

 © 2019, IJCSE All Rights Reserved 533

International Journal of Computer Sciences and Engineering Open Access

Review Paper Vol.-7, Issue-1, Jan 2019 E-ISSN: 2347-2693

Aspect Oriented Programming Tools for .Net Framework

P.R. Sarode
1*

, R.N. Jugele2

1
Inter Institutional Computer Centre, Nagpur University Campus, RTM Nagpur University, Nagpur, India

2
Department of Computer Science, Shri Shivaji Science College, Congress Nagar, Nagpur, India

*Corresponding Author: priya.s1011@gmail.com, Tel.: +91-9503869986

Available online at: www.ijcseonline.org

Accepted: 16/Jan/2019, Published: 31/Jan/2019

Abstract— Aspect oriented programming is a young concept in Computer science. It is succeeding from research projects

towards commercial applications. Most of the current AOP tools suitable for commercial projects are proposed for Java

platform only, which bounds their applicability. AspectJ is the leading tool for Java technology, the only way to implement a

new programming paradigm such as Aspect Oriented Programming is either to extend the Java language or to develop Java

API to support it. For .NET, the situation is different — it is a multilanguage programming environment. Today, Aspect

Oriented Programming is supported in most languages and platforms. For Microsoft .NET, PostSharp is the most advanced and

mature framework, and has been used commercially for several years. There are various known Aspect Oriented Programming

tools for Microsoft.NET also. This paper present the analysis and overview of the all various popular AOP tools for .Net

framework in detail.

Keywords—Aspect Oriented Programming, .Net, AOP tools, CLR, MSIL.

I. INTRODUCTION

Aspect oriented programming (AOP) is a young concept in

Computer science. Gregor Kiczales lead a team of

researchers who first described AOP in 1997. As any

engineering discipline, software engineering learned that

simplicity is achieved by pursuing a good separation of

concerns. A separation of concerns is what allows designers

to componentize solutions to recurring problems – whether

in software engineering, mechanical engineering, electrical

and electronic engineering, or architecture. Although object-

oriented programming (OOP) made significant progress in

this direction, there is still a large category of issues that

cannot be addressed appropriately using traditional

programming styles: technical requirements and other

features grouped under the term of crosscutting concerns.

AOP is an extension of OOP and is specifically designed to

address crosscutting concerns in software development. AOP

enables developers to write a formal expression of solutions

to repeating problems and automatically implement them

rather than manually doing so with conventional

programming techniques. Just as object-oriented

programming did not replaced structure programming, AOP

is not a replacement of OOP but rather an extension of it.

AOP’s positive impact on software development is

measurable in both controlled studies and real-world

development efforts. Today, AOP is supported in most

languages and platforms. AspectJ allows programmers to

have the advantage of modularization for cross cutting

concerns[1], the reference AOP implementation, is the

leading tool for Java and the tool called AJATO 0is an

assessment tool used to provide the quantitative analysis of

software artifacts. It helps in computing the Aspect-Oriented

metrics and also supports the use of heuristics [2]. For

Microsoft .NET, PostSharp is by far the most advanced and

mature framework, and has been used commercially for

several years by Fortune 500 companies.

II. AOP FOR MICROSOFT .NET

Firstly, when .NET appeared in 2000, some scientists

intended to implement AOP for .NET, following the success

of AspectJ — simply considered AspectJ syntax and

semantics and tried to present them some way into C#, either

as a language extension or as an addition to C# code in the

form of XML. However, the environment and essentials of

.NET have some important differences from Java. To better

understand these differences, most sensitive for AOP

implementation, let us look at two important notions that [3]

used when designing and implementing Aspect.NET.

i) .NET is a Multilanguage programming platform, more

open in style than Java. For Java technology, the only

way to implement a new programming paradigm such as

AOP is either to extend the Java language or to develop

Java API to support it. For .NET, the situation is different

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 534

— it is a Multilanguage programming environment.

