@
AXJCSE International Journal of Computer Sciences and Engineering [pen Access

Research Paper Volume-3, Issue-2 E-ISSN: 2347-2693

Applying Dependency Injection Through AOP Programming to
Analyze the Performance of OS

Jatin Arora'*, J agandeep Singh Sidhu® and Pavneet Kaur®
1523 Computer Science Department, Chitkara University, India
jimjatin @ gmail.com, jagandeep.sidhu @chitkara.edu.in, pavneet1812@gmail.com

www.ijcaonline.org

Received: Feb /6/2015 Revised: Feb/14/2015 Accepted: Feb/23/2015 Published: Feb/28/ 2015
Abstract— Operating systems are very inflexible towards modification of already existing functionalities such as security,
dynamic re-configurability, robustness etc. In such functionalities if need arises for any enhancements then it effects on large
fractions of the code. Thus results in difficult to implement. Such functional enhancements in any component of the OS that
affect large fractions of the program code, are often called crosscutting concerns. Such cross-cutting concerns can be solved by
the new emerging extension to object oriented paradigm i.e. Aspect Oriented Programming (AOP). The main idea in AOP is
the programmer’s ability to affect the execution of core code by writing aspects. Aspects are pieces of code that are run before,
or after core function for which aspect is written. For example logging is a good example of using aspects. To log all function
calls the programmer simply needs to define a logging aspect that is executed before and after each function call in the program.
In this work aspects are introduced in the Operating System for implementing various concerns and analyzing the performance

based on various metrics.

Keywords— Aspect; Pointcut; Before; After; Aspectj; Cross Cutting; Concerns; Dependency

I. INTRODUCTION

All standard paper components have been specified for
three reasons: (1) ease of use when formatting individual
papers, (2) automatic compliance to electronic requirements
that facilitate the concurrent or later production of electronic
products, and (3) conformity of style throughout conference
proceedings. Margins, column widths, line spacing, and type
styles are built-in; examples of the type styles are provided
throughout this document and are identified in italic type,
within parentheses, following the example. Some
components, such as multi-leveled equations, graphics, and
tables are not prescribed, although the various table text
styles are provided. The formatter will need to create these
components, incorporating the applicable criteria that follow
Computer devices can perform operations in fractions of
seconds and without any error which normal human require
his lifetime to do. But computers as such are useless without
the software to run on them. And all the software’s are
useless too without the Operating system which is an
important part of computer system. Operating system is
responsible for all the other programs to run on the
computer. Various programming strategies have been
applied for the development of operating system. Originally
operating system was developed using assembly language or
C language. Using C programming in the development of
Operating system caused many problems, because C is a
procedural language. Programming practices were not
modular in the early computer’s age and they weren’t easily
modifiable, but with the advent of modern computers,
modular configuration is possible. The performance of an
OS is not as important as it was in the past because now a

© 2015, IJCSE All Rights Reserved

day’s computers are more advanced and powerful. The
priority now is given to security and stability of OS rather
than on its processing time and memory usage. Moreover,
modern operating systems are highly complex to develop
them in low-level programming languages, so a solution
proposed to this problem is to use a high-level language.

Many new high level languages such as C++ and other
object oriented programming languages have been used for
improving the development of OS. Various research
operating systems have been developed using high level
language but still operating systems face problem with
modularity. Complex interactions due to dependencies
between the modules of the system threat module’s
boundaries and make them highly susceptible to errors.
Security, authentication checks, exception handling,
statistics, dynamic re-configurability, console are the major
modules of any operating systems but if any modifications
are required in these modules then it effects on the large
fraction of code which is difficult to implement. The
operating system used for carrying out this task is NachOS
and it is used for research purposes. It is a rather small and
simple operating system but still has all the important
features of a real operating system.

Although there is progress in the field of separating cross
cutting concerns, but still lot of work can be done in the
operating systems cross cutting concerns. This paper
considers the logging, security and console handling as the
major concerns to be resolved by implementing them with
AOP as well as with that of Java. For statistical
measurement of the code the LOC metric, i.e. Lines Of Code

45

International Journal of Computer Sciences and Engineering

is appropriate and simple metric. Although it is not very
accurate measure of code complexity, it can still be used to
compare two different implementations. Execution time
could also be a statistical metrics for analyzing the execution
time of aspect implementation as well as without aspect
implementation.

