o
AXJCSE |International Journal of Computer Sciences and Engineering [pen Access

Research Paper

Volume-2, Issue-9

E-ISSN: 2347-2693

Dynamic Fault Localization in Web Application

Vijay Kumar .Akula' and Chaitanya Kumar .N**

www.ijcaonline.org

Received: Aug/26/2014 Revised: Sep/13/2014

Accepted: Sep/26/2014 Published: Sep/30/2014

Abstract— Now-a-days, web applications have become prevalent around the world. This technology has made it possible to
carry on business along the web. Many companies developing web applications. There is a need of locating faults in web
applications. In this report, we present a technique to locate faults in web applications. Dynamic Fault Localization is a process
to localize the faulty statements in web application programs. To locate faulty statement in web programs we implement

Tarantula, Ochiai, and Jaccard Coefficients.

Keywords—The word Coefficient, Suspiciousness and Prediction are one are the same, fault, faulty statement, malformed statement

L INTRODUCTION

Web application development has provided an efficient and
effective route to deal with foreign clients, aimed at a purely
gain in cost cutting methods. Through the deployment of
customized and specified web applications, a diverse range of
purpose can be served. Web applications or computer
programs assist you to gather information, collect data and to
find out anything that you really want. Web applications, forms
on-line trading in online retail, have become prevalent because
of their convenient and inexpensive ways to provide product
information and service on-line to anyone at any time. As more
business relies on web applications for their mission-critical
operations, the quality of the applications become crucial. A
small, malformed statement in the web applications could
interrupt entire business on the web. There is a need to locate
the faulty statement in the web application. Web applications
are combinations of multiple computer programming language
(like Html, JSP, Java etc....,).

Finding and Locating the malformed statement in the web
application programs is complex task [1]. Our attempt is to
provide a single roof to perform tests on web application. In
this paper our approach is to locate malformed statements in
HTML, JSP pages [2] and locate faults in associated Java
classes to run web application properly.

To cope with the preceding situation, researchers have
proposed various techniques for fault localization [3, 4] to find
fault exactly where is. A fault is nothing but the bug. It is
always challenging for software engineers to remove bugs
effectively and efficiently. To get rid of bugs, software
engineers must first able to identify precisely where the bugs
are, which is known as Dynamic Fault Localization.

II. RELATED WORK

JSP pages have been widely applied in Java-based Web
applications to handle HTTP request, to interact with Java
Components like Java Beans, and to generate dynamic pages.
It is important to ensure that the JSP pages are written

Corresponding Author: Chaitanya Kumar .N, n_chaitu@yahoo.com

© 2014, IJCSE All Rights Reserved

correctly and their interactions with other components are
handled properly. However, JSP pages usually mix up scripts
(i.e.., JSP scriptlet) with HTML statements in order to
generate dynamic pages. This makes JSP pages difficult to
understand and test. Our goal is to find the root cause for the
web application failure.

A. Html and JSP Technologies

While contemporary Web browsers do an increasingly good
job of parsing even the worst HTML & JPS “tag soup”, some
errors are not always caught gracefully. Very often, different
software on different platforms will not handle errors in a
similar faction, making it extremely difficult to apply style or
layout consistently

B. Study of Various Methods for Fault Localization

Fault Localization is an intensively studied research topic in
regression testing. Techniques for fault localization aim to
improve the rate of fault detection. In the literature, there are
several lines of research on fault localization. Some are:-

Pan and Spafford [7] produced a set of heuristics that identify a
set of suspicious statements in a program, but provides no
ranking of the propitiousness of the statements in the bent.
Therefore, the user has no information about where to start the
debugging process within the set of instructions.

In addition, several of their heuristics require setting thresholds
that must be tuned to the particular program and fault, which is
not recognized until the faults are found. As well, their
approach does not offer a means for the user to interface with
the provided information for debugging.

Program slicing is a commonly employed technique for
debugging. A statement program [10] slice for a give variable
at a given statement contains all the executable statement that
could possibly affect the value of this variable at the statement.
Reduction of the debugging search domain via slicing is based
on the idea that is a test case fails due to an incorrect variable
value at a statement then the defect should be found in the
static slice association with that variable-statement pair. We

44

International Journal of Computer Sciences and Engineering

can therefore confine our search to the slice rather than looking
at the entire program.

In Program Spectrum-based Method. A Program spectrum
records the execution information about a program in certain
aspects, such as execution information for conditional branches
or loop-free intra-procedural path [9]. It can be utilized to track
program behavior [8]. When the execution fails, such
information can be used to identify suspicious code that is
responsible for the failure.