Therefore, the first idea proposed in 2002 when starting

to do AOP for .NET was that AOP for .NET should

preferably be language - agnostic. It would contradict the

spirit of .NET and its principles of Multilanguage

interoperability if AOP features would enhance C#

language only and would not be available in Visual

Basic.NET or in Managed C++.NET. However, further

reasoning on this subject can lead to implementing too

radical a solution: Let us make .NET’s Common

Language Runtime, the basis for Multilanguage

interoperability (or at least its shared – source version,

Rotor), ―aspect - aware,‖ to support AOP in the strongest

way. Hundreds of AOP tools for .NET, discussed below,

were developed. Many attempts have been made to join

approaches to AOP for .NET and to implement within the

CLR some common ―AOP engine.‖ The intent of the

very interesting seminar ―AOP goes .NET,‖ organized at

Microsoft in November 2005, was specifically to develop

a common approach to AOP for .NET. There are many

reasons for that primary ones are a variety of different

approaches to AOP, and the strategic importance of the

CLR, which is too significant and critical to any changes

to accept the risk of updating for the needs of a new

programming paradigm. Implementation of AOP for

.NET should not be tied to any programming language

(say, C#). It should be language - agnostic. However, it

should not prevent from doing normal work by common -

use .NET tools: CLR, debuggers, profilers, and so on. In

other words, Implement AOP for .NET using the

extension mechanisms it provides, but do not require that

common - use .NET tools be ―AOP - aware‖ This

principle leads to the second notion [3] formulated in

2002 and described in early 2003 [4].

ii) Second notion is that .NET has a general and

comfortable extension mechanism: custom attributes.

They ideally fit to implementing any type of annotation:

formal specifications, comments on the code, and for

annotating some code as belonging to some aspect.

Annotations in the form of custom attributes are

understandable by the appropriate specialized tools —

formal verifier and theorem prover, aspect weaver, and so

on — the tools those annotations are intended for. Other

common - use .NET tools (CLR, debugger, etc.) just

ignore those custom attributes. However, as compared to

any separate XML configuration file, .NET makes

possible custom attributes that are an inherent part of the

binary code and portable executable file, are traveling in

the same file with the MSIL code, and cannot be ―lost‖

when the code of the assembly is passed over the

network. Aspect.NET was the first AOP tool for .NET

that used custom attributes. A few years later, other AOP

researchers arrived at similar beliefs and started using

custom attributes to represent aspects for .NET. Another

key question that get up when implementing aspects for

.NET is - at what level should the weaving process take

place? The following answer looks evident: Since .NET

is a Multilanguage platform and all .NET languages

compiled into MSIL code, MSIL should become the basis

for weaving. There are two problems in MSIL related to

weaving. First, MSIL postfix - style code has a linear

structure and is not easy for weaving: adding, inserting,

or replacing pieces of code. Therefore, an MSIL - level

weaver should first convert MSIL code of the aspect and

the target application into a more proper tree like or graph

like format, then complete the weaving and convert the

resulting target code back into MSIL. Second [4], if the

AOP tool uses custom attributes to mark aspects and the

results of their weaving, the attributes can only mark the

named entities in the code: assembly, class, method, and

field definitions. They cannot mark executable statements

of MSIL code (assignments, branches, calls, etc.).

Therefore, after weaving some aspects into a target code,

it will not be, in general, possible to ―color‖ the

fragments that relate to different aspects. However, if all

aspect code injections contain calls of aspect methods or

access to aspect fields, the aspect visualizer can use them

to identify the code fragments related to weaving of each

aspect [3].

