[4
AX]JCSE International Journal of Computer Sciences and Engineering [pen Access

Review Paper Vol.-7, Issue-1, Jan 2019 E-ISSN: 2347-2693

Aspect Oriented Programming Tools for .Net Framework

P.R. Sarode®”, R.N. Jugele?

YInter Institutional Computer Centre, Nagpur University Campus, RTM Nagpur University, Nagpur, India
Department of Computer Science, Shri Shivaji Science College, Congress Nagar, Nagpur, India

“Corresponding Author: priya.s1011@gmail.com, Tel.: +91-9503869986

Available online at: www.ijcseonline.org

Accepted: 16/Jan/2019, Published: 31/Jan/2019
Abstract— Aspect oriented programming is a young concept in Computer science. It is succeeding from research projects
towards commercial applications. Most of the current AOP tools suitable for commercial projects are proposed for Java
platform only, which bounds their applicability. AspectJ is the leading tool for Java technology, the only way to implement a
new programming paradigm such as Aspect Oriented Programming is either to extend the Java language or to develop Java
API to support it. For .NET, the situation is different — it is a multilanguage programming environment. Today, Aspect
Oriented Programming is supported in most languages and platforms. For Microsoft .NET, PostSharp is the most advanced and
mature framework, and has been used commercially for several years. There are various known Aspect Oriented Programming
tools for Microsoft. NET also. This paper present the analysis and overview of the all various popular AOP tools for .Net

framework in detail.

Keywords—Aspect Oriented Programming, .Net, AOP tools, CLR, MSIL.

l. INTRODUCTION

Aspect oriented programming (AOP) is a young concept in
Computer science. Gregor Kiczales lead a team of
researchers who first described AOP in 1997. As any
engineering discipline, software engineering learned that
simplicity is achieved by pursuing a good separation of
concerns. A separation of concerns is what allows designers
to componentize solutions to recurring problems — whether
in software engineering, mechanical engineering, electrical
and electronic engineering, or architecture. Although object-
oriented programming (OOP) made significant progress in
this direction, there is still a large category of issues that
cannot be addressed appropriately using traditional
programming styles: technical requirements and other
features grouped under the term of crosscutting concerns.
AOP is an extension of OOP and is specifically designed to
address crosscutting concerns in software development. AOP
enables developers to write a formal expression of solutions
to repeating problems and automatically implement them
rather than manually doing so with conventional
programming techniques. Just as object-oriented
programming did not replaced structure programming, AOP
is not a replacement of OOP but rather an extension of it.
AOP’s positive impact on software development is
measurable in both controlled studies and real-world
development efforts. Today, AOP is supported in most
languages and platforms. AspectJ allows programmers to

© 2019, IJCSE All Rights Reserved

have the advantage of modularization for cross cutting
concerns[1], the reference AOP implementation, is the
leading tool for Java and the tool called AJATO OQis an
assessment tool used to provide the quantitative analysis of
software artifacts. It helps in computing the Aspect-Oriented
metrics and also supports the use of heuristics [2]. For
Microsoft .NET, PostSharp is by far the most advanced and
mature framework, and has been used commercially for
several years by Fortune 500 companies.

Il. AOPFOR MICROSOFT .NET

Firstly, when .NET appeared in 2000, some scientists
intended to implement AOP for .NET, following the success
of Aspect] — simply considered Aspect) syntax and
semantics and tried to present them some way into C#, either
as a language extension or as an addition to C# code in the
form of XML. However, the environment and essentials of
.NET have some important differences from Java. To better
understand these differences, most sensitive for AOP
implementation, let us look at two important notions that [3]
used when designing and implementing Aspect.NET.