A Set Union and Set Intersection Method obtain set of program
lines by removing the statements executed by the passed test
case. This resulting set of statements is then used as the initial
set of suspicions statements when searching for defects. Pan
present a set of dynamic-slicing-based heuristics that use set
algebra of test cases’ dynamic slices for similar purpose [7]. In
addition to utilizing the information obtained about, they also
used analysis information to compute dynamic slices of the
program and test examples from a particular program level.

In this report, we address the problems of locating faulty
statements in web application development using JSP. This
advance facilitates the web application developers to identify
the faults and reduce his testing time and it also reduces, the
load on the web server.

III. COEFFICIENT FOR FAULT LOCALIZATION

A. Java Server Page

In our report, we address the problems of locating faulty
statements in web application development using JSP. This
approach helps the web application developers to identify the
errors and reduce his testing time and it also reduces the
burden on the web server.

A JSP page is translated into a Java servlet before being
executed. The JSP translator is typically triggered by the .jsp
file name extension. JSP Translator depends on the jsp tags,
the misplace of jsp tags makes the faulty servlet.

1.<html>

2.<body>

3.<% out.print("welcome to jsp"); %> } ISP tag
4.</body>

5.</html>

Fig. 1 JSP Sample Program

B. Hyper Text Markup Language

HTML is the standard mark-up language used for making web
pages. HTML is written in the form of HTML elements
consisting of tags enclosed in angle brackets like <html>.
HTML tags most commonly come in pairs, although some are
unpaired tags. Using the correct HTML document structure
when creating a web page is important. If the HTML
document structure is incorrect the web page can break or the
web browser may not be able to read the page and display to

@
f&] CSE ©2014, 1ICSE All Rights Reserved

Vol.-2(9), PP(44-49) Sep 2014, E-ISSN: 2347-2693

the users. Therefore, HTML validator is a program utilized to
locate the unstructured tags of the HTML page, reports are
generated.

C. Coefficient Equations for Fault Localization

Jones [11, 12] presented Tarantula, a fault localization
technique that associates with each statement a suspiciousness
rating that indicates the likelihood for that statement to
contribute to a failure. The suspiciousness rate for individual
statement is computed with the following coefficient.

failed (statement

eme
totalfailed (statements)
nassed (statement) failed (statement)

tut?llpassed (statements) T totalfailed(statements)
Eq. 1 Tarantula Coefficient Equation

ammtila

SlapLLUdall toa,

In the area of data clustering, another similarity coefficients
have been proposed that can also be used to calculate
suspiciousness ratings. These include the Jaccard [13]
coefficient used in the pinpoint program [14]

' (statement)
sEmiclousness” =

uuuuuuuuuuuuuuuu

Eq. 2 Jaccard Coefficient Equation.

Ochiai [15] Coefficient equation, it is form molecular biology
domain. We compute the coefficients (i.e.., suspiciousness) for
individual statements of the program. In the equations,
passed(statement) and failed(statement) represents the number
of passing test cases and the number of failing test cases that
executes the statement of the program tested. The term
totalfailed(statements) denotes the total number of failing test
cases.

Cled ctatement
it totlfald tatemants) fpussadstatemant] + e ttemant]|

(dtemen)

suspiriousness

Eq. 3 Ochiai Coefficient Equation.

Ranking the statements based on the suspiciousness rating
have been computed. These ranks need not be unique, the rank
of each statement is the number of statements with greater than
or equal suspiciousness:

rankstatemen) = | tatemen’ suspiciounsess(stotement) 2 suspiciounsess{statement| |
Eq. 4 Compute Rank

The rank of statement(s) reflects the maximum number of
statements that would have to be examined if statements are
examined in order of decreasing suspiciousness, and if 1 were
the last statement of that particular suspiciousness level
chosen for examination.

45

International Journal of Computer Sciences and Engineering

IV. OUR APPROACH

Dynamic Fault Localization is an approach address failure of
web application programs. In “Dynamic Fault Localization”
the user login into the scheme, and utilizes the services of the
Dynamic Fault Localization. The Services of the Dynamic
Fault localization are: (a) Html Validation (b) JSP Validation
and (c) Locate Faults in JSP program and its associated Java
Class. The figure 2 depicts the operation flow of the system.

