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Abstract

Circulant networks is one of most popular interconnection networks since it has a simple
structure and is easy to implement. Graph embedding is an important parameter to evaluate the
quality of an interconnection network and wirelength is an important measure of an embedding,.
In this paper, we embed circulant network into cycle-of-butterfly with minimum wirelength.
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1 Introduction

Interconnection networks provide an effective mechanism for exchanging data between processors
in a parallel computing system. An interconnection network is often represented as a graph, where
nodes and edges correspond to processors and communication links between processors, respectively.
In the design and analysis of an interconnection network, its graph embedding ability is a major
concern. An ideal interconnection network (host graph) is expected to possess excellent graph em-
bedding ability which helps efficiently execute parallel algorithms with regular task graphs (guest
graphs) on this network [1].

An embedding of a guest graph G into a host graph H is a one-to-one mapping of the vertex set
of G into that of H. The dilation of an embedding is defined as the maximum distance between
a pair of vertices of H that are images of adjacent vertices of G. The study of graph embeddings
is an important topic in the theory of parallel computation: the existence of such an embedding
demonstrates the ability of a parallel computer, whose interconnection network is represented by
the host graph, to simulate a parallel algorithm, whose communication structure is described by the
guest graph. The dilation can then serve as one of natural measures of the communication delay

(2]

The wirelength of a graph embedding arises from VLSI designs, data structures and data rep-
resentations, networks for parallel computer systems, biological models that deal with cloning and
visual stimuli, parallel architecture, structural engineering and so on [9, 10].

Graph embeddings have been well studied for meshes into crossed cubes [11], binary trees into paths
[10], binary trees into hypercubes [2, 12], complete binary trees into hypercubes [13], incomplete
hypercube in books [14], tori and grids into twisted cubes [15], meshes into locally twisted cubes
[16], meshes into faulty crossed cubes [1], meshes into crossed cubes [11], generalized ladders into
hypercubes [17], grids into grids [18], binary trees into grids [19], hypercubes into cycles [20, 21],
star graph into path [22], snarks into torus [23], generalized wheels into arbitrary trees [24], hyper-
cubes into grids [25], m-sequencial k-ary trees into hypercubes [26], meshes into mobius cubes [27],
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Figure 1: Wiring diagram of Circulant graph G into a path H with WL;(G,H) = 19.

ternary tree into hypercube [28], enhanced and augmented hypercube into complete binary tree
[29], circulant into arbitrary trees, cycles, certain multicyclic graphs and ladders [30], hypercubes
into cylinders, snakes and caterpillars [31], hypercubes into necklace, windmill and snake graphs
[19], embedding of special classes of circulant networks, hypercubes and generalized Petersen graphs
[33].

Even though there are numerous results and discussions on the wirelength problem, most of them
deal with only approximate results and the estimation of lower bounds [20, 34]. The embeddings
discussed in this paper produce exact wirelength.

2 Preliminaries

In this section we give the basic definitions and preliminaries related to embedding problems.

Definition 2.1. (See [34].) Let G and H be finite graphs with n vertices. An embedding f of G
into H is defined as follows:

1. f is a bijective map from V(G) = V(H)

2. f is a one-to-one map from E(G) to {Py(u,v) : Pr(u,v) is a path in H between f(u) and f(v)
Jor (u,v) € E(G)}.

Definition 2.2, (See [34].) The edge congestion of an embedding f of G into H s the mazimum
number of edges of the graph G that are embedded on any single edge of H. Let ECy(G,H(e))
denote the number of edges (u,v) of G such that e is in the path Pp(u,v) between f(u) and f(v) in
H. In other words,

ECy(G,H(e)) = {(u,v) € B(G) : e € Py(u,v)}|
where Pp(u,v) denotes the path between f(u) and f(v) in H with respect to f.

If we think of G as representing the wiring diagram of an electronic circuit, with the vertices
representing components and the edges representing wires connecting them, then the edge congestion
EC(G,H) is the minimum, over all embeddings f : V(G) — V(H), of the maximum number of
wires that cross any edge of H [36].