III. AOP TOOLS FOR .NET FRAMEWORK

Keeping the previous considerations in mind let us overview

and analyze the most popular AOP tools for .NET. Names

and references for some AOP - for - .NET tools are as

follows:

[1] LOOM.NET
LOOM.NET [5] implements both runtime weaving (by

Rapier - LOOM.NET weaver) and static weaving (by

Gripper - LOOM.NET weaver). The ultimate goals of the

project are to help in developing and enhancing dynamically

reconfigurable multithreaded software that sometimes cannot

be restarted for reconfiguration, for reliability reasons. The

Rapier - LOOM.NET weaver is used to generate and weave

dynamic proxies. Aspects in LOOM.NET defined via aspect

classes. LOOM.NET implements some AspectJ - like

features for the commercial version of .NET and for Mono

[6]. Advice custom attributes are used in aspect class

definitions to mark aspect classes, their methods, and to

explicitly specify the weaving conditions. The dynamic

weaver uses its factory methods to generate interwoven

objects. The important restriction on this dynamic weaving

approach is as follows: The methods to be interwoven should

be virtual or should be defined via interfaces. For purposes of

the project, it is acceptable. However, for general use of the

system, this restriction looks serious. LOOM.NET also used

to implement design - by - contract aspects. The authors of

the approach pay a lot of attention to performance and

reliability [4].

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 535

[2] AspectDNG
AspectDNG [7] is a multilanguage aspect weaver that works

at the MSIL level. It allows us to weave any .NET 1.1 or

.NET 2.0 assemblies. The project was inspired by AspectJ

and is implemented in C#. Because the weaver works with

MSIL code, the aspects and the target application can be

written in any language compiled in MSIL. The weaver

accepts two forms of join point languages. The first is XPath,

the language widely used for navigation in XML

namespaces. The second is the language of regular

expressions. AspectDNG is definitely a helpful tool, but it

cannot yet be regarded as a full - fledged AOP framework: It

lacks a proper aspect specification language and an IDE [3]

consider XPath is a proper language for AOP specification,

but AspectDNG can be useful as part of a larger AOP

development platform.

[3] Aspect#
Aspect# [8] is an AOP tool for C#. It consists of a simple

(non - XML) aspect configuration language and an aspect

engine (weaver). The advices supported are limited to

interceptors only. The aspect engine (specified by an instance

as the Aspect Engine class) is called from C# using its Wrap

method, whose argument is the type to be extended by

weaving interceptors. The list of interceptors is provided in

the configuration file. The result of the Wrap method is the

proxy to the extended type. Pointcuts are also limited to a

primitive form of regular expressions. To identify the

separately defined elements of the aspect (interceptors) in the

aspect definition, string keys (like ―interceptor1‖) are used.

Aspect# has no IDE; neither is it integrated to Visual Studio

or another existing IDE for .NET.

[4] PostSharp
PostSharp [9] is a postcompiler for the .NET platform. It

works as an MSIL code transformer and uses custom

attributes. This tool can be useful for many purposes,

including AOP. To illustrate the AOP capabilities of

PostSharp, a high - level aspect weaver, PostSharp Laos, was

developed on top of PostSharp. An aspect in PostSharp,

intended for use with the PostSharp Laos weaver, should be

defined as a special type of custom attribute, which can be

used with any class or method to extend its functionality. The

project site contains the following example of such aspect

that sheds more light on the AOP cuisine of PostSharp:

public sealed class RequiresRoleAttribute:

OnMethodBoundaryAspect

{

string[] roles;

public string[] Roles

{

 get { return this.roles; }

 set { this.roles = value; }

}

public override void

OnEntry(MethodExecutionEventArgs e)

{

 ((ISecurable) e.Instance).RequireRoles(this.roles);

}

}

This class defines an aspect as a custom attribute that adds

security functionality of checking the user’s roles on entry to

some given methods (say, methods performing deletion of

some information). The aspect can be applied to any

assembly using the ordinary custom attribute definition in

C#:

[assembly: RequiresRole (Roles=new string[] {

‖Delete‖}, TargetMethods= ‖Delete*‖)]