II. ASPECT ORIENTED PROGRAMMING

The motivation and need for AOP arises from the short
comings of traditional programming strategies. Development
of software using AOP addresses the fall backs which arise
due to cross cutting concerns in traditional approaches [17].
Generally large scale applications consist of requirements
which can be achieved collectively by various modules.
Instead of modularization, developers are required to make
module which have various functionalities i.e. mixed goals.
Example of one such module or concern is logging which is
distributed throughout the whole software. Another
important concern is security. Since, security functionality is
required in most of the application so this module is also of
the utmost concern. Also, if some new functionality is added
in the system then security can also be asked to be imposed
on them too. Further, the concept of Dependency Injection
along with AOP is used in the present thesis as Dependency
Injection when implemented using AOP helps to simplify
the design of software applications. Dependency injection
was introduced by Martin Fowler. It is a software design
strategy that implements the principle of dependency
inversion control. It is a technique for reducing the
dependency among the components which in turn results in
reusability of the components. Reducing dependencies from
the system helps in decreasing the coupling among the
various components of the system so that a better framework
is achieved by separating cross cutting concerns from the
main component into a different unit. The key
responsibilities of DI are as follows:

. To determine which objects need configuration.

. To determine dependencies among the objects.

. To find the objects that satisfies similar
dependencies.
. To configure the objects with respect to its
dependencies.
A. Aspect]

Aspect] in AOP allows programmers to have the advantage
of modularization for cross cutting concerns that are present
in almost every part of software. In OOPs like C++ or Java,
class is considered as modular unit. Similarly in AOP
aspects provide the same functionality to the cross cutting
concerns which provides functionality to more than one
class. Program in Aspect] is compiled with its compiler and
is then run with a runtime library. Aspect] is an asymmetric
aspect-oriented language in that it distinguishes between
core and crosscutting concerns, specifying them differently.
Core concerns continue to be implemented in pure Java,

€
/;&]CSE © 2015, IJCSE All Rights Reserved

Vol.-3(2), PP(45-50) Feb 2015, E-ISSN: 2347-2693

modularized within classes and methods. Their
implementation is referred to as the base program.
Crosscutting concerns are implemented in aspects, using an
extended syntax of Java. The aspects and base program are
composed together to produce the complete program.

III. IMPLEMENTATION OF CROSS CUTTING
CONCERN IN NACHOS USING AOP AND JAVA

The NachOS simulator provides the following
components. Each component has its own functionality for
providing the basic components required for functioning of
an operating system.

2.Disk
4. Network

1. Time
3. Console

5. MIPS Processor 6. Interrupts

A. Cross Cutting Concerns in NachOS Units

In the present paper work is focused on the cross cutting
concerns which are security, authentication, console
handling. In addition to this logs for all the concerns are
recorded and maintained for inspection and managing
purposes.

B. SECURITY CONCERN

One of the cross cutting concern i.e. security is provided
by the authenticate function. The function is acting like a
join point in the machine simulation code. This join point
acts as a place where advice can be injected on the basis of
their matched criteria. The advantage of using security
aspect i.e. authentication using AOP is that the new
authentication features can be easily introduced in the
present code of security. Every module that is requiring
security for its execution, the aspect implementation is
desired instead of calling a function for the security action.

C LOGGING CONCERN

Logging is the concern that is required for maintaining
the logs of all the activities, exceptions occurring in the
system, security breach actions, system resource access
pattern and many more events. Logging is the major cross
cutting concern in any application but the most prevalent
application that requires logging is OS. The logs are
maintained for the verification of the user’s task as well as
for the improvements in the systems for the increased
performance. Similarly in the NachOS, logging of various
tasks performed, security logs, system usage time logs and
many more concerns are cross cutting concern. Logging in
NachOS is done by placing join points in the NachOS’s
source files. Dependencies can be easily injected in the files
by associating proper advice on the join points. In
NachOS.machine.java file, a log function is defined and
called at various functions where the need of log is to be
maintained.

46

International Journal of Computer Sciences and Engineering

D. CONSOLE HANDLING

Displaying data on the console of the machine is directed
through the standard output stream associated with the
display device and getting data from the user is done by the
input device (keyboard) connected via standard input stream.
On this system, whenever the individual keystroke occurred
on the simulated terminal, simulated terminal sends the
corresponding code associated with the character for display.

Fig.1. and Fig.2. shows how an Operating system would
implement logging using conventional techniques. This is
where AOP comes into the scenario. Using the AOP
paradigm, none of the core modules will contain the code of
logging services—they don’t even need to consider the
presence of logging facility in the system. AOP
implementation of the above mentioned logging
functionality is shown in the fig.2. The logic for logging is
now coded inside the logging module and logging aspect;
clients are no longer needs to add any code for logging
functionality. The crosscutting concern i.e. logging is now
directly mapped to only one module—the logging aspect.
With such modularization, any modifications to the
crosscutting logging concern would going to affect only the
logging aspect, separating the clients completely.