1) .NET is a Multilanguage programming platform, more
open in style than Java. For Java technology, the only
way to implement a new programming paradigm such as
AOP is either to extend the Java language or to develop
Java API to support it. For .NET, the situation is different

533

International Journal of Computer Sciences and Engineering

— it is a Multilanguage programming environment.
Therefore, the first idea proposed in 2002 when starting
to do AOP for .NET was that AOP for .NET should
preferably be language - agnostic. It would contradict the
spirit of .NET and its principles of Multilanguage
interoperability if AOP features would enhance C#
language only and would not be available in Visual
Basic.NET or in Managed C++.NET. However, further
reasoning on this subject can lead to implementing too
radical a solution: Let us make .NET’s Common
Language Runtime, the basis for Multilanguage
interoperability (or at least its shared — source version,
Rotor), “aspect - aware,” to support AOP in the strongest
way. Hundreds of AOP tools for .NET, discussed below,
were developed. Many attempts have been made to join
approaches to AOP for .NET and to implement within the
CLR some common “AOP engine.” The intent of the
very interesting seminar “AOP goes .NET,” organized at
Microsoft in November 2005, was specifically to develop
a common approach to AOP for .NET. There are many
reasons for that primary ones are a variety of different
approaches to AOP, and the strategic importance of the
CLR, which is too significant and critical to any changes
to accept the risk of updating for the needs of a new
programming paradigm. Implementation of AOP for
.NET should not be tied to any programming language
(say, C#). It should be language - agnostic. However, it
should not prevent from doing normal work by common -
use .NET tools: CLR, debuggers, profilers, and so on. In
other words, Implement AOP for .NET using the
extension mechanisms it provides, but do not require that
common - use .NET tools be “AOP - aware” This
principle leads to the second notion [3] formulated in
2002 and described in early 2003 [4].

i) Second notion is that .NET has a general and
comfortable extension mechanism: custom attributes.
They ideally fit to implementing any type of annotation:
formal specifications, comments on the code, and for
annotating some code as belonging to some aspect.
Annotations in the form of custom attributes are
understandable by the appropriate specialized tools —
formal verifier and theorem prover, aspect weaver, and so
on — the tools those annotations are intended for. Other
common - use .NET tools (CLR, debugger, etc.) just
ignore those custom attributes. However, as compared to
any separate XML configuration file, .NET makes
possible custom attributes that are an inherent part of the
binary code and portable executable file, are traveling in
the same file with the MSIL code, and cannot be “lost”
when the code of the assembly is passed over the
network. Aspect.NET was the first AOP tool for .NET
that used custom attributes. A few years later, other AOP
researchers arrived at similar beliefs and started using
custom attributes to represent aspects for .NET. Another

© 2019, IJCSE All Rights Reserved

Vol.7(1), Jan 2019, E-ISSN: 2347-2693

key question that get up when implementing aspects for
.NET is - at what level should the weaving process take
place? The following answer looks evident: Since .NET
is a Multilanguage platform and all .NET languages
compiled into MSIL code, MSIL should become the basis
for weaving. There are two problems in MSIL related to
weaving. First, MSIL postfix - style code has a linear
structure and is not easy for weaving: adding, inserting,
or replacing pieces of code. Therefore, an MSIL - level
weaver should first convert MSIL code of the aspect and
the target application into a more proper tree like or graph
like format, then complete the weaving and convert the
resulting target code back into MSIL. Second [4], if the
AOP tool uses custom attributes to mark aspects and the
results of their weaving, the attributes can only mark the
named entities in the code: assembly, class, method, and
field definitions. They cannot mark executable statements
of MSIL code (assignments, branches, calls, etc.).
Therefore, after weaving some aspects into a target code,
it will not be, in general, possible to “color” the
fragments that relate to different aspects. However, if all
aspect code injections contain calls of aspect methods or
access to aspect fields, the aspect visualizer can use them
to identify the code fragments related to weaving of each
aspect [3].