When processing the MSIL code of the application, the

PostSharp Laos weaver understands this custom attribute as

an instruction to weave into any method in the assembly

whose name fits the Delete * wildcard, an interceptor aspect

injecting the security action on entry to the method. This type

of approach is typical for many AOP tools for .NET: They

don’t provide a single conceptually clear AOP framework

with its own aspect specification language and set of

concepts (more challenging to implement), but instead, use

the existing features (classes, methods, custom attributes) to

identify aspects directly by means of the implementation

language (C# in most cases). The smartest and most

complicated part of such AOP tools is a weaver whose work

and semantics are considered as some kind of tricky ―magic‖

can characterize such an approach to AOP as ―experimental,‖

which is normal for research projects.

[5] DotSpect

DotSpect (aka .SPECT) is a tool for aspect .NET assemblies.

The advice code written in any language as long as we have a

compiler for that language and a mechanism to inject in the

targeted assembly. By default, .SPECT provides support for

writing aspects in C# and VB.NET. Currently the assemblies

are aspect at Compile time (Static injection) [10].

[6] Encase

Encase is an aspect oriented programming framework for the

.NET Platform written in C#. Encase is unique in that it

provides aspects to be applied during runtime in managed

code rather than being configuration file based that other

AOP frameworks rely upon. The advantage of applying

aspects in this way is that it promotes productivity to

developers new and/or unfamiliar with AOP. Extensions is

both currently in early development [11].

[7] Compose*

Compose* is a modular extension tool/framework used for

composition filters. This architecture supports multiple

targets, repository-based set of analysis tools. Compose*

(pronounced ―Compose-star‖) is a project that aims at

enhancing the modularization capabilities of component and

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 536

object based programming. In particular, compose* offers

aspect-oriented programming through the composition filters

model [12].

[8] Weave.NET

Weave.NET [13] is a project and AOP tool targeted to

language - independent aspects. This term is understood by

the users in the sense that [3] explained earlier in the section:

MSIL - level aspects. The input for the weaver is a set of

.NET assemblies and an XML file to specify weaving

directives in the style and spirit of AspectJ. Weaving is

performed at load time.

[9] Wicca and Phx.Morph

Wicca [14] is an AOP framework that implements various

kinds of weaving strategies: both static and dynamic

weaving, at the source code and MSIL code levels. In

particular, MSIL - level weaving in Wicca is supported by

Phx.Morph, which is based on Microsoft ’ s Phoenix [15]

back - end compiler infrastructure (as well as the weaver in

Aspect.NET). Dynamic weaving in Wicca is implemented

using another Microsoft technology and tool: the Microsoft

Managed Debugger (mdbg) [16]. Wcs, a source code

compiler and weaver, implement C #source code – level

weaving in Wicca. The wcs tool implements a small

extension of C#: statement annotations. Here is an example

from the Wicca Web site:

public SimpleDraw()

{

 [Log (Sev.Info, ‖Creating a line ‖)]

 Shape s = new Line(new Point(1, 9), new

Point(9,1));

}

Such annotation before the assignment statement is

converted by wcs into ordinary C# code like this (again,

the example is from the Wicca Web site):

[Statement(19, ‖LogAttribute‖, Sev.Info, ‖Creating a

line‖)]

public SimpleDraw()

{

 Shape s = new Line (new Point(1, 9), new

Point(9,1));

}

The latter code is compiled by common - use C# compiler.

This is an original decision of the problem of annotation lack

for statements, although the issue is resolved at the C# source

code level rather than at the MSIL code level. The only

disadvantage of this technique is lack of readability. The user

who thinks in terms of the extended C# may not understand

what happened to his or her code, since in debugging the user

will see the latter fragment of the source code or its image in

MSIL code. As from the examples, AOP implementation in

Wicca is based on custom attributes. As for many other AOP

projects for .NET, the goal of the project authors is to

implement all functionality of AspectJ. However, the project

is notable by three advantages: a wide spectrum of weaving

techniques is offered to users, an interesting method of

statement annotations (applicable to Java as well as to C#) is

utilized, and the latest Microsoft technologies and tools are

used.