Definition 2.3. (See [25].) The wirelength of an embedding f of G into H is given by

WLi(GH) = > du(f(),f(v))= Y EC{G, He))

(u,)EE(G) ecE(H)
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where dg(f(u), f(v)) denotes the length of the path Pr(u,v) in H. See Figure 1. Then, the wire-
length of G into H is defined as

WL(G,H) =min WL;(G, H)
where the minimum is taken over all embeddings f of G into H.

The wirelength problem [19, 20, 24, 25, 34, 37], of a graph G into H is to find an embedding of
G into H that induces the minimum wirelength WL(G, H).

The following two versions of the edge isoperimetric problem of a graph G(V, F) have been
considered in the literature [37], and are N P-complete [40].

Problem 1 : Find a subset of vertices of a given graph, such that the edge cut separating this
subset from its complement has minimal size among all subsets of the same cardinality. Mathemat-

ically, for a given m, if O¢(m) = AC\EH\% |6c(A)| where Oc(A) = {(v,v) € E:u € Av ¢ A},

then the problem is to find A C V such that |A| = m and 6g(m) = |6c(A)|.

Problem 2 : Find a subset of vertices of a given graph, such that the number of edges in the
subgraph induced by this subset is maximal among all induced subgraphs with the same number

of vertices. Mathematically, for a given m, if Ig(m) = Acx];n?ff\ |1 (A)| where Ig(A) = {(u,v) €
= £ =m

E:u,v e A}, then the problem is to find A C V such that |A| = m and Ig(m) = [Ia(A)|.

For a given m, where m = 1,2, ..., n, we consider the problem of finding a subset A of vertices of
G such that |[A] = m and |0z(A)| = Oc(m). Such subsets are called optimal. We say that optimal
subsets are nested if there exists a total order O on the set V' such that for any m = 1,2, ..., n, the
first m vertices in this order is an optimal subset. In this case we call the order @ an optimal order

n
[37, 38]. This implies that WL(G, B,) = > 0g(m).
m=0

Further, if a subset of vertices is optimal with respect to Problem 1, then its complement is also
an optimal set. But, it is not true for Problem 2 in general. However for regular graphs a subset
of vertices S is optimal with respect to Problem 1 if and only if S is optimal for Problem 2 [37]. In
the literature, Problem 2 is defined as the maximum subgraph problem.

Notation. EC;(G,H(e)) will be represented by ECy(e). For any set S of edges of H, EC(S) =
ZeeS ch(e)

Lemma 2.4. (Congestion Lemma) (See [25].) Let G be an r-regular graph and f be an embedding of
G into H. Let S be an edge cut of H such that the removal of edges of S leaves H into 2 components
Hy and Hy and let Gy = f~1(H;) and Gy = f~Y(H,). Also S satisfies the following conditions:

() For every edge(a,b) € G;, i =1,2,Ps(a,b) has no edges in S.

(i) For every edge (a,b) in G with a € G1 and b € G2, Pr(a,b) has exactly one edge in S.

(ili) G is @ mazimum subgraph on k vertices where k = |V (G1)|.
Then EC¢(5) is minimum,that is, EC(S) < EC(8S) for any other embedding ¢ of G into H, and
EC(S) =rk — 2|E(G1)| = bg(k).
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Figure 2: Circulant graph G(8;+{1,2}).

Lemma 2.5. (Partition Lemma) (See [25].) Let f: G — H be an embedding. Let {S1,S2,...,Sp}
be a partition of E(H) such that each S; is an edge cut of H. Then

WLs(G,H) ZECf

Lemma 2.6. (2-Partition Lemma) [30] Let f : G — H be an embedding. Let [2E(H)] denote a
collection of edges of H repeated exactly 2 times. Let {51,852, ...,Sm} be a partition of [2E(H)] such
that each S; is an edge cut of H. Then

WL (G, H) Zch

3 Circulant networks

The circulant is a natural generalization of the double loop network and was first considered by
Wong and Coppersmith [39]. Circulant graphs have been used for decades in the design of computer
and telecommunication networks due to their optimal fault-tolerance and routing capabilities [4].
It is also used in VLSI design and distributed computation [5, 6, 7]. The term circulant comes
from the nature of its adjacency matrix. A matrix is circulant if all its rows are periodic rotations
of the first one. Circulant matrices have been employed for designing binary codes[8]. Theoretical
properties of circulant graphs have been studied extensively and surveyed in [5]. Every circulant
graph is a vertex transitive graph and a Cayley graph [9]. Most of the earlier research concentrated
on using the circulant graphs to build interconnection networks for distributed and parallel systems
4, 5].