=

Faull Locallaslioe in w-unppu..-u..-n I

-H:nrlnr /\

I Bl sl FRP Wallslabien Faseusimn of Fauls Lokl |

e

Funcrioms! Test

| = VETERS]

Fig. 2 Process flow diagram

A. Calculating Coefficientds using Equations

pubdic List<Result=
Compute|Statistics)

Ust<Result= remlt = mew LinkedUst<Aeseit=[|;
StmtStatistic statistic = (StrrtStatistels;

fonSering Mr atatistie
petClassNames(}]

End of far)

for{integer | statistic
petllamslineskey]]
L

int falsaCaias = statistic. garClassUinasFakialkey, 11;
Int e Cates = statlstic.gevtlassUinesTrue[kay, i)
Tloat perFalse;

p-mu-mmuw-ﬂw“mn

. et TestE skl ||

I Susp=perfalse/[perfalse+preTrue I
——

Mlaat cond=perf alis=parTrue?ped F alis parTriie;
rasul, sdedinew Semteaultianp, conl, key, 11;

Fig. 3 Tarantula Coefficient Flowchart

In this section, we implement programs to locate faults in the
web applications, it detects the faults in the JSP program and
its associated Java classes. And so, the developer needs to
modify the faulty statements localized by the organization.

/ﬂ\] CSE ©2014, JCSE All Rights Reserved

Vol.-2(9), PP(44-49) Sep 2014, E-ISSN: 2347-2693

public List<Regules
ComputeiStatiatica]

1Y

List<Result= result = ew LimkedList<fesulio{}:
SumtStatistic statistic = (StrntStatistic)s;

i
<: for|Saring key: statiztac
etCiasaramaall)
-"-..-‘-_--

for|integer | statistic
perClasslines (Key])

m Ik falesCasas = statiatie. petClassLinesFalselkey, |];
Int trueCases = statistic. petTlasslUinesTrue(key, Ik

Mot susp;
W

End of for)

End of for

susp = (floatfalseCases)
[statistic. get TestFalse| b+

_\:-:ﬂl:lsgﬂ

Rasultad el naw
stmtRasult{susp, key, i)l

ausE = 0

Fig. 4 Jaccard Coefficient Flowchart

These processes involve two steps. First, Fault detection is to
check whether the set of lines of code is fault free or not.
Second, Fault localization is to locate the faulty statement
position and The figure 3, 4 and 5 are the flow chart of fault
localization coefficients. Which are implemented into our
System.

public List<Result>
ComputelStatistics)

List=Result> result = new LinkedList<Result={};
StmitStatistic statistic = (StmtStatistic)s;

far[5tﬁng key: statistic
getClassMamaes(})
F“M

Return result;

End of for(]
for(integer i: statistic
getClasslines{key))

int falseCases = statistic.getClassLinesFalse{key,);
int trueCases = statistic. getClassLinesTrue(key, 1);
float susp;

Susp =
[float)(falseCases/Math.sqrifstatistic. getTestFalse{)*{
falseCases+trueCases)));
result.add{new StmitResult{susp, key, 1);

Fig. 5 Ochiai Coefficient Flowchart

Fault localization is applied for both detecting errors and
locating faults. The system implements the fault localization

46

International Journal of Computer Sciences and Engineering

equations defined in the section 3 (i.e.., Tarantula, Jaccard and
Ochiai coefficient equations). These equations are used in
localizing the position of the faulty statement. In the system the
programmer checks for the faults in the program. Then the
system generates reports. The reports look like fig 7, 8 and 9.If
any malformed set of lines in the program (i.e.., that means the
program contains faults). Then, the programmer localizing
position of the faulty statement in the program. The
localization report will provide the information about the
malformed statements in the program. The figure 3 is a
Tarantula coefficient implemented flowchart depicts the
process of localizing the faulty statements in the program.

All the fault localization techniques use the percentage of
failing and passing tests executing a given statement to
calculate the statement’s suspiciousness score. To this end, our
system records the set of executing statement, suspiciousness,
statement line number and rank of suspiciousness for each
execution. Jaccard and Ochiai coefficient also implement in the
system programmatically in a similar manner to that of
Tarantula. The figure 4 and figure 5 is a Jaccard and Ochiai
Coefficient flow charts respectively.

B. Localization of Faults in Html and JSP Web Pages

The HTML and JSP Validation (figure 6) helps in checking the
validity of I-documents (Internet documents). Most of dynamic
web applications are written in JSP and its response I-
documents (Internet documents) are in Hypertext Mark-up
Language. Mark-up language specification embodies a
machine-readable formal synchronic linguistic vocabulary. The
act to check a document against these constraints of markup
language specification is called as Validation. The HTML and
JSP Validation, validate internet documents written in HTML.
The figure 6 is a flow diagram depicts the process of HTML
and JSP Validation.