[10] Seasar.NET

S2Container.NET is a lightweight DI container supporting

AOP. It is a port of Java version Seasar2 to .NET framework

[17].

[11] Spring.NET Framework

Spring.NET AOP is implemented in pure C#. There is no

need for a special compilation process - all weaving is done

at runtime. Spring.NET AOP does not need to control or

modify the way in which assemblies are loaded, nor does it

rely on unmanaged APIs, and is thus suitable for use in any

CLR environment. Spring.NET currently supports

interception of method invocations. Field interception is not

implemented, although support for field interception could

be added without breaking the core Spring.NET AOP APIs

[18].

[12] HyperC#
HyperC# tool supports Multidimensional Separation of

Concerns for C#. Adopting some of the techniques from

Hyper/J (which is MDSOC for Java), the HyperC# tool, and

implemented using C #. With HyperC#, a graphical user

interface system is created that provides AOP features to C#

developers or programmers by using MDSOC approach.

Using this tool, C #developers can create new concern

classes and new hypermodules. Using integration

relationships, the system integrates concern classes together

by using the pre-processor developed to create a new C#

class that can be further used in other integration files, or can

be compiled in an executable file using the C# compiler.

HyperC# System demonstrates how the AOP extension to C#

can enhance software evolution, modularity and reusability

[19].

[13] CrosscutterN

CrossCutterN [20] is a free and lightweight AOP tool for

.NET using IL weaving technology. As other AOP tools like

postsharp, it helps developers to inject AOP code into their

programs. The advantages of CrossCutterN comparing with

other AOP, technologies include:

Free: CrossCutterN is open source and free under

MIT license.

Light Weight: Instead of adding compile time dependency

to projects, CrossCutterN injects AOP code after project

assemblies are built. This approach allows AOP code

injection into assemblies whose source code are not

available, and decouples project code from AOP code as

much as possible.

http://s2container.seasar.org/en/index.html

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 537

IV. LIMITATIONS OF AOP TOOLS FOR .NET

The following limitations of the existing AOP tools for .NET

listed as follows:

1) Lack of multilanguage interoperability; dependence

on C# or MSIL.

Most AOP tools for .NET are tied to C# only, so they do not

use properly one of the main features of .NET: multilanguage

interoperability. The only approach used to achieving

interoperability in some other AOP tools for .NET is reliance

on MSIL (which is surely not a high - level language).

2) Lack of proper aspect specification language.
Most projects prefer to use C#, MSIL, and .NET ―as is,‖

explicitly defining aspects as C# classes inherited from some

specific ―core aspect implementation classes ‖ using custom

attributes or ― side - door ‖ aspect configuration fi les not

easy to understand. They just model AOP and AspectJ

features in a lower - level implementation language. With

such an approach, AOP for .NET becomes simply a kind of

discipline, not quite reliable (since when explicitly defining

complicated AOP custom attributes, it is easy to make a

mistake), without any support at the aspect design stage.

Note that for Java AOP tools unlike .NET AOP tools, [3]

mentioned as one of the limitations quite a different thing,

too - complicated aspect specification languages. It looks as

if most AOP researchers for .NET experience such a deep

influence of AspectJ that they make one of their major goals

modeling AspectJ features by C# classes and XML

configuration fi les rather than discovering new, more

general, and open - style AOP features that may be supported

by .NET.

3) Lack of aspect manipulation and visualization GUI.
Most AOP tools for .NET are still in an early stage of

development, they only provide AOP supporting API and

(some of them) AOP configuration files in XML, but they

lack GUI to manipulate aspects, to visualize them, to debug

them, and so on — everything accustomed to doing with

―non - AOP ‖ applications, due to modern integrated

development environments.

4) Lack of integration to Visual Studio.NET or other

IDE for .NET.

