
 © 2015, IJCSE All Rights Reserved 45

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-3, Issue-2 E-ISSN: 2347-2693

Applying Dependency Injection Through AOP Programming to

Analyze the Performance of OS

Jatin Arora
1
*, Jagandeep Singh Sidhu

2
 and Pavneet Kaur

3

1*,2,3
 Computer Science Department, Chitkara University, India

jimjatin@gmail.com, jagandeep.sidhu@chitkara.edu.in, pavneet1812@gmail.com

www.ijcaonline.org

Received: Feb /6/2015 Revised: Feb/14/2015 Accepted: Feb/23/2015 Published: Feb/28/ 2015

Abstract— Operating systems are very inflexible towards modification of already existing functionalities such as security,

dynamic re-configurability, robustness etc. In such functionalities if need arises for any enhancements then it effects on large

fractions of the code. Thus results in difficult to implement. Such functional enhancements in any component of the OS that

affect large fractions of the program code, are often called crosscutting concerns. Such cross-cutting concerns can be solved by

the new emerging extension to object oriented paradigm i.e. Aspect Oriented Programming (AOP). The main idea in AOP is

the programmer’s ability to affect the execution of core code by writing aspects. Aspects are pieces of code that are run before,

or after core function for which aspect is written. For example logging is a good example of using aspects. To log all function

calls the programmer simply needs to define a logging aspect that is executed before and after each function call in the program.

In this work aspects are introduced in the Operating System for implementing various concerns and analyzing the performance

based on various metrics.

Keywords—Aspect; Pointcut; Before; After; Aspectj; Cross Cutting; Concerns; Dependency

I. INTRODUCTION

All standard paper components have been specified for
three reasons: (1) ease of use when formatting individual
papers, (2) automatic compliance to electronic requirements
that facilitate the concurrent or later production of electronic
products, and (3) conformity of style throughout conference
proceedings. Margins, column widths, line spacing, and type
styles are built-in; examples of the type styles are provided
throughout this document and are identified in italic type,
within parentheses, following the example. Some
components, such as multi-leveled equations, graphics, and
tables are not prescribed, although the various table text
styles are provided. The formatter will need to create these
components, incorporating the applicable criteria that follow
Computer devices can perform operations in fractions of
seconds and without any error which normal human require
his lifetime to do. But computers as such are useless without
the software to run on them. And all the software’s are
useless too without the Operating system which is an
important part of computer system. Operating system is
responsible for all the other programs to run on the
computer. Various programming strategies have been
applied for the development of operating system. Originally
operating system was developed using assembly language or
C language. Using C programming in the development of
Operating system caused many problems, because C is a
procedural language. Programming practices were not
modular in the early computer’s age and they weren’t easily
modifiable, but with the advent of modern computers,
modular configuration is possible. The performance of an
OS is not as important as it was in the past because now a

day’s computers are more advanced and powerful. The
priority now is given to security and stability of OS rather
than on its processing time and memory usage. Moreover,
modern operating systems are highly complex to develop
them in low-level programming languages, so a solution
proposed to this problem is to use a high-level language.

Many new high level languages such as C++ and other
object oriented programming languages have been used for
improving the development of OS. Various research
operating systems have been developed using high level
language but still operating systems face problem with
modularity. Complex interactions due to dependencies
between the modules of the system threat module’s
boundaries and make them highly susceptible to errors.
Security, authentication checks, exception handling,
statistics, dynamic re-configurability, console are the major
modules of any operating systems but if any modifications
are required in these modules then it effects on the large
fraction of code which is difficult to implement. The
operating system used for carrying out this task is NachOS
and it is used for research purposes. It is a rather small and
simple operating system but still has all the important
features of a real operating system.

Although there is progress in the field of separating cross

cutting concerns, but still lot of work can be done in the

operating systems cross cutting concerns. This paper

considers the logging, security and console handling as the

major concerns to be resolved by implementing them with

AOP as well as with that of Java. For statistical

measurement of the code the LOC metric, i.e. Lines Of Code

 International Journal of Computer Sciences and Engineering Vol.-3(2), PP(45-50) Feb 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 46

is appropriate and simple metric. Although it is not very

accurate measure of code complexity, it can still be used to

compare two different implementations. Execution time

could also be a statistical metrics for analyzing the execution

time of aspect implementation as well as without aspect

implementation.