I11. AOP TOOLS FOR .NET FRAMEWORK

Keeping the previous considerations in mind let us overview
and analyze the most popular AOP tools for .NET. Names
and references for some AOP - for - .NET tools are as
follows:

[1] LOOM.NET

LOOM.NET [5] implements both runtime weaving (by
Rapier - LOOM.NET weaver) and static weaving (by
Gripper - LOOM.NET weaver). The ultimate goals of the
project are to help in developing and enhancing dynamically
reconfigurable multithreaded software that sometimes cannot
be restarted for reconfiguration, for reliability reasons. The
Rapier - LOOM.NET weaver is used to generate and weave
dynamic proxies. Aspects in LOOM.NET defined via aspect
classes. LOOM.NET implements some Aspect] - like
features for the commercial version of .NET and for Mono
[6]. Advice custom attributes are used in aspect class
definitions to mark aspect classes, their methods, and to
explicitly specify the weaving conditions. The dynamic
weaver uses its factory methods to generate interwoven
objects. The important restriction on this dynamic weaving
approach is as follows: The methods to be interwoven should
be virtual or should be defined via interfaces. For purposes of
the project, it is acceptable. However, for general use of the
system, this restriction looks serious. LOOM.NET also used
to implement design - by - contract aspects. The authors of
the approach pay a lot of attention to performance and
reliability [4].

534

International Journal of Computer Sciences and Engineering

[2] AspectDNG

AspectDNG [7] is a multilanguage aspect weaver that works
at the MSIL level. It allows us to weave any .NET 1.1 or
.NET 2.0 assemblies. The project was inspired by Aspect]
and is implemented in C#. Because the weaver works with
MSIL code, the aspects and the target application can be
written in any language compiled in MSIL. The weaver
accepts two forms of join point languages. The first is XPath,
the language widely wused for navigation in XML
namespaces. The second is the language of regular
expressions. AspectDNG is definitely a helpful tool, but it
cannot yet be regarded as a full - fledged AOP framework: It
lacks a proper aspect specification language and an IDE [3]
consider XPath is a proper language for AOP specification,
but AspectDNG can be useful as part of a larger AOP
development platform.

[3] Aspect#

Aspect# [8] is an AOP tool for C#. It consists of a simple
(non - XML) aspect configuration language and an aspect
engine (weaver). The advices supported are limited to
interceptors only. The aspect engine (specified by an instance
as the Aspect Engine class) is called from C# using its Wrap
method, whose argument is the type to be extended by
weaving interceptors. The list of interceptors is provided in
the configuration file. The result of the Wrap method is the
proxy to the extended type. Pointcuts are also limited to a
primitive form of regular expressions. To identify the
separately defined elements of the aspect (interceptors) in the
aspect definition, string keys (like “interceptorl”) are used.
Aspect# has no IDE; neither is it integrated to Visual Studio
or another existing IDE for .NET.

[4] PostSharp
PostSharp [9] is a postcompiler for the .NET platform. It
works as an MSIL code transformer and uses custom
attributes. This tool can be useful for many purposes,
including AOP. To illustrate the AOP capabilities of
PostSharp, a high - level aspect weaver, PostSharp Laos, was
developed on top of PostSharp. An aspect in PostSharp,
intended for use with the PostSharp Laos weaver, should be
defined as a special type of custom attribute, which can be
used with any class or method to extend its functionality. The
project site contains the following example of such aspect
that sheds more light on the AOP cuisine of PostSharp:
public sealed class RequiresRoleAttribute:
OnMethodBoundaryAspect

string[] roles;
public string[] Roles
{

get { return this.roles; }
set { this.roles = value; }

}

© 2019, IJCSE All Rights Reserved

Vol.7(1), Jan 2019, E-ISSN: 2347-2693
public override void
OnEntry(MethodExecutionEventArgs e)

((1Securable) e.Instance).RequireRoles(this.roles);

¥

This class defines an aspect as a custom attribute that adds
security functionality of checking the user’s roles on entry to
some given methods (say, methods performing deletion of
some information). The aspect can be applied to any
assembly using the ordinary custom attribute definition in
C#:

[assembly: RequiresRole (Roles=new string[] {

”Delete”}, TargetMethods= "Delete*”)]
When processing the MSIL code of the application, the
PostSharp Laos weaver understands this custom attribute as
an instruction to weave into any method in the assembly
whose name fits the Delete * wildcard, an interceptor aspect
injecting the security action on entry to the method. This type
of approach is typical for many AOP tools for .NET: They
don’t provide a single conceptually clear AOP framework
with its own aspect specification language and set of
concepts (more challenging to implement), but instead, use
the existing features (classes, methods, custom attributes) to
identify aspects directly by means of the implementation
language (C# in most cases). The smartest and most
complicated part of such AOP tools is a weaver whose work
and semantics are considered as some kind of tricky “magic”
can characterize such an approach to AOP as “experimental,”
which is normal for research projects.

