€
AX]CSE International Journal of Computer Sciences and Engineering [pen Access

Survey Paper Vol.6, Special Issue.11, Dec 2018 E-ISSN: 2347-2693

Indian Language Text Summarization Using Recurrent Neural
Networks

Anjali A V", N. Ramasubramanian?, A. Santhanavijayan®

!Scholar Engineering, NIT, Trichy, India
“Dept. of Computer Science NIT, Trichy, India
®Dept of CS NIT, Trichy, India

Available online at: www.ijcseonline.org

Abstract— Text summarization is the process of creating short and accurate summary of a given text document. The paper is
proposing an abstractive method of text summarization for text in Indian languages. The proposed algorithm uses an encoder-
decoder recurrent neural networks with attention mechanism. The results observed were significantly better compared to the

performance of already existing Indian language summarizer.

Keywords— Abstractive Summarization, LSTM, Recurrent Neural Network (RNN)

l. INTRODUCTION

Text summarization is the process of creating short and
accurate summary of a given text document. Text
summarization can be classified into two-abstractive and
extractive. Extractive text summarization forms the summary
by selecting subsets of words or sentences from the text
document. Abstractive text summarization is the process of
producing a short summary which highlights the salient ideas
of a huge text document. The abstractive method is found to
produce more relevant summary compared to extractive
methods.

Deep-learning based models matches an input sequence into
corresponding output sequence. This type of model is called
sequence-to-sequence models which have been found useful
in several domains like machine translation. This process can
be thought of as mapping of input sequence of words present
in source document to another set of sequence of words
called summary.

Although machine translation and summarization sounds
alike ,both are very different concepts. In text summarisation,
the summary is very brief and is not dependent on the length
of the text to be summarized. Also, a major difficulty in
summarization is for the orginal document to be optimally
compressed in a lossy manner and keeping sure that the main
topics in the original document remains unchanged, whereas
in Machine Translation, the translation should be lossless.

I.LEXISTING WORK
Numerous automatic text summarization systems are
available in all languages especially in English and other

foreign languages. The Indian languages, summarization
models are very few. Some of the text summarizer for Indian

© 2018, IJCSE All Rights Reserved

languages is discussed below.

A.Solutions Existing for Tamil

Sankar K et .al proposed a solution based on scoring of
sentences for summarizing texts inTamil language. An
average Rouge score was found to be 0.4723.

B.Solutions Existing for Kanada

Jayashree.R et .al used a method which produces extractive
summaries of documents in the Kannada language. The
proposed algorithm uses GSS (Galavotti, Sebastiani, Simi)
coefficients and IDF (Inverse Document Frequency) methods
all along with TF (Term Frequency).lt gave average
precision of- 0.76,— 0.8—- 0.7.

C.Solutions Existing for Bengali

Kamal Sarkar proposed a technique for Bengali text
summarization by making use of sentence extraction
technique. The result showed an average unigram based
score of 0.4122.

D.Solutions Existing for Punjabi
Visual Gupta et .al proposed an extractive automatic text
summarization system for the Punjabi language. They made
use of sentence feature calculations.The average accuracy of
the system was found to be 81%.

® - *
T‘ ‘ Il ‘ T]
& o »° e
= . [h
A JEEAT A [
- > -
Fig.1
162

International Journal of Computer Sciences and Engineering

E.Solutions Existing for Hindi

K. Vimal Kumar et .al proposed an extractive approach to
Hindi text summarization. The system is built on an
algorithm by scoring the sentences based on co-occurrence of
the radix of thematic words. The average accuracy was found
to be 80%.

I11. PROPOSED MODEL

I am proposing a model that is language independent and is
working based on recurrent neural networks. The model is
made of a sequence to sequence model with attention
mechanism.

A. Recurrent Neural Network

A recurrent neural network (RNN) is a class of artificial
neural network in which the links between units form a
directed graph. Thus it to shows dynamic behavior for a
given sequence. RNNs make use of their memory for
processing a sequential form of input. Recurrent Neural
Network is used when model requires the context to be able
to provide the output based on particular input. RNN stores
everything and thus are good at recollecting previous data.
But in RNN, all the inputs are dependent on one another. The
RNN will not forget all the relations it previously
encountered while training itself. For accomplishing this, the
RNN forms many layers of interconnected system with loops
in them, which allows it to remember the patterns.

Figure 2:Unrolled RNN

B. Long Short Term Memory Cell
LSTM networks are a particular type of recurrent neural

network (RNN) which is a neural network architecture
typically used for modeling sequential data. The ability of
LSTM cells to retain information for long periods of time
gives it the added advantage over traditional neural
networks.This allows for important information learned early
in the sequence to have a greater impact on model decisions
made at the end of the sequence.

w X Y z <eos>
A B c <w> w X ¥ z

Figure 3:LSTM

© 2018, IJCSE All Rights Reserved

Vol.6(11), Dec 2018, E-ISSN: 2347-2693

A represents a full RNN cell which takes the current input
word of the sequence, xi, and produces an output to the
current hidden state, hi, which then passes this to the next
RNN cell for the respective input sequence. While the
traditional RNN cell is having a single internal layer acting
on the current state and input, the LSTM cell has three.