II. ASPECT ORIENTED PROGRAMMING

The motivation and need for AOP arises from the short
comings of traditional programming strategies. Development
of software using AOP addresses the fall backs which arise
due to cross cutting concerns in traditional approaches [17].
Generally large scale applications consist of requirements
which can be achieved collectively by various modules.
Instead of modularization, developers are required to make
module which have various functionalities i.e. mixed goals.
Example of one such module or concern is logging which is
distributed throughout the whole software. Another
important concern is security. Since, security functionality is
required in most of the application so this module is also of
the utmost concern. Also, if some new functionality is added
in the system then security can also be asked to be imposed
on them too. Further, the concept of Dependency Injection
along with AOP is used in the present thesis as Dependency
Injection when implemented using AOP helps to simplify
the design of software applications. Dependency injection
was introduced by Martin Fowler. It is a software design
strategy that implements the principle of dependency
inversion control. It is a technique for reducing the
dependency among the components which in turn results in
reusability of the components. Reducing dependencies from
the system helps in decreasing the coupling among the
various components of the system so that a better framework
is achieved by separating cross cutting concerns from the
main component into a different unit. The key
responsibilities of DI are as follows:

• To determine which objects need configuration.

• To determine dependencies among the objects.

• To find the objects that satisfies similar
dependencies.

• To configure the objects with respect to its

dependencies.

A. AspectJ

AspectJ in AOP allows programmers to have the advantage

of modularization for cross cutting concerns that are present

in almost every part of software. In OOPs like C++ or Java,

class is considered as modular unit. Similarly in AOP

aspects provide the same functionality to the cross cutting

concerns which provides functionality to more than one

class. Program in AspectJ is compiled with its compiler and

is then run with a runtime library. AspectJ is an asymmetric

aspect-oriented language in that it distinguishes between

core and crosscutting concerns, specifying them differently.

Core concerns continue to be implemented in pure Java,

modularized within classes and methods. Their

implementation is referred to as the base program.

Crosscutting concerns are implemented in aspects, using an

extended syntax of Java. The aspects and base program are

composed together to produce the complete program.

III. IMPLEMENTATION OF CROSS CUTTING

CONCERN IN NACHOS USING AOP AND JAVA

The NachOS simulator provides the following
components. Each component has its own functionality for
providing the basic components required for functioning of
an operating system.

1. Time 2.Disk

3. Console 4.Network

5. MIPS Processor 6. Interrupts

A. Cross Cutting Concerns in NachOS Units

In the present paper work is focused on the cross cutting

concerns which are security, authentication, console

handling. In addition to this logs for all the concerns are

recorded and maintained for inspection and managing

purposes.

B. SECURITY CONCERN

One of the cross cutting concern i.e. security is provided
by the authenticate function. The function is acting like a
join point in the machine simulation code. This join point
acts as a place where advice can be injected on the basis of
their matched criteria. The advantage of using security
aspect i.e. authentication using AOP is that the new
authentication features can be easily introduced in the
present code of security. Every module that is requiring
security for its execution, the aspect implementation is
desired instead of calling a function for the security action.

C LOGGING CONCERN

Logging is the concern that is required for maintaining
the logs of all the activities, exceptions occurring in the
system, security breach actions, system resource access
pattern and many more events. Logging is the major cross
cutting concern in any application but the most prevalent
application that requires logging is OS. The logs are
maintained for the verification of the user’s task as well as
for the improvements in the systems for the increased
performance. Similarly in the NachOS, logging of various
tasks performed, security logs, system usage time logs and
many more concerns are cross cutting concern. Logging in
NachOS is done by placing join points in the NachOS’s
source files. Dependencies can be easily injected in the files
by associating proper advice on the join points. In
NachOS.machine.java file, a log function is defined and
called at various functions where the need of log is to be
maintained.

 International Journal of Computer Sciences and Engineering Vol.-3(2), PP(45-50) Feb 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 47

D. CONSOLE HANDLING

Displaying data on the console of the machine is directed

through the standard output stream associated with the

display device and getting data from the user is done by the

input device (keyboard) connected via standard input stream.

On this system, whenever the individual keystroke occurred

on the simulated terminal, simulated terminal sends the

corresponding code associated with the character for display.

Fig.1. and Fig.2. shows how an Operating system would
implement logging using conventional techniques. This is
where AOP comes into the scenario. Using the AOP
paradigm, none of the core modules will contain the code of
logging services—they don’t even need to consider the
presence of logging facility in the system. AOP
implementation of the above mentioned logging
functionality is shown in the fig.2. The logic for logging is
now coded inside the logging module and logging aspect;
clients are no longer needs to add any code for logging
functionality. The crosscutting concern i.e. logging is now
directly mapped to only one module—the logging aspect.
With such modularization, any modifications to the
crosscutting logging concern would going to affect only the
logging aspect, separating the clients completely.