[5] DotSpect

DotSpect (aka .SPECT) is a tool for aspect .NET assemblies.
The advice code written in any language as long as we have a
compiler for that language and a mechanism to inject in the
targeted assembly. By default, .SPECT provides support for
writing aspects in C# and VB.NET. Currently the assemblies
are aspect at Compile time (Static injection) [10].

[6] Encase

Encase is an aspect oriented programming framework for the
.NET Platform written in C#. Encase is unique in that it
provides aspects to be applied during runtime in managed
code rather than being configuration file based that other
AOP frameworks rely upon. The advantage of applying
aspects in this way is that it promotes productivity to
developers new and/or unfamiliar with AOP. Extensions is
both currently in early development [11].

[71 Compose*

Compose* is a modular extension tool/framework used for
composition filters. This architecture supports multiple
targets, repository-based set of analysis tools. Compose*
(pronounced “Compose-star”) is a project that aims at
enhancing the modularization capabilities of component and

535

International Journal of Computer Sciences and Engineering

object based programming. In particular, compose* offers
aspect-oriented programming through the composition filters
model [12].

[8] Weave.NET

Weave.NET [13] is a project and AOP tool targeted to
language - independent aspects. This term is understood by
the users in the sense that [3] explained earlier in the section:
MSIL - level aspects. The input for the weaver is a set of
.NET assemblies and an XML file to specify weaving
directives in the style and spirit of Aspect]. Weaving is
performed at load time.

[9] Wicca and Phx.Morph
Wicca [14] is an AOP framework that implements various
kinds of weaving strategies: both static and dynamic
weaving, at the source code and MSIL code levels. In
particular, MSIL - level weaving in Wicca is supported by
Phx.Morph, which is based on Microsoft > s Phoenix [15]
back - end compiler infrastructure (as well as the weaver in
Aspect.NET). Dynamic weaving in Wicca is implemented
using another Microsoft technology and tool: the Microsoft
Managed Debugger (mdbg) [16]. Wcs, a source code
compiler and weaver, implement C #source code — level
weaving in Wicca. The wcs tool implements a small
extension of C#: statement annotations. Here is an example
from the Wicca Web site:

public SimpleDraw()

{

[Log (Sev.Info, ”Creating a line)]
Shape s = new Line(new Point(1, 9),

Point(9,1));

}

Such annotation before the assignment statement is

converted by wcs into ordinary C# code like this (again,

the example is from the Wicca Web site):

[Statement(19, “LogAttribute”, Sev.Info, ”Creating a

new

line”)]
public SimpleDraw()
{
Shape s = new Line (new Point(1, 9), new
Point(9,1));

The latter code is compiled by common - use C# compiler.
This is an original decision of the problem of annotation lack
for statements, although the issue is resolved at the C# source
code level rather than at the MSIL code level. The only
disadvantage of this technique is lack of readability. The user
who thinks in terms of the extended C# may not understand
what happened to his or her code, since in debugging the user
will see the latter fragment of the source code or its image in
MSIL code. As from the examples, AOP implementation in
Wicca is based on custom attributes. As for many other AOP
projects for .NET, the goal of the project authors is to

© 2019, IJCSE All Rights Reserved

Vol.7(1), Jan 2019, E-ISSN: 2347-2693

implement all functionality of Aspect]. However, the project
is notable by three advantages: a wide spectrum of weaving
techniques is offered to users, an interesting method of
statement annotations (applicable to Java as well as to C#) is
utilized, and the latest Microsoft technologies and tools are
used.