Wil and ISP Validatian

Siring htmi = bestarea guiFaramet e kmi®|;
var Togs = rw Srray;

Sinng jap = beeterea. getP eraeater|“jap
war acriphst = naw irray;

Tagafcounter+s] = raw T
Taga[counter+s] = raw Ta
Taga[counter+s] = rew Tag

i

P g [858 30T = T g0 i] B3 g = Chomadad ||

‘-__‘__\“
.._—_-_-:_"':_ tow | Susinng Wimilliss : Barestares ::‘__‘:g:- —

|"npplat”, false); HTRL
mras”, Falsn); L]
articl®, fahal;

erray st of Java Server
Page surmartic

Far leap

Fig. 6 Html and JSP Validation

@
@] CSE ©2014, JCSE All Rights Reserved

Vol.-2(9), PP(44-49) Sep 2014, E-ISSN: 2347-2693

rank suspicious line class
@ 1 1.0[1.0] 10 com.testSourceCode
@ 2 0.8333332 [1.0] 9 com.test.SourceCade
@ 3 071428572 [1.0] 7 com.test.SourceCode
f\n 7 0.5[1.0]] com.test.SourceCode
f\:\ 7 0.5[1.0] 5 com.test.SourceCode
(3- 7 0.5[1.0] 3 com.test.SourceCode
@ 7 0.5[1.0] 17 com.test.SourceCode
@ 8 0.0 [0.6] 12 com.test.SourceCode
[<) 9 0.0[0.4] 14 com.test.SourceCode
[<) 12 0.0[0.2] 15 com.test.SourceCode
[] 12 0.0[0.2] 13 com.test.SourceCode
@ 12 0.0[0.2] 8 com.test.SourceCode

Fig. 7 Tarantula Report

Fault localization system records the results of all their results
of fault check condition in the executed program. It records
the observation consisting of the statement’s line number,
code file name, suspiciousness and rank are calculated using
equation 4.

rank suspicious line class
[&) 1 1.0 10 com.test.SourceCode
1\4 2 0.5 9 com.test.SourceCode
(] 3 033323334 7 com.test.SourceCode
@ 7 0.16666667 & com.test.SourceCode
L 7 0.16666667 5 com.test.SourceCode
@ 7 0.16666667 3 com.test.SourceCode
& 7 0.16666667 17 com.test.SourceCode
i\z 12 0.0 13 com.test.SourceCode
@a 12 0.0 14 com.test.SourceCode
[&) 12 0.0 13 com.test.SourceCode
@ 12 0.0 12 com.test.SourceCode
1\4 12 0.0 8 com.test.SourceCode

Fig. 8 Jaccard Report

The recorded observations are viewed in tabular form,
suspiciousness rate and its line number, thus the programmer
fine the faulty statement location.

rank suspicious line class
@ 1 1.0 10 com.test.SourceCode
[) 2 0.70710677 9 com.test.SourceCode
LS 3 0.57735026 7 com.test.SourceCode
[&) 7 0.4082483 B com.test.SourceCode
f\;"- 7 0.4082483 5 com.test.SourceCode
ﬁ?‘- 7 0.4082483 3 com.test.SourceCode
L) 7 0.4082433 17 com.test.SourceCode
f\;"- 12 0.0 15 com.test.SourceCode
ﬁ?‘- 12 0.0 14 com.test.SourceCode
@ 12 0.0 13 com.test.SourceCode
f\a 12 0.0 12 com.test.SourceCode
[&) 12 0.0 2 com.test.SourceCode

Fig. 9 Ochiai Report

V. EXPERIMENTAL RESULT

In our experimentation, we examine the effectiveness of
locating faults and the program under examination can be
assessed by counting and classifies discover of faults.

The figure 7, figure 8 and figure 9 are the report generated
using tarantula, Jaccard and Ochiai coefficients respectively to
localize faulty statement.

47

International Journal of Computer Sciences and Engineering

The following figures are graphs plotted using the reports
generated by the tarantula, Jaccard and Ochiai respectively.

Fauk Letalizatian - Taramuls

Hom
Foa
oa
e
o=
oE
L]
am
o
om
E r ® "] [

Fig. 10 Tarantula bar graph

Fault Localization = Jaccard

: q17777<

[T

[s

Fig. 11 Jaccard bar diagram

Faull Localinsficn - Schim

o
om
wm
o
[t
oo
= " r » 5 B - - n =

LimpHomrbp

Fig. 12 Ochiai Report

From the figure 7 tarantula report. We can see that the
statement on the line number 10 is faulty statement. Which
has highest suspicious percentage rate and it is rated as 1. The
fig 10 Tarantula bar graph plotted using the suspiciousness
rate and statement line number of the tarantula report.