Fig.1. Tangling of Log routine with other modules

Fig.2. Aspect Implementation of Log

The pointcuts defined in the aspect of log are shown below

in the figure. The pointcuts used for the NachOS machine

file are the conditions that are going to check for the

available join points in the machine code of NachOS. The

first pointcut that is used for log maintenance is log

dependency. In this pointcut, the wildcard is matching the

join point on the basis of method call i.e. log() in the

Machine class with any number of arguments.

Fig.3. Pointcuts of cross cutting concerns

 pointcut logdependency() : call(* Machine.log(..));

 //dependency injection//

pointcut consoledependency(String str):call(*

Machine.consoledev(..))&&args(str);

pointcut authdependency() : call(* Machine.authenticate(..));

The action to be performed and decision making part of the
crosscutting concern is the advice. It also helps to define
“what to do.” Advice is a method-like construct that
provides a way to express crosscutting action at the join
points that are captured by a pointcut.

Fig.4. Join Points of various concerns

Boot up

and

Security

Log

routi

nes
Console

device

Boot up

and

Security

Console

device

Logging

Aspect

Advice

routine

s

 International Journal of Computer Sciences and Engineering Vol.-3(2), PP(45-50) Feb 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 48

Fig.5. Advice invocation corresponding to exposed Join

points

Fig.6. After advice invocation for the console handling

IV. RESULT ANALYSIS

A LOC Measurement

The lines of code were measured for both the aspect version

of NachOS and the non-aspect version. The line count is

done only for the features added to the existing machine

code of the NachOS. The comparison is done on the basis

of new functionalities introduced in the NachOS using

aspect paradigm and object oriented paradigm. Here in the

implementation no modification are required in the original

file, only the aspect file needs to be modified in case of

updating the existing functionality, adding new

functionality, or removing existing functionality.

Advice part of the aspect is to be modified as per the

requirements and the LOC is measured only in context of

the original file

Table 1 below shows the LOC comparison of two

implementations of various features added in the NachOS

using two different programming paradigms. The aspect

implementation does not require any modification in the

original file of NachOS; LOC is only added in advice part

of the aspect module. However if the same functionality is

implemented without using aspects then significant LOC is

to be added at every occurrence of the called function in

the original file, which in turn affects the entire tangled

code.

Table 1: LOC analysis after code introduced in the original

file

New

Functionality

Added

LOC added for new

functionality using AOP LOC added for

new functionality

without using

AOP in Main file

LOC

added In

Machine

Main File

LOC

added in

aspect

module

Adding Date and

time before

Logging event

0 8

8*No of

occurrences of

called function

Authentication 0 17

17* No of

occurrences of

called function

Console History 0 13

13* No of

occurrences of

called function

B Execution Time Analysis

The execution time analysis is shown in Figure 7 using the

Eclipse Juno and AOP is implemented with AspectJ. Java

programmers can divide the program code into various

separate modules; each of the separated modules is actually

a different aspect. These modules are merged at the join

 International Journal of Computer Sciences and Engineering Vol.-3(2), PP(45-50) Feb 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 49

points present in the main core code by the AspectJ

compiler into a single program.

The test was conducted separately for computing the

execution time as per the both implementations that are

OOP and AOP. As this experiment is carried out in multi-

programming environment and the call of NachOS’s

process is not certain, the execution time was computed

more than hundred times and gets the average of it as the

join points are added to the NachOS. This is done only to

obtain the correct and accurate execution time values. As

shown in Fig.4.6, the graph of AOP and OOP is

approximately merged over each other, which indicates that

the execution time efficiency of AOP is not decreased

although AOP need to capture the joint point and execute

the advice. AOP achieves the equal execution efficiency as

obtained using OOP.

Fig.7. Execution time analysis

C Re-configurability

Due to the dynamic environment and frequently changing

requirements, need arises to reconfigure a system.

Reconfiguration cannot be done easily as the code which is

to be modified is tangled and scattered throughout the

system. Separation of concerned code is required which can

be beneficial not only for re-configurability purpose but it

could also enhances the extensibility, reusability and

understand ability of the system. The reconfiguration is

analyzed in two different implementations which are

aspectized and non aspectized implementation. The non

aspectized implementation is shown in the Table 4.3 for

various concerns. The reconfiguration needs the

modification at all the locations in the code where the

concern is present in the Operating system code. This task is

very cumbersome, as it consists of searching as well as then

modifying the code for new configuration at all the

locations where concern is present in the operating system’s

code.