[10] Seasar.NET

S2Container.NET is a lightweight DI container supporting
AOP. It is a port of Java version Seasar2 to .NET framework
[17].

[11] Spring.NET Framework

Spring.NET AOP is implemented in pure C#. There is no
need for a special compilation process - all weaving is done
at runtime. Spring.NET AOP does not need to control or
modify the way in which assemblies are loaded, nor does it
rely on unmanaged APIs, and is thus suitable for use in any
CLR environment. Spring.NET currently supports
interception of method invocations. Field interception is not
implemented, although support for field interception could
be added without breaking the core Spring.NET AOP APIs
[18].

[12] HyperC#

HyperC# tool supports Multidimensional Separation of
Concerns for C#. Adopting some of the techniques from
Hyper/J (which is MDSOC for Java), the HyperC# tool, and
implemented using C #. With HyperC#, a graphical user
interface system is created that provides AOP features to C#
developers or programmers by using MDSOC approach.
Using this tool, C #developers can create new concern
classes and new hypermodules. Using integration
relationships, the system integrates concern classes together
by using the pre-processor developed to create a new C#
class that can be further used in other integration files, or can
be compiled in an executable file using the C# compiler.
HyperC# System demonstrates how the AOP extension to C#
can enhance software evolution, modularity and reusability
[19].

[13] CrosscutterN
CrossCutterN [20] is a free and lightweight AOP tool for
.NET using IL weaving technology. As other AOP tools like
postsharp, it helps developers to inject AOP code into their
programs. The advantages of CrossCutterN comparing with
other AOP, technologies include:
Free: CrossCutterN is open source and free under

MIT license.
Light Weight: Instead of adding compile time dependency
to projects, CrossCutterN injects AOP code after project
assemblies are built. This approach allows AOP code
injection into assemblies whose source code are not
available, and decouples project code from AOP code as
much as possible.

536

http://s2container.seasar.org/en/index.html

International Journal of Computer Sciences and Engineering

IV. LIMITATIONS OF AOP TOOLS FOR .NET

The following limitations of the existing AOP tools for .NET
listed as follows:

1) Lack of multilanguage interoperability; dependence
on C# or MSIL.

Most AOP tools for .NET are tied to C# only, so they do not

use properly one of the main features of .NET: multilanguage

interoperability. The only approach used to achieving

interoperability in some other AOP tools for .NET is reliance

on MSIL (which is surely not a high - level language).

2) Lack of proper aspect specification language.

Most projects prefer to use C#, MSIL, and .NET “as is,”
explicitly defining aspects as C# classes inherited from some
specific “core aspect implementation classes ” using custom
attributes or “ side - door ” aspect configuration fi les not
easy to understand. They just model AOP and Aspect]
features in a lower - level implementation language. With
such an approach, AOP for .NET becomes simply a kind of
discipline, not quite reliable (since when explicitly defining
complicated AOP custom attributes, it is easy to make a
mistake), without any support at the aspect design stage.
Note that for Java AOP tools unlike .NET AOP tools, [3]
mentioned as one of the limitations quite a different thing,
too - complicated aspect specification languages. It looks as
if most AOP researchers for .NET experience such a deep
influence of AspectJ that they make one of their major goals
modeling Aspect] features by C# classes and XML
configuration fi les rather than discovering new, more
general, and open - style AOP features that may be supported
by .NET.

3) Lack of aspect manipulation and visualization GUI.
Most AOP tools for .NET are still in an early stage of
development, they only provide AOP supporting API and
(some of them) AOP configuration files in XML, but they
lack GUI to manipulate aspects, to visualize them, to debug
them, and so on — everything accustomed to doing with
“non - AOP ” applications, due to modern integrated
development environments.