Definition 3.1. (See [9].) A circulant undirected graph G(n;+S), where S C {1,2,...,[n/2]},
n > 3 is defined as a graph consisting of the vertex set V.= {0,1,...,n — 1} and the edge set
E={(i,7) : | — i] = s(mod n), s € S}.

The circulant graph shown in Figure 2 is G(8; £{1,2}). It is clear that G(n; £1) is the undirected
cycle C,, and G(n; £{1,2,...,[n/2|}) is the complete graph K,. Further G(n;+{1,2,...,[j|}),
1<j<|n/2], n>3isa 2j-regular graph.
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Figure 3: Cycle-of-butterfly.

Theorem 3.2. (See [30].) A set of k consecutive vertices of G(n;£1), 1 < k < n induces a
mazimum subgraph of G(n;+S), where S ={1,2,...,7}, 1 <j < |n/2],n > 3.

Theorem 3.3. (See [30].) The number of edges in a mazimum subgraph on k vertices of G(n; £5),
S={1,2,....j},1<j<|n/2],1 <k <n,n>3is giwen by
k(k —1)/2 D k<j+1

E=4¢ kj—jG+1)/2 D jHl<k<n—j
Hin—k)P+ i+ 1)k—(2j+1)n} ;3 n—j<k<n.

4 Wirelength of circulant networks into cycle-of-butterfly

In this section, we compute the exact wirelength of circulant networks into cycle-of-butterfly.

Definition 4.1. (See [35].) A cycle-of-butterfly is a graph unified by a bone cycle BC and k butterfly
B(1),B(2),...,B(k) with BR(1), BR(2), ..., BR(k) as the bottom rungs, respectively, such that each
BR(i) is contained in the BC where 1 <i < k.

The structure of a cycle-of-butterfly graph is shown in Fig 3, where (xg,1,...,72,-1) are the
BR(1), BR(2),..., BR(k) respectively. Clearly this type of cycle-of-butterfly contains 5k vertices
and denoted by COB(k). Clearly this type of cycle-of-butterfly contains 5k vertices and it is denoted
by COB(k).

Embedding Algorithm
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Figure 4: The edge cuts of COB(8).

Input : A circulant network G(n; £{1,2,...,7}), 1 <j < [n/2] and a cycle-of-butterfly COB(k),
where n = bk.

Algorithm : Label the consecutive vertices of G(n;+1) in G(n;+{1,2,...,7}),as 0,1,...,n—1
in the clockwise sense. Label the vertices of COB(k) as follows: Label BC(1)as 5k — 2, 2 and for
2 <4 < k, label BC(i) as 5¢ — 7, 5i — 3. Label B(1) as 5k — 1, 0, 1 and for 2 < ¢ < k B(i) as
5i — 6,51 — 5,51 — 4.

Output : An embedding f of G(n; £{1,2,...,;}) into COB(k) given by f(x) = z with minimum
wirelength.

Proof of correctness : We assume that the labels represent the vertices to which they are as-
signed.

Case 1 (k even):
Forl <:i< %, let S; = S; be the set of edges which contains all the edges of B(i) and B(i+§), along
with the edges of BC(i) and BC(i + £). For 1 < j < £, let B; be the set of edges which contains the
edge between B(i) and B(i + 1), along with the edge between B(% + i) and B(£ + i + 1)mod & For
1 <i <k, let S} be the set of edges between B(i) and BC(i), let S? be the set of edges incident to
top vertex of B(i). See Figure 4. Then {S;, S; 1< < g}U{Bj 1<« g}U{Sil, Soalz=dia k)
is a partition of [2E(COT(k))].