Table 4.2 Modifications required at the various locations if

reconfiguration arises

Where M,N,O are the number of locations where they are

present in cross cutting fashion

Conclusion

With the use of aspects in the OS, the tangled code is shifted

from the main module into the aspect module thus making

the design and implementation of OS clearer and

understandable. Errors caused by the developers are now

reduced as the developer does not need to write the

redundant code or function’s call to all the occurrences

where it is to be executed. Rather than following this

procedure, now the developer can easily invoke the function

calls at all the places by using a single pointcut. Also the

development process becomes faster and error free with the

aspects, because the design is clearer and also the concerns

are implemented separately from their tangled code.

The maintainability of Operating system is also enhanced in

the AOP implemented code as the design consists of

separated concerns and the required changes are applied

only to the particular aspect that is associated with module

to be maintained. Moreover the code is less scattered and

tangled; the probability of progression of error in the system

is also reduced.

REFERENCES

[1] S. Hanenberg, S. Kleinschmager and M. Walter,

“Does Aspect-Oriented Programming Increase the

Development Speed for Crosscutting Code”, Third

International Symposium on Empirical Software

Engineering and Measurement, IEEE, Feb 2009

[2] Y. Zhang, et.all, “Implementing and Testing Producer-

Consumer Problem using AOP”, Fifth International

Conference on Information Assurance and Security,

IEEE, 2009

Feature

Reconfigured

Aspectized

implementation

Non aspectized

Implementation

Date and time log

is to be modified

1 M

Authentication 1 N

Console Handling 1 O

 International Journal of Computer Sciences and Engineering Vol.-3(2), PP(45-50) Feb 2015, E-ISSN: 2347-2693

 © 2015, IJCSE All Rights Reserved 50

[3] Y.Coady, G. Kiczales, and M. Feeley, “Exploring an

Aspect-Oriented Approach to Operating System

Code”, September 2000.

[4] A. Rashid, T. Cottenier, P. Greenwood and R.

Chitchyan, “Aspect-Oriented Software Development

in Practice”, Computer Society IEEE, Feb 2010.

[5] G,C. Murphy, R, J. Walker, and E. L.A. Baniassad,

“Evaluating Emerging Software Development

Technologies: Lessons Learned from Assessing

Aspect-Oriented Programming”. IEEE transactions on

software engineering, vol. 25, no. 4, July 1999

[6] G. Murphy and C. Schwanninger, “Aspect-Oriented

Programming”, Computer Society, IEEE, 2006

[7] W. A. Christopher, S. J Procter and T. E. Anderson,

“The NachOS Instructional Operating System”, 2005.

[8] T. Narten, “A road map through NachOS”, 1995

[9] J. Niu, “NachOS Overview”, Operating Systems, CS-

CCNY, Fall, September 2003

[10] S. Chiba and R. Ishikawa, “Aspect-Oriented

Programming Beyond Dependency Injection”,

Springer-Verlag Berlin Heidelberg 2005

[11] J. Brichau, et all, “A Model Curriculum for Aspect-

Oriented Software Development”, IEEE Software,

December 2006

[12] C. L. Anderson, and M, Nguyen, “A survey of

contemporary Instructional Operating System for use

in Undergraduate Courses”. JCSC 21, Oct 2005

[13] R. Laddad,” AspectJ in Action- Practical Aspect-

Oriented Programming”, Manning Publications co.

2003

[14] J.D. Gradecki, “Mastering AspectJ-Aspect Oriented

Programming in Java”, Wiley Publishing, Inc, 2003

[15] W. L. Lieu, C. H. .Lung, and S. Ajilla, “Impact of

Aspect Oriented Programming on Software

Performance: A Case Study of Leader/Followers and

Half-Sync.

[16] J. Lamping and J. Kiczales, “The Need for

Customizable Operating systems”, IEEE, 1993

[17] M. Ceccato. and F. B. Kessler, “Migrating Object

Oriented code to Aspect Oriented Programming”,

Software Maintenance, ICSM International

Conference, IEEE, 2007

[18] http://www.ida.liu.se/~TDDB63/material/begguide/

(URL working on 2.4.2014)

[19] https://www.student.cs.uwaterloo.ca/~cs350/

common/osoverview.html (URL working on

2.3.2014)