4) Lack of integration to Visual Studio.NET or other
IDE for .NET.
It is widely appreciated that Microsoft Visual Studio.NET is
the most convenient and powerful IDE for .NET. Millions of
users are accustomed to its rich set of features: source code
navigation, highlighting and refactoring, project templates,
automatic code generation for the most complicated kinds of
programs (such as Web services), multilanguage debugging
at the source code level, profiling, automated unit test
generation, teamwork, and so on. No code is developed from
scratch. The user always has a skeleton (and a visual image,
if appropriate) if his or her code is at the design stage. So

© 2019, IJCSE All Rights Reserved

Vol.7(1), Jan 2019, E-ISSN: 2347-2693

when learning and assessing a new technology such as AOP,
users are not going to lack any of these features. They do not
want to use command - line interface to start AOP tools.
They do not want to suffer when typing complicated XML
configuration files for an AOP tool in notepad, without the
support of templates. They would like to see their aspects in
proper images: what they look like, which join points they
have with the target application, what results they should
expect from weaving (in terms of the source code), and so
on. Many AOP tools for Java (e.g., AspectJ) are integrated to
Eclipse — one of the most popular Java IDEs, and offer the
features just described. But unfortunately, most existing AOP
tools for .NET are not yet integrated to Visual Studio.NET,
although this IDE provides two integration methods: as an
add - in and through Visual Studio Integration Program API.

V. OBSERVATIONS AND CONCLUSION

The aim of this paper is to contribute to the brief summary of
the AOP tools for .NET. Each tool is unique and featured in
their own way. In this section, we present the special feature,
which is observed during the study of each tool.

Loom.Net is a tool, which implements runtime as well as
static weaving. AspectDNG is a multilanguage aspect weaver
that works at MSIL level. Aspect# is an AOP tool for C#,
which consist of simple aspect language and aspect weaver.
PostSharp is used as a postcompiler for .Net platform at
MSIL level by using custom attributes. DotSpect is run for
C# and VB.Net by using .Net assemblies at compile time.
Encase is for C#.Net, that provides the aspects applied during
runtime and by this feature it promotes productivity for new
users of AOP. Compose* tool is specially designed for
composition filters to increase the modularization of the
component. Wave.Net tool is designed to language
independent aspects and it is working on MSIL Level. Wicca
and Phx.Morph implements at multi-level weaving strategies
(static, runtime, source code level, MSIL level). HyperC#
tool demonstrates how the AOP extension to C# can enhance
software evolution, modularity and reusability. Seasar.Net is
a lightweight tool with DI (Dependency Injection)
technology. Spring.Net tool is purely implemented in C#
with runtime weaving only and it is suitable for CLR
environment. CrosscutterN is an open source (under MIT
License) lightweight tool that uses IL (Intermediate
Language) weaving.

All these tools contain many original approaches to
implementing AOP. A lot of them use custom attributes.
Some of them have experience of use for real tasks, some of
them implemented only in C#; some are implements at MSIL
level. Therefore, we can conclude that this paper provides the
rich set of AOP tools for .Net platform with their unique
features.

537

International Journal of Computer Sciences and Engineering

V1. ABBREVIATIONS AND ACRONYMS

Following abbreviations and acronyms used in the given
paper listed below.

[1] AOP- Aspect Oriented Programming

[2] CLR- Common Language Runtime

[3] MSIL- Microsoft Intermediate Language
[4] API- Application Programming Interface
[5] GUI- Graphical User Interface

ACKNOWLEDGMENT

We thank the Babasaheb Ambedkar Research and Training
Institute (BART]I), Pune for funding our research.

[1]

[2]

(3]

(4]
[3]
6]
[71
(8]
[9]
[10]
(11]
[12]
(13]
[14]
[15]

[16]

[17]

(18]

[19]

[20]

REFERENCES

Jatin Arora, Jagandeep Singh Sidhu and Pavneet Kaur, "Applying
Dependency Injection Through AOP Programming to Analyze the
Performance of OS", International Journal of Computer Sciences and
Engineering, VVol.3, Issue.2, pp.45-50, 2015.