Boot up >
. Lo
Security > rou%i
nes
Console >
device

Fig.1. Tangling of Log routine with other modules

Boot up \
Logging :1/'\ Advice
Security [* Aspect routine
S
Console
device

Fig.2. Aspect Implementation of Log

The pointcuts defined in the aspect of log are shown below
in the figure. The pointcuts used for the NachOS machine
file are the conditions that are going to check for the
available join points in the machine code of NachOS. The
first pointcut that is used for log maintenance is log
dependency. In this pointcut, the wildcard is matching the
join point on the basis of method call i.e. log() in the
Machine class with any number of arguments.

0
ASJCSE ©2015, 1ICSE Al Rights Reserved

Vol.-3(2), PP(45-50) Feb 2015, E-ISSN: 2347-2693

Search Project Run Window Help

LT BHEE BB C I e RSB G

Q R
B Logaspect.aj X 1)) Machinejava [J) StandardConsole [J) SerialConsolej % =0 | oy
package nachos.machine;
@ import java.util.=;[]
v
public aspect Logaspect {
#
pointcut logdependency() : call(* Machine.log(..)); //dependency injecti LX)

pointcut consoledependency(String str) : call(* Machine.consoledev(..))&sargs(str);
pointcut authdependency() : call(* Machine.authenticate(..));

% =before() : authdependency|l) {

String un=nachos.machine.Access.auth{);
try{
//System.out.print("in aspect block...");
File file =new File("aspectfile.txt"); %

£ 2 £ 32 =8N

if(!file.exists()){
file.createNewFile();

Filewriter filewritter = new FileWriter(file.getName(),true);
Bufferediriter bufferWritter = new Bufferedwriter(filewritter);
bufferritter.write("\n");
bufferiiritter.write(un);
bufferiiritter.write("\t");
bufferdiritter.close();

}
catch(I0Exception e){
e.printStackTrace();
1

Fig.3. Pointcuts of cross cutting concerns

pointcut logdependency() : call(* Machine.log(..));
//dependency injection//
pointcut consoledependency(String str):call(*
Machine.consoledev(..))&&args(str);
pointcut authdependency() : call(* Machine.authenticate(..));

The action to be performed and decision making part of the
crosscutting concern is the advice. It also helps to define
“what to do.” Advice is a method-like construct that
provides a way to express crosscutting action at the join
points that are captured by a pointcut.

Eclipse SDK B =3 (1:10

:arch Project Run Window Help

EH G YBS®E VP e [E WG (=R
Q

71 Machine.java 22 | [J] StandardConsole [31 serialConsole.j 1 UserKernel java
c.piinistatniratel;

3

public static veid main(final String[] args) {
System.out.print("nachos 5.0j initializing...");

System.out.print("jatinti1r.");
@ authenticate();

//log maintained in file////

=
System.out.println("Testing the console device. Typed characters");
System.out.println("will be echoed until gquit is type.");
BufferedReader consol = null;
Reader r = new InputStreamReader(System.in);
consol = new BufferedReader(r);
String str = null;
try {
do{
str = consol.readLine(); I
L ledev(str);

stem.out.println(str);
le (!str.equalsIgnoreCase("quit"));

catch (IOException e) {
e.printStackTrace();|

B console 2
No consoles to displav at this time.

Writable Smart Insert 85:21

Fig.4. Join Points of various concerns

47

International Journal of Computer Sciences and Engineering

1°} B & Javal i
B *Logaspect.aj % | Il Machinejava [I) StandardConsole (1 SerialConsolej " = O aOutline X
5 heforh(] : logdependency() { - B B
//Systen.out.print("Hello! "); z
try{ <
String data = " Aspect Nachos BOOT at \t";
String dd; # nachos
Systen.out.print(*in aspect block..."); v O Logasp
File file =new File("aspectfile.txt");
Date dNow = new Date(); 4 logde
SimpleDateFormat ft = new SimpleDateFormat ("E yyyy.MM.dd 'at' hh:mm:ss a zz # consc
dd=ft. format (dNow) ; % authd
if{1file.exists()){ # befor
file.createNewFile(); b after|
} # befor
Filewriter fileWritter = new FileWriter(file.getName(),true);
BufferedWriter bufferiiritter = new Bufferediriter(filewritter); b after|

bufferiiritter.urite(data);

bufferliritter.write(dd);

bufferiritter.write("\n");

bufferliritter.close();

System.out.print("file appending has been completed...");
System.out.printin("Done");

b

eatch(I0Exception e){
e.printStackTrace();

HHAEETEGEREEEEA R LR EEEEE LT T T
cafter() : logdependency(){

Cuetem ant nrintn{"lan hac heen addedll™).