First there is a forget gate which is responsible for
controlling the information which is maintained from the
previous state.

Secondly we have an update gate,the responsibility of this
gate is to update the state depending on the current input.It is
passed into a tanh activation layer inside of which an
element-wise multiplication between these two results will
be performed. Followed by this is an addition with the output
and the current state.

Thirdly there is an output gate which is responsible for
controling which information that goes to the next state.The
words are initially given as input into an embedding lookup.
Word embedding is a representation of words in the vector
space. We are training the model to learn the embeddings
during the course of training. These embeddings are
forwarded as input into our LSTM layer.

C. Sequence To Sequence Model

A typical sequence to sequence model has two parts— an
encoder and a decoder. Both the parts are two different
neural network models combined into

mensional representation of it. This representation is then
forwarded to a decoder network which generates a sequence
of its own that represents the output.

w X Y Z <e0s>
A B c <> W X ¥ Z

Figure 4:Sequence to Sequence model

A cell of recurrent neural network is depicted as a box in
figure 3, commonly known as the LSTM cell. In the vanilla
model as shown in figure 3, each input is to be encoded into
a fixed-size state vector. For allowing the decoder to have
better access to the input, an attention mechanism was
introduced.

A multi-layer sequence-to-sequence recurrent neural network
with LSTM cells and attention mechanism in the decoder is
depicted in figure 4.

163

International Journal of Computer Sciences and Engineering

_— * T T T T 2 : L
’ LST™M}, |—— LSTM? ,
T T i T T T T f) T
‘ LSTM?, |—— LSTMZ,,
f) T f) T i T T T j

’ LSTM), |— LSTM!,,

* £ * * x * * * +

Figure 5:Sequence to Sequence Model with Attention Mechanism

In sequence-to-sequence models, the output produced by
decoder at time k is fed back as the input of the decoder at
time k+1. At time of testing, when decoding a sequence, this
is the process followed for the sequence to be constructed.
During training, on the other hand, the decoder is provided
with the correct input at every time-step, even if the decoder
has made a mistake earlier.

E.Bucketting and Padding

The model makes use of bucketing, which is required for
handling sentences of different length effciently. During the
process of summarizing there are input sentences of different
lengths I, and output sentences of different lengths O.The
input text to be summarized is passed as inputs for encoder,
and the summary comes as output from decoder, for every
pair (I, O+1) of lengths of an input text and its corresponding
summary creates a sequence to sequence model. The input is
padded for every sentence with a special PAD symbol.

IV. IMPLEMENTATION AND RESULT

The input text to be summarized is given to the system for
summarizing.The accuracy of mAchine summarized text is
evaluvated against the human written summary of the same
text.

A.Experimental Setup

A 40MB of hindi articles is given as input for training. The
input data is divided into 20% of it for testing and rest 80%
for training.The model has 3 LSTM layers and each has 512
units.

B.Calculation Of Accuracy

BLEUScore is used as a measure to find the accuracy.
BLEU, or the Bilingual Evaluation Understudy, is a score for
comparing a translation of text to one or more reference
translations .To calculate the BLEU score for 1-gram
matches, we give a weight of 1 for 1-gram and 0 for others(1,
0, 0, 0).The product of bleuscore value with 100 gives the
percentage value.The following graph is plotted based on the
accuracy got on different sizes of training data.

© 2018, IJCSE All Rights Reserved

Vol.6(11), Dec 2018, E-ISSN: 2347-2693

Figure 6: Graph Plotted for Accuracy

C.Result Analysis

It was observed that as the training data size increased the
accuracy of summary generated also improved significantly.
The model proposed gave an accuracy for 40MB of input file
size.

V. CONCLUSION

The proposed architecture addresses the issue of
conventional method of the neural network with encoder-
decoder model which uses fixed-length context vector was
found problematic when faced with long inputs sentences.
The proposed model extends the vanilla encoder—decoder
model by introducing a model search for a given input
computed by an encoder, when producing each target
word.Thus freeing the model from the overhead of having to
encode a whole input sentence into a fixed length vector, and
enables the model to focus only on information required for
generating the next target word.

The model was tested for Hindi andMarathi language .It was
observed that the model proposed outperformed any of the
other existing Indian language summarizers in terms of space
utilization and accuracy. One of the challenges left to handle
is the bucketing of input can be made dynamic which can
improve the performance further.

REFERENCES

[1] Y. Bengio, P. Simard, and P. Frasconi. Learning long-term
dependencies with gradient descent is difficult.IEEE
Transactions on Neural Networks, 5(2):157-166, 2017.

[2] K. Cho, B. Merrienboer, C. Gulcehre, F. Bougares, H. Schwenk,
and Y. Bengio. Learning phrase representations using RNN
encoder-decoder for statistical machine translation. In Arxiv
preprint arXiv:1406.1078,2017.

[3] M. Johnson et al., “Google’s multilingual neural machine
translation ~ system: Enabling zero-shot translation,”
Transactions of the Association for Computational Linguistics,
vol. 5, no. 20, pp. 339-351, 2016.

[4] J. Lee, K. Cho, and T. Hofmann, “Fully character-level neural
machine translation without explicit segmentation,” Transactions
of the Association for Computational Linguistics, vol. 5, pp.
365-378, 2017.

164

