v) requires them 

to be executed      times more. So, the total time for 

execution   is given by  (       )      . Again we 

know that       i.e        . Therefore from this 

calculation, the asymptotic representation for the time 

complexity of the algorithm for one-dimensional transform 

can be given by         . 
 

Two-dimensional Transform 

In the algorithm for the two-dimensional signal, the time 

taken for the steps (iii) and (iv) is  . After these steps, step 

(iv) requires them to be executed another      times. 

Ignoring the pre-processing in step (ii) and the post 

processing in step (vii), the total time required for the 

computation   can be given by   (        )  

            . As the input signal is a matrix of order 

   , the total input size   comes to be   . In terms of the 

total input size, the total time   comes to be      . 

Therefore the asymptotic representation of the time 

complexity for this algorithm can be given by         . 

 

V. RESULTS AND OBSERVATIONS  

 

The proposed architectures have been tested in Verilog HDL. 

Different bit stream patterns have been employed to see the 

variation in the time required for computation. Fig. 2 shows 

the VHDL output for the bit stream of size   . 

 

 
Figure 2 : OUTPUT 

 

 

 As can be seen, after the input    to    each consisting of    

bits are applied to the block, the output is generated in a very 

small time. The time required for different bit length - 16, 24 

and 32 - have been shown in the Table. 1.  

 
Table 1 : Table for time taken for computation of different bit 

streams of varying length 

Input 

Length 

Total Time 

16-bit 3.401ns (1.534ns logic, 1.867ns route, 45.1% 

logic, 54.9% route) 

24-bit 5.531ns (5.111ns logic, 0.420ns route, 92.4% 

logic, 7.6% route) 

32-bit 5.642ns (5.111ns logic, 0.531ns route, 90.6% 

logic, 9.4% route) 

VI. CONCLUSION 

The proposed architecture is completely new for WHT as no 

one has proposed this kind of fast implementation of this 

transform. The results got from the simulations have been 

quite promising. The next step of work would be to 

implement this in an Field Programmable Gate Array for 

experiment.  
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