It is widely appreciated that Microsoft Visual Studio.NET is

the most convenient and powerful IDE for .NET. Millions of

users are accustomed to its rich set of features: source code

navigation, highlighting and refactoring, project templates,

automatic code generation for the most complicated kinds of

programs (such as Web services), multilanguage debugging

at the source code level, profiling, automated unit test

generation, teamwork, and so on. No code is developed from

scratch. The user always has a skeleton (and a visual image,

if appropriate) if his or her code is at the design stage. So

when learning and assessing a new technology such as AOP,

users are not going to lack any of these features. They do not

want to use command - line interface to start AOP tools.

They do not want to suffer when typing complicated XML

configuration files for an AOP tool in notepad, without the

support of templates. They would like to see their aspects in

proper images: what they look like, which join points they

have with the target application, what results they should

expect from weaving (in terms of the source code), and so

on. Many AOP tools for Java (e.g., AspectJ) are integrated to

Eclipse — one of the most popular Java IDEs, and offer the

features just described. But unfortunately, most existing AOP

tools for .NET are not yet integrated to Visual Studio.NET,

although this IDE provides two integration methods: as an

add - in and through Visual Studio Integration Program API.

V. OBSERVATIONS AND CONCLUSION

The aim of this paper is to contribute to the brief summary of

the AOP tools for .NET. Each tool is unique and featured in

their own way. In this section, we present the special feature,

which is observed during the study of each tool.

Loom.Net is a tool, which implements runtime as well as

static weaving. AspectDNG is a multilanguage aspect weaver

that works at MSIL level. Aspect# is an AOP tool for C#,

which consist of simple aspect language and aspect weaver.

PostSharp is used as a postcompiler for .Net platform at

MSIL level by using custom attributes. DotSpect is run for

C# and VB.Net by using .Net assemblies at compile time.

Encase is for C#.Net, that provides the aspects applied during

runtime and by this feature it promotes productivity for new

users of AOP. Compose* tool is specially designed for

composition filters to increase the modularization of the

component. Wave.Net tool is designed to language

independent aspects and it is working on MSIL Level. Wicca

and Phx.Morph implements at multi-level weaving strategies

(static, runtime, source code level, MSIL level). HyperC#

tool demonstrates how the AOP extension to C# can enhance

software evolution, modularity and reusability. Seasar.Net is

a lightweight tool with DI (Dependency Injection)

technology. Spring.Net tool is purely implemented in C#

with runtime weaving only and it is suitable for CLR

environment. CrosscutterN is an open source (under MIT

License) lightweight tool that uses IL (Intermediate

Language) weaving.

All these tools contain many original approaches to

implementing AOP. A lot of them use custom attributes.

Some of them have experience of use for real tasks, some of

them implemented only in C#; some are implements at MSIL

level. Therefore, we can conclude that this paper provides the

rich set of AOP tools for .Net platform with their unique

features.

 International Journal of Computer Sciences and Engineering Vol.7(1), Jan 2019, E-ISSN: 2347-2693

 © 2019, IJCSE All Rights Reserved 538

VI. ABBREVIATIONS AND ACRONYMS

Following abbreviations and acronyms used in the given

paper listed below.

[1] AOP- Aspect Oriented Programming

[2] CLR- Common Language Runtime

[3] MSIL- Microsoft Intermediate Language

[4] API- Application Programming Interface

[5] GUI- Graphical User Interface

ACKNOWLEDGMENT

We thank the Babasaheb Ambedkar Research and Training

Institute (BARTI), Pune for funding our research.

REFERENCES

[1] Jatin Arora, Jagandeep Singh Sidhu and Pavneet Kaur, "Applying

Dependency Injection Through AOP Programming to Analyze the

Performance of OS", International Journal of Computer Sciences and

Engineering, Vol.3, Issue.2, pp.45-50, 2015.

[2] Geeta Bagade, Shashank Joshi, "Analysis of Aspect Oriented

Systems: Refactorings using AspectJ", International Journal of

Computer Sciences and Engineering, Vol.4, Issue.5, pp.76-80, 2016.

