
© 2018, IJCSE All Rights Reserved 148

International Journal of Computer Sciences and Engineering Open Access

Survey Paper Volume-6, Special Issue-3, April 2018 E-ISSN: 2347-2693

A Survey on Text Pre-processing Techniques and Tools

Ravi Lourdusamy
1
, Stanislaus Abraham

2*

1
Dept. of Computer Science, Sacred Heart College, Thiruvalluvar University, Tirupattur, 635 601, Tamil Nadu, INDIA

2
Dept. of Computer Science, Sacred Heart College, Thiruvalluvar University, Tirupattur, 635 601, Tamil Nadu, INDIA

* Corresponding author: astanislaus@gmail.com, Tel.: +91-9489914557

Abstract— We live in an era of digital data explosion over Internet. Data warehouses deal with numerical databases than

textual sources. Nearly eighty percent of digital data is either in semi or un-structured textual form. Several knowledge mining

techniques developed over the past decade and those that are being developed now continue to draw attention to transform such

textual data into desirable information and useful knowledge. This knowledge and information is used to benefit many fields

of applications such as: social network, business management, customer care management system, market analysis, search

engines, fraud detection, just to name a few. Text Mining (TM) is what is needed if desired information is to be obtained from

such voluminous data. TM is multi-disciplinary in nature. Several TM techniques are deployed in the process of extracting

knowledge from textual sources. Input text for such techniques needs to be pre-processed and cleaned. This survey briefly

presents pre-processing tools for TM in general and Natural Language Processing (NLP) in particular. Also presents the broad

categories of TM techniques used. The focus of this paper is to explore and analyze several features of text preprocessing

techniques and tools that would interest researchers in the area of TM.

Keywords—Text Mining, Pre-processing techniques, Pre-processing Tools, Natural Language Processing

I. INTRODUCTION

Text is a leading medium for exchange of information, be

it with humans, from time immemorial and of late, with

machines too. The aim of text-mining applications is to

trace, retrieve and operate on data of relevant information

efficiently from the volume of text which continues to

increase exponentially and expeditiously.

TM as knowledge discovery process, first made known by

Fledman [1] is an extraction of previously unknown facts

by mining information from textual sources. It uses

techniques and procedures from various specialized areas

such as statistics, machine learning (ML), data mining

(DM), natural language processing (NLP), information

retrieval (IR), and information extraction (IE). Text

Mining typically consists of three important phases namely

information retrieval, information extraction and data

mining. IR is an approach fundamentally corresponding to

congregation of information after applying a process of

filtering on the relevant documents. IE techniques prefer

explicit facts about pre-specified types of entities and

relationships. DM is a technique that discovers

unassuming associations between known

facts. An overview of TM process is shown below in

figure 1.

An enormous amount of data is in textual form. To

perform text mining, the textual data is processed in which

different refinement techniques are applied to arrive at a

refined data. Then this refined data is converted into a

form that will be more suitable to extract knowledge from

the given text. This practice is titled as “pre-processing” of

text [2].

Research community working on different pre-processing

procedures uses Tokenization, Stop Word Filtering, Parts-

Of-Speech Tagging, Lemmatization, Stemming, Document

Indexing, Grammatical Parsing & Chunking as pre-

processing techniques.

Documents

Fig. 1 An Overview of TM Process

This survey briefly presents text pre-processing tools with

TM techniques. The objective of this study is to explore

and analyze features and tools that would interest

researchers in the area of TM.

Text

Pre-processing
TM

Techniques

Text

Analysis

Discovery of
new

knowledge

International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 149

The presentation of the study is summed up as following:

In section 2 various TM pre-processing techniques are

presented. In section 3 survey on related works is brought

out. Section 4 deals with text pre-processing tools taken in

our study of research. Feature analysis of text pre-

processing tools is furnished in section 5. Finally, section

6 concludes the survey on text pre-processing techniques

and tools.

II. TEXT PRE-PROCESSING TECHNIQUES

Pre-processing techniques are vital in TM and its

applications. It is also called cleaning the text, which is

performed to identify and eliminate glitches in the given

text. Various pre-processing techniques are available to

prepare the text to be ready for further analysis and mining

process to achieve significant performance. Most of the

core functionalities of pre-processing techniques deal with

NLP. The following are some major pre-processing

techniques: Tokenization, Stop Word Filtering, Parts-of-

Speech (POS) Tagging, Word Sense Disambiguation

(WSD), Grammatical Parsing and Chunking,

Lemmatization, Stemming, Text Summarization, and Term

Frequency and Inverse Document Frequency (TF-IDF).