A. Comparative Graph
The evaluation of the above coefficients is shown in the below
graph
€
R/ “] CSE ©2014, UCSE All Rights Reserved

Vol.-2(9), PP(44-49) Sep 2014, E-ISSN: 2347-2693

SUSPICIOUSNESS RATE GRAPH

suspiciousness

3 4 5 e 7 P o 1 " 12 13 14 15 18 17
Line Number

<=L S Tarantus =L S Jacara LS 55 -Ls Oona]

Fig. 13 Comparative Graph

We observe that the Tarantula coefficient localize faults 87.8
percent of the fault within 1 percent of all executed statements
followed by Ochiai 78.11 percentage and next Jaccard 69.23
percent.

VI. CONCLUSION

After completing the research tasks that we outlined in the
paper, we expect to make the following contributions in the
dissertation:
e An approach to locate faults in web applications.
e Implementation of the approach in a tool
e A comparison of different fault
algorithm results
e More insight into what relationships of the passing
and the failing test cases affect the effectiveness of
fault localization
e Execution of the overture in a creature
We observed the more than 80% of all faults in the program
are found and located with 1% of all executed statements of the
program.

localization

REFERENCES

[11 Analysing and Testing Web Application Performance Research
Inventy: International Journal of Engineering and Science
Vol.3, Issue 10 (October 2013), PP 47-50

[2] Improving Browsing Environment Compliance Evaluations for
Websites Cyntrica Eaton 4166 A. V. Williams Building
Department of Computer Science University of Maryland,

[31 Bo Jiang, Zhenyu Zhang, T.H. Tse, T.Y. Chen, “How Well Do
Test Case Prioritization Technique Support Statistical Fault
Localization”, International =~ Computer Software and
Applications Conference, 2009.

[4] Fault Localization for Dynamic Web Applications, IEEE
Transactions On Software Engineering, Vol. 38, No. 2,
March/April 2012.

[51 Eric Wong, Vidroha Debroy, “ Software Fault Localization” W.
IEEE Annual Technology Report, 2009.

[61 http://www.w3.org/TR/html4/

[71 H. Pan and E. H. Spafford. Heuristics for automatic localization
of software faults. Technical Report SERC-TR-116-P, Purdue
University, July 1992.

[8] T. Reps, T. Ball, M. Das, and J. Larus, “The Use of Program
Profiling for Software Maintenance with Applications to the
Year 2000 Problem,” in Proceedings of the 6th European
Software Engineering Conference, pp. 432-449, Zurich,
Switzerland, September, 1997

48

International Journal of Computer Sciences and Engineering

[9] M. J. Harrold, G. Rothermel, K. Sayre, R. Wu, and L. Yi, “An
Empirical Investigation of the Relationship between Spectra
Differences and Regression Faults,” Journal of Software
Testing, Verification and Reliability, 10(3):171-194, September
2000

[10] M. Weiser, “Program slicing,” IEEE Transactions on Software
Engineering, SE-10(4):352-357, July 1984

[11] J.A. Jones and M.J. Harrold, “Empirical Evaluation of the
Tarantula Automatic Fault-Localization Technique,” Proc.
IEEE/ ACM Int’l Conf. Automated Software Eng., pp. 273-282,
2005.

[12] J.A. Jones, M.J. Harrold, and J. Stasko, “Visualization of Test
Information to Assist Fault Localization,” Proc. Int’l Conf.
Software Eng., pp. 467-477, 2002.

[13] A.K. Jain and R.C. Dubes, Algorithms for Clustering Data.
Prentice- Hall, Inc., 1988.

[14] M.Y. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewer,
“Pinpoint: Problem Determination in Large, Dynamic Internet

Services,” Proc. Int’l Conf. Dependable Systems and Networks,
pp. 595-604, 2002

AUTHORS PROFILE

Vijay kumar Akula completed B.Tech in Nishitha College of
Engineering and Technology, Hyderabad in the year 2011. Now, He
is persuing Mtech degree in Sreenidhi Institue of Science and
technology, Hyderabad, Telaganal.

@
f&] CSE ©2014, 1ICSE All Rights Reserved

Vol.-2(9), PP(44-49) Sep 2014, E-ISSN: 2347-2693

49