Geeta Bagade, Shashank Joshi, "Analysis of Aspect Oriented
Systems: Refactorings using Aspect]”, International Journal of
Computer Sciences and Engineering, Vol.4, Issue.5, pp.76-80, 2016.
Safonov, V. O. (Vladimir Olegovich) Using aspect-oriented
programming for trustworthy software development /Vladimir O.
Safonov. p. cm. ISBN 978-0-470-13817-5QA76. 64. S253 2008.
Safonov V. Aspect.NET: a new approach to aspect - oriented
programming, .NET Developer’s Journal 2003 ;(4): 36 — 40.

LOOM.NET Web pages. Available at http://www.rapier - loom.net/.
Mono. Available at http://www.mono - project.com.

AspectDNG Web pages. Available at
http://sourceforge.net/projects/aspectdng/.

Aspect# Web pages. Available at

http://www.castleproject.org/aspectsharp/.

PostSharp Web pages. Available at http://www.postsharp.org/.
DotSpect Web pages. Available at http://dotspect.tigris.org/.

Encase Web pages. Available at
http://theagiledeveloper.com/articles/Encase.aspx.

Compose* Web pages. Available at
http://composestar.sourceforge.net/.

Weave.NET. Available at
http://www.dsg.cs.tcd.ie/dynamic/?category_id= - 26.

Wicca and Phx.Morph Web site. Available at
http://www.cs.columbia. edu/eaddy/wicca.

Microsoft Phoenix. Available at

http://research.microsoft.com/phoenix.

Microsoft Managed Debugger (mdbg) Web pages. Available at
http://msdn.
microsoft.com/msdntv/episode.aspx?xml=episodes/en/20060302clrjs/
manifest.xml.

Seasar.Net Web pages available at
http://s2container.net.seasar.org/en/index.html
Spring.Net Framework for Aop Available at

http://lwww.springframework.net/doc-latest/reference/html/aop.html.
Angela Hantelmann, Cui Zhang: “Adding Aspect-Oriented
Programming Features to C#NET by using Multidimensional
Separation of Concerns (MDSOC) Approach”, in Journal of Object
Technology, vol. 5 no. 4 Mai-June 06, pp. 59-83.

CrosscutterN Available at
https://www.codeproject.com/Tips/CrossCutterN-A-Light-Weight-
AOP-Tool-for-NET

© 2019, IJCSE All Rights Reserved

Vol.7(1), Jan 2019, E-ISSN: 2347-2693

Authors Profile

Priyanka Sarode awarded B.Sc. degree in
2006 and MCA degree in 2009 from
Rashtrasant ~ Tukdoji Maharaj Nagpur g h
University, Nagpur. Currently she is pursuing -
Ph.D. in Computer Science and a research

fellow at Inter Institutional Computer Center, v
Rashtrasant Tukdoji Maharaj Nagpur University, and
Nagpur. Her research work is acknowledged by BARTI,
Pune. Her main research work focuses on Programming
languages, Aspect Oriented Programming. Mail Id:
priya.s1011@gmail.com Mobile No. 950386998

o

P~

—~
o~y

Ravikant Jugele is a M.Sc. in Computer
Science from Marthwada University,
Aurangabad in 1993. He also completed Ph.
D. in Computer Science from Rashtrasant

Tukdoji Maharaj Nagpur University. He is l ; ‘
currently working as an Associate Professor o

in Department of Computer Science, Shivaji Science
College, Congress nagar, Nagpur. Since 1995, his research
interests include Multimedia and Hypermedia, cloud
computing, Programming languages, Artificial Intelligence,
Deep Technology and so on. Mail Id: rn_jugele@yahoo.com.

538

http://composestar.sourceforge.net/
http://www.cs.columbia/
http://msdn/
http://s2container.net.seasar.org/en/index.html
http://www.springframework.net/doc-latest/reference/html/aop.html
https://www.codeproject.com/Tips/CrossCutterN-A-Light-Weight-AOP-Tool-for-NET
https://www.codeproject.com/Tips/CrossCutterN-A-Light-Weight-AOP-Tool-for-NET