A. Tokenization

It is a method of segmenting a group of text into

meaningful elements, or tokens, such as: words, phrases,

and symbols. The list of collection of tokens is used as

input text for further processing. Challenges in the process

of tokenization are governed by the type of the natural

language. On the one hand, most of the natural languages

use white spaces as delimiter between words and on the

other a few other natural languages do not have clear

boundaries between words.

B. Stop Word Filtering

Stop words are frequently used common words like „and‟,

„are‟, and „this‟. These stop words do not contribute to the

knowledge source and they can be removed from the

textual data. Challenges in the process of stop word

filtering is firstly, difficulty in constructing a list of stop

words because of its inconsistency between different

textual sources and secondly their high frequency of

occurrences pose difficulty in processing the textual data.

C. Parts-of-Speech Tagging

POS enhances the „word‟ and its „context‟ with huge

volume of information about itself and its neighbors. The

usage of a word in a sentence such as: noun, pronoun,

verb, adverb, adjective, article, preposition, and

conjunction, helps to infer possible knowledge about

neighboring words and syntactic structure weaving around

the word. Thus POS tagging becomes an inseparable

component in syntactic parsing.

POS tagging is the process of assigning a POS marker to

each word in an input text. The input to a tagging

algorithm is a sequence of words and a tag set, and the

output is a sequence of tags, and a single best tag for each

word.

Tagging is a disambiguation task; since words having

more than one POS are used in a sentence, the aim is to tag

the word with right parts-of-speech. For example, the

word book can be a verb (book that flight) or a noun (as in

hand me that book) and „that‟ can be a determiner (Does

that flight serve dinner) or a complementizer resolution (I

thought that your flight was earlier). The problem of POS-

tagging is to resolve these ambiguities, choosing the proper

tag for the context.

D. Word Sense Disambiguation

“Words may refer to several contexts, for example the

word horse may refer to an animal, to a unit of

horsepower, to heroin, to an obstruction in a vein (mining),

and to a frame or structure on which something is

mounted” [3]. Disambiguation is a process where each

term in the corpus is assigned to a specific context. WSD

is the task of finding meaning intended by the word in a

context. It has been a long-standing research objective for

NLP. WSD is contextual, i.e., group of words appearing

next to each other in the same context apparently have

related meanings [4].

Natural language has an inherent complexity of expressing

an idea or concept in myriad ways. Term becomes

ambiguous when a single word is used to refer to manifold

concepts. Words have multiple synonyms. Word meaning

gets changed by its context. Sub-languages provide

context confined to specialized domains, [5] that normally

brings down the level of ambiguity.

International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 150

E. Grammatical Parsing & Chunking

Grammatical parsing analyses each word in a sentence to

determine structure from its constituent parts. It does so,

using two components viz., parser and grammar. Parser is

a computer program having a procedural component. It

does not change its procedure be it any language being

used. The grammar can change depending on the language

being used. So, a system can parse any language by

changing its grammar. NLP parser develops the

grammatical structure of the sentence, for example, a

group of words which is a series of words (phrases) and

which word is the subject or objects of a verb and

generates the grammar tree of it. While performing

parsing, several specific type of grammar rules are used

[6]: a) Context-Free Grammar, and b) Lexicalized

Context-Free Grammar [7].

In formal language and automata theory, Context-Free

Grammar is defined as a set of production rules that

generate all possible patterns of strings in a given

language. It consists of terminal symbols, nonterminal

symbols, productions and a start symbol as its components.

In Context-Free Grammar, all rules are one-to-one, one-to-

many, or one-to-none. Lexicalized Context-Free Grammar

is an outcome of amalgamation of parsing efficiency of

Context-Free Grammar and a restricted, elegance form of

lexical sensitivity of lexicalized tree adjoining grammar. It

consists of a set of initial trees and a set of auxiliary trees.

Chunking is similar to parsing. It is used to build

hierarchical structure over text. It is not exhaustive. It

ignores some items in the surface string. Sometimes it is

called partial parsing.