[3] Safonov, V. O. (Vladimir Olegovich) Using aspect-oriented

programming for trustworthy software development /Vladimir O.

Safonov. p. cm. ISBN 978-0-470-13817-5QA76. 64. S253 2008.

[4] Safonov V. Aspect.NET: a new approach to aspect - oriented

programming, .NET Developer’s Journal 2003 ;(4): 36 – 40.

[5] LOOM.NET Web pages. Available at http://www.rapier - loom.net/.

[6] Mono. Available at http://www.mono - project.com.

[7] AspectDNG Web pages. Available at

http://sourceforge.net/projects/aspectdng/.

[8] Aspect# Web pages. Available at

http://www.castleproject.org/aspectsharp/.

[9] PostSharp Web pages. Available at http://www.postsharp.org/.

[10] DotSpect Web pages. Available at http://dotspect.tigris.org/.

[11] Encase Web pages. Available at

http://theagiledeveloper.com/articles/Encase.aspx.

[12] Compose* Web pages. Available at

http://composestar.sourceforge.net/.

[13] Weave.NET. Available at

http://www.dsg.cs.tcd.ie/dynamic/?category_id= - 26.

[14] Wicca and Phx.Morph Web site. Available at

http://www.cs.columbia. edu/eaddy/wicca.

[15] Microsoft Phoenix. Available at

http://research.microsoft.com/phoenix.

[16] Microsoft Managed Debugger (mdbg) Web pages. Available at

http://msdn.

microsoft.com/msdntv/episode.aspx?xml=episodes/en/20060302clrjs/

manifest.xml.

[17] Seasar.Net Web pages available at

http://s2container.net.seasar.org/en/index.html

[18] Spring.Net Framework for Aop Available at

http://www.springframework.net/doc-latest/reference/html/aop.html.

[19] Angela Hantelmann, Cui Zhang: ―Adding Aspect-Oriented

Programming Features to C#.NET by using Multidimensional

Separation of Concerns (MDSOC) Approach‖, in Journal of Object

Technology, vol. 5 no. 4 Mai-June 06, pp. 59-83.

[20] CrosscutterN Available at

https://www.codeproject.com/Tips/CrossCutterN-A-Light-Weight-

AOP-Tool-for-NET

Authors Profile

Priyanka Sarode awarded B.Sc. degree in

2006 and MCA degree in 2009 from

Rashtrasant Tukdoji Maharaj Nagpur

University, Nagpur. Currently she is pursuing

Ph.D. in Computer Science and a research

fellow at Inter Institutional Computer Center,

Rashtrasant Tukdoji Maharaj Nagpur University, and

Nagpur. Her research work is acknowledged by BARTI,

Pune. Her main research work focuses on Programming

languages, Aspect Oriented Programming. Mail Id:

priya.s1011@gmail.com Mobile No. 950386998

Ravikant Jugele is a M.Sc. in Computer

Science from Marthwada University,

Aurangabad in 1993. He also completed Ph.

D. in Computer Science from Rashtrasant

Tukdoji Maharaj Nagpur University. He is

currently working as an Associate Professor

in Department of Computer Science, Shivaji Science

College, Congress nagar, Nagpur. Since 1995, his research

interests include Multimedia and Hypermedia, cloud

computing, Programming languages, Artificial Intelligence,

Deep Technology and so on. Mail Id: rn_jugele@yahoo.com.

http://composestar.sourceforge.net/
http://www.cs.columbia/
http://msdn/
http://s2container.net.seasar.org/en/index.html
http://www.springframework.net/doc-latest/reference/html/aop.html
https://www.codeproject.com/Tips/CrossCutterN-A-Light-Weight-AOP-Tool-for-NET
https://www.codeproject.com/Tips/CrossCutterN-A-Light-Weight-AOP-Tool-for-NET