E console

No consoles to displav at this time.

Fig.5. Advice invocation corresponding to exposed Join
points

Eclipse SDK
earch Project Run Window Help
B E G B ®E Y e P A G 0 a

M ©(1111) § < o)) Mon

1 Logaspect.aj % | 1] Machinejava [StandardConsole [1] SerialConsole, i3 = |

LTI EEEE LT LT LTI LTI R EEEE LT T

« —after(String str): consoledependency(str)

{

try{
//5tring data = " History of Actions \t";

//System.out.print("in aspect block terminating nachos...");
File file =new File("aspectfile.txt");
if(!file.exists()){

file.createNewFile();}
Filewriter fileWritter = new FileWriter(file.getName(),true);
BufferedwWriter bufferWritter = new Buffereduriter(filewritter);
bufferWritter.write("\n");
bufferWritter.write(str);
bufferwritter.close(); %

}
catch(I0Exception e){
e.printStackTrace();

e
ST LT EELTFEELLE T E L LT R T

‘ =before() : logdependency() {
//System.out.print("Hello! ");

try{
Strinn data = " Acnect Nachns RONT at \t"- ¥

E console 2

No consoles to display at this time.

writable Smartinsert 16:26

Fig.6. After advice invocation for the console handling

IV. RESULT ANALYSIS
A LOC Measurement

o
ASJCSE ©2015, 1ICSE Al Rights Reserved

Vol.-3(2), PP(45-50) Feb 2015, E-ISSN: 2347-2693

The lines of code were measured for both the aspect version
of NachOS and the non-aspect version. The line count is
done only for the features added to the existing machine
code of the NachOS. The comparison is done on the basis
of new functionalities introduced in the NachOS using
aspect paradigm and object oriented paradigm. Here in the
implementation no modification are required in the original
file, only the aspect file needs to be modified in case of
updating the existing functionality, adding new
functionality, or removing existing functionality.

Advice part of the aspect is to be modified as per the
requirements and the LOC is measured only in context of
the original file

Table 1 below shows the LOC comparison of two
implementations of various features added in the NachOS
using two different programming paradigms. The aspect
implementation does not require any modification in the
original file of NachOS; LOC is only added in advice part
of the aspect module. However if the same functionality is
implemented without using aspects then significant LOC is
to be added at every occurrence of the called function in
the original file, which in turn affects the entire tangled
code.

Table 1: LOC analysis after code introduced in the original

file
LOC added for new
functionality using AOP | 1,0C added for
:ﬁ:ctionalit new functionality
y LoC LoC . without using
Added added In added in AOP in Main fil
Machine aspect n Vain fie
Main File module
Adding Date and 8*No of
time before 0 8 occurrences of
Logging event called function
17* No of
Authentication 0 17 occurrences of
called function
13* No of
Console History | 0 13 occurrences of
called function

B Execution Time Analysis

The execution time analysis is shown in Figure 7 using the
Eclipse Juno and AOP is implemented with Aspect]. Java
programmers can divide the program code into various
separate modules; each of the separated modules is actually
a different aspect. These modules are merged at the join

48

International Journal of Computer Sciences and Engineering

points present in the main core code by the Aspect]
compiler into a single program.

The test was conducted separately for computing the
execution time as per the both implementations that are
OOP and AOP. As this experiment is carried out in multi-

programming environment and the call of NachOS’s
Feature Aspectized Non aspectized
Reconfigured implementation | Implementation
Date and time log 1 M

is to be modified

Authentication 1 N

Console Handling 1 o

process is not certain, the execution time was computed
more than hundred times and gets the average of it as the
join points are added to the NachOS. This is done only to
obtain the correct and accurate execution time values. As
shown in Fig.4.6, the graph of AOP and OOP is
approximately merged over each other, which indicates that
the execution time efficiency of AOP is not decreased
although AOP need to capture the joint point and execute
the advice. AOP achieves the equal execution efficiency as
obtained using OOP.

—nor VOPUAVA)

xection time mill sec:nds)
<
N\

Fig.7. Execution time analysis
C Re-configurability
Due to the dynamic environment and frequently changing
requirements, need arises to reconfigure a system.