F. Lemmatization

The objective of stemming and lemmatization is to arrive

at a common stem by minimizing inflectional forms of

words and derived related forms of a word. Stemming

refers to a basic heuristic process that truncates the ends of

words. It includes the removal of derivational affixes.

Lemmatization refers to the use of a vocabulary and

morphological analysis of words, aiming to remove

inflectional endings and to return the base form of a word,

which is referred as lemma. If confronted with the token

saw, stemming might return just s, whereas lemmatization

would attempt to return either see or saw depending on

whether to use of the token was as a verb or a noun.

Stemming most commonly fail with the derivationally

related words. Lemmatization fails in the various

inflection forms of a lemma.

G. Stemming

Stemming is the process of identifying a root word that

forms into a different representation. For example, the

words: “transportation”, “transported”, “transporting”

could all be identified by the root word or stem word

“transport”. Challenges of stemming depend on the

process of controlling the errors.

Over stemming (false positive) and under stemming (false

negative) are common errors in stemming. Over-stemming

is when two words with different stems are stemmed to the

same root. Under-stemming is when two words that should

be stemmed to the same root are actually stemmed to

different words. For example, the widely used Porter

stemmer stems "universal", "university", and "universe" to

"univers". “This is a case of overstemming: though these

three words are etymologically related, their modern

meanings are in widely different domains, so treating them

as synonyms in a search engine will likely reduce the

relevance of the search results. An example of

understemming in the Porter stemmer is "alumnus" →

"alumnu", "alumni" → "alumni", "alumna"/"alumnae" →

"alumna". This English word keeps Latin morphology,

and so these near-synonyms are not conflated.

H. Text Summarization

TM applications summarize all sorts of text documents and

a collection of documents on a specific topic to arrive at a

concise overview [8, 9].Summarization follows two

techniques: viz., extractive and abstractive. Extractive

summarization contains information units extracted from

original text, and on the other hand abstractive

summarization brings out a summary of “synthesized”

information that may or may not be found in original

document [10, 11].

I. Document Indexing

“A set of terms to be used in a document are used for

indexing the document. It is based on choosing suitable

set of keywords based on the whole corpus of documents,

and assigning weights to those keywords for each

particular document, thus transforming each document into

a vector of keyword weights. The weight is related to the

frequency of occurrence of the term in the document and

the number of documents that use that term” [12].Various

approaches are used for selecting index terms. One such

approach is the identification of noun groups. “Combining

two or three nouns in a single component (e.g., Computer

Science, European Union, United Arab Emirates), makes

sense to cluster nouns which appear nearby in the text into

a single indexing component (or concept). A noun group is

a set of nouns whose syntactic distance in the text does not

exceed a predefined threshold” [13].

J. Term Frequency and Inverse Document Frequency

(TF-IDF)

Tf-idf weight is a statistical measure used to evaluate how

important a word is to a document in a collection or

corpus. The importance increases proportionally to the

International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 151

number of times a word appears in the document but is

offset by the frequency of the word in the corpus. The tf-

idf weight is composed by two terms: the first computes

the normalized Term Frequency (TF), the number of times

a word appears in a document, divided by the total number

of words in that document; the second term is the Inverse

Document Frequency (IDF), computed as the logarithm of

the number of the documents in the corpus divided by the

number of documents where the specific term appears.

TF(t) = (Number of times term t appears in a document) /

(Total number of terms in the document).

∑

Where ni,j is the number of occurrences of the considered

term (ti) in document dj , and the denominator is the sum

of number of occurrences of all terms in document dj , that

is, the size of the document |dj|.

IDF(t) = log_e(Total number of documents / Number of

documents with term t in it).

with |D| : cardinality of D, or the total number of

documents in the corpus |{ j : tidj}|: number of documents

where the term ti appears (viz., the document frequency)

(that is ni,j ≠ 0). If the term is not in the corpus, this will

lead to a division-by-zero. It is therefore common to use 1

+ |{j : ti dj}|.

III. RELATED WORKS

Most of the research work elicit the text pre-processing

techniques and its relevance in TM[12-20].A few research

works have made study on the effect of pre-processing

techniques on text categorization, using various machine

learning algorithms [12]. Stemming algorithms and its

classification are studied implementing improved Porter‟s

algorithm and comparing with Krovetz‟s algorithm [14,

19].