For 1 <i< £ E(COB(k))\ S; has two components Hj; and H; where

V(Hy) = {5 —3,5i—2,...,5i — 3+ 2k}.
Let Gy = f-Y(H;1) and Gy = f1(H;). By Theorem 3.3, Gy, is an optimal set, and each S;

satisfies conditions (i), (i4) and (iii) of the congestion lemma. Therefore EC}(S;) is minimum.
Similarly EC/;(S;) is minimum.
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For 1 < j <% E(COB(k))\ B; has two components H;; and ;o where
V(Hj1) = {5§—2,5j—1,...,55 + 1+ 2k}.

Let Gj1 = f~Y(Hj1) and Gj2 = f~1(H;2). By Theorem 3.3, G,1, is an optimal set, and each B;
satisfies conditions (7), (i¢) and (4) of the congestion lemma. Therefore EC((B;) is minimum.
For 1 <i < k, E(COB(k))\S} has two components H}; and H}, where

o f 01,5k -1} . §f i=0
Vi) = { {5t — 6,56 — 5,5i—4} ; if i£0
Let GL, = f~Y(H}) and Gk = f~1(H}). Since G}, is an optimal set, each S} satisfies conditions
(), (ii) and (i44) of the congestion lemma. Therefore EC(S}) is minimum.
For 1 <i < k, E(COB(k))\S? has two components H3 and H2 where

V(HZ) = {5i — 5,5 — 4}

Let G} = f~Y(HE) and G% = f~'(H3). Since G%, is an optimal set, each S? satisfies conditions
(i), (#4) and (#44) of the congestion lemma. Therefore EC(S5?) is minimum. The 2-Partition Lemma
implies that the wirelength is minimum.
Case 2 (k Odd):

For1 <4< %, when i is odd, let S; = S be the set of edges which contains all the edges of B(i)
along with the edge BC(i) and the edge between BC(i + %) and BC(i + £ + 1), when i is even,
let S; = S; be the set of edges which contains edge of BC(i) along with the edge of B(i + &) and
BC(i + %) For 1 <i <k, let S} be the set of edges between B(i) and BC(i), let S? be the set of
edges incident to top vertex of T'(i). Then {S;,S; : 1 <i < £} U{S}, 52 :1 <i <k} is a partition
of [2E(COB(k))].

As in Case 1, it is easy to prove that the wirelength is minimum.

Theorem 4.2. The exact wirelength of circulant graph G(n; £{1,2,...,j}), 1 < j < [n/2] into
COB(k) is given by

0B -3)+ We(BB) +0c(3) +0c(2)} 5 if k even
WL(G,COB(k)) =

£ {0c(252) +65(3) +65(2)} . if k odd

Proof: Following the notations of the Embedding Algorithm, we divide the proof into two cases.
Case 1 (k even):
By congestion lemma,

i) EC5(S) = 0c((3) —3), 1<i <

[ E-I S o
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Then by 2-partition lemma,

k/2 /2 k2

WL(G, COB(k)) = %{ N ECH(S) + Y _ECH(S) + > ECy(B))

:
+ 3 [BCy(sh) + ECy(sh) }
i=1

.

2
+ kOc(3) + k@G(Q)}
1[k 5k

— {306 -9+ 3065 - 3+ 3ol

+ kOc(3) + k@c;(Q)}

k/2 /2 k/2

Yo%) 3+ 3o D) -3+ Y
i=1 i=1 i=1

= 30~ + ) + 063 + 0002

Case 2 (k Odd):

By congestion lemma,

i) ECy(Si) =6 (|%3), 1<i< ¥
ii) ECp(S;) =6a (|%]), 1<i<

Then by 2-partition lemma,

/2 /2 k
WL(G, COB(k)) = % S EC(S) + S ECH(S) + S IEC(S!) + ECy(S2)]

kJ2

_ % {geg Q%D + ;ea {%’“J + k0(3) + kGG(z)}

- 50+t - 00|

Hence the proof.

5 Conclusion
In this paper, we embed circulant networks into cycle-of-butterfly to yield the minimum wirelength.

In our opinion, the reduction technique developed in this paper is very powerful and may be applied
to the fault-tolerant embeddings of cycle-of-butterfly in other kinds of interconnection networks.
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