Reconfiguration cannot be done easily as the code which is
to be modified is tangled and scattered throughout the

o
ASJCSE ©2015, 1ICSE Al Rights Reserved

Vol.-3(2), PP(45-50) Feb 2015, E-ISSN: 2347-2693

system. Separation of concerned code is required which can
be beneficial not only for re-configurability purpose but it
could also enhances the extensibility, reusability and
understand ability of the system. The reconfiguration is
analyzed in two different implementations which are
aspectized and non aspectized implementation. The non
aspectized implementation is shown in the Table 4.3 for
various concerns. The reconfiguration needs the
modification at all the locations in the code where the
concern is present in the Operating system code. This task is
very cumbersome, as it consists of searching as well as then
modifying the code for new configuration at all the
locations where concern is present in the operating system’s
code.

Table 4.2 Modifications required at the various locations if
reconfiguration arises

Where M,N,O are the number of locations where they are
present in cross cutting fashion

Conclusion

With the use of aspects in the OS, the tangled code is shifted
from the main module into the aspect module thus making
the design and implementation of OS clearer and
understandable. Errors caused by the developers are now
reduced as the developer does not need to write the
redundant code or function’s call to all the occurrences
where it is to be executed. Rather than following this
procedure, now the developer can easily invoke the function
calls at all the places by using a single pointcut. Also the
development process becomes faster and error free with the
aspects, because the design is clearer and also the concerns
are implemented separately from their tangled code.

The maintainability of Operating system is also enhanced in
the AOP implemented code as the design consists of
separated concerns and the required changes are applied
only to the particular aspect that is associated with module
to be maintained. Moreover the code is less scattered and
tangled; the probability of progression of error in the system
is also reduced.

REFERENCES

[1] S. Hanenberg, S. Kleinschmager and M. Walter,
“Does Aspect-Oriented Programming Increase the
Development Speed for Crosscutting Code”, Third
International Symposium on Empirical Software
Engineering and Measurement, IEEE, Feb 2009

[2] Y. Zhang, et.all, “Implementing and Testing Producer-
Consumer Problem using AOP”, Fifth International
Conference on Information Assurance and Security,
IEEE, 2009

49

International Journal of Computer Sciences and Engineering

(3]

[11]

[12]

[16]

[17]

Y.Coady, G. Kiczales, and M. Feeley, “Exploring an
Aspect-Oriented Approach to Operating System
Code”, September 2000.
A. Rashid, T. Cottenier, P. Greenwood and R.
Chitchyan, “Aspect-Oriented Software Development
in Practice”, Computer Society IEEE, Feb 2010.
G,C. Murphy, R, J. Walker, and E. L.A. Baniassad,
“Evaluating Emerging Software Development
Technologies: Lessons Learned from Assessing
Aspect-Oriented Programming”. IEEE transactions on
software engineering, vol. 25, no. 4, July 1999
G. Murphy and C. Schwanninger, “Aspect-Oriented
Programming”, Computer Society, IEEE, 2006
W. A. Christopher, S. J Procter and T. E. Anderson,
“The NachOS Instructional Operating System”, 2005.
T. Narten, “A road map through NachOS”, 1995
J. Niu, “NachOS Overview”, Operating Systems, CS-
CCNY, Fall, September 2003
S. Chiba and R. Ishikawa, “Aspect-Oriented
Programming Beyond Dependency Injection”,
Springer-Verlag Berlin Heidelberg 2005
J. Brichau, et all, “A Model Curriculum for Aspect-
Oriented Software Development”, IEEE Software,
December 2006
C. L. Anderson, and M, Nguyen, “A survey of
contemporary Instructional Operating System for use
in Undergraduate Courses”. JCSC 21, Oct 2005
R. Laddad,” Aspect] in Action- Practical Aspect-
Oriented Programming”, Manning Publications co.
2003
J.D. Gradecki, “Mastering Aspect]-Aspect Oriented
Programming in Java”, Wiley Publishing, Inc, 2003
W. L. Lieu, C. H. .Lung, and S. Ajilla, “Impact of
Aspect Oriented Programming on Software
Performance: A Case Study of Leader/Followers and
Half-Sync.
J. Lamping and J. Kiczales, “The Need for
Customizable Operating systems”, IEEE, 1993
M. Ceccato. and F. B. Kessler, “Migrating Object
Oriented code to Aspect Oriented Programming”,
Software Maintenance, ICSM International
Conference, IEEE, 2007
http://www.ida.liu.se/~TDDB63/material/begguide/
(URL working on 2.4.2014)
https://www.student.cs.uwaterloo.ca/~cs350/
common/osoverview.html ~ (URL working on
2.3.2014)

0
ASJCSE ©2015, 1ICSE Al Rights Reserved

Vol.-3(2), PP(45-50) Feb 2015, E-ISSN: 2347-2693

50