Vijayarani et al., (2015) have presented an exhaustive

study on pre-processing techniques. Further, the research

work brings out the classification of the stemming

algorithms into three groups; viz., truncating, statistical

and mixed methods [15]. Vijayarani et al., (2016) have

analysed the performance of tokenization tools two

measures viz., limitations and output are used for the

comparative study. The authors conclude NLP.net

tokenizer is the best among the tools studied. The authors

have felt the need to develop tokenizers for all the natural

languages [16].

Swapnil Vaidya et al., (2017) discusses about

preprocessing techniques for NLP in social media. Tweet

normalization, hashtag segmentation, named entity

recognition are the preprocessing techniques used for

social media. The authors have proposed to do Sentiment

Analysis on the results of preprocessing techniques [17].

Nikita P.K. et al., (2015) elicits methods for mining text

data with the use of side information such as web logs,

links, and meta-data. The authors conclude that the

domain specific applications are more suitable for text

mining [13, 16, 18].

Mohd Zakree Ahmad Nazri et al., (2008), deliberated upon

overall process of learning taxonomy from Malay texts

using unsupervised conceptual clustering approach and

probed into the then prevailing Malay NLP tools as

potential pre-processing tools for the proposed ontology

learning approach. Following tools were used for their

exploratory case study: maximum-entropy parser based on

open NLP package, a word sense tagger and a parser based

on pola grammar. The outcome showed lower recall and

precision [20].

IV. REVIEW OF TEXT PREPROCESSING TOOLS

A. TextBlob

TextBlob is a tool for processing textual data. It is

implemented in Python library. It provides a simple API

for plugging into several common NLP tasks. The various

features supported by TextBlob are Add new models or

languages through extensions, Classification, Language

translation and detection, Noun phrase extraction, Parsing,

n-grams, Part-of-speech tagging, Sentiment analysis,

Spelling correction, Tokenization, Word and phrase

frequencies, Word inflection and lemmatization, and

WordNet integration.

B. Pattern

Pattern is Python based web mining module. It has tools

for visualization techniques, NLP, ML, DM, and network

analysis. Text is mined from the web and searched by

syntax and semantics sentiment analysis is performed on

matching phrases.

This tool has five modules, viz., web module, en module,

search module, vector module and graph module. The web

module is a tool kit that contains data mining (APIs,

HTML DOM parser and a web crawler), natural language

processing (POS taggers, preprocessing, n-gram search,

sentiment analysis, WordNet), machine learning (vector

space model, clustering, SVM), network analysis and

canvas visualization. The en module is a tool kit for

English and has POS tagger, word inflection and a

WordNet API. The search module consists of search

algorithms to retrieve n-grams. The vector module

International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 152

consists of algorithms for clustering, classification and

semantic analysis. The graph module: It provides a visual

representation of possible nodes (terms and concepts).

C. Word Tokenization with Python NLTK

Natural Language Tool Kit provides packages which can

be imported into Python programme. It provides

interfaces to several lexical resources such as WordNet

along with a suite of text processing libraries for

classification, tokenization, stemming, tagging, parsing,

and semantic reasoning.

NLTK provides a number of tokenizers in the module. The

text is first tokenized into sentences using the

PunktSentenceTokenizer. Then each sentence is tokenized

into words using four different words tokenizers.

TreebankWordTokenizer uses regular expressions to

tokenize text as in Treebank. WordPunctTokenizer

divides a string into substrings by splitting on the specified

string, which is defined in subclasses.

PunctWordTokenizer divides a text into a list of sentences

by using unsupervised algorithms. WhitespaceTokenizer

divides text at whitespace.

D. MILA Tokenizer

MILA was developed in 2003 by the Israel Ministry for

Science and Technology. Its mission is to create the

infrastructure necessary for computational processing of

the Hebrew language and make it available to the research

community as well as to commercial enterprises. MILA

has acquired a number of Hebrew corpora from various

domains. MILA morphological analytical tool takes

undotted Hebrew input text and returns tokens,

morphological analysis of the tokens, reflecting POS,

transliteration, gender, number, definiteness, and

possessive suffix.

The MILA Morphological Disambiguation Tool takes as

input morphological analyzed text and uses Hidden

Markov Model (HMM) to assign scores for each analysis

considering contextual information from the rest of the

sentence.

E. StanfordCoreNLP for .NET

StandfordCoreNLP implemented using .NET, is an

integrated framework which provides a set of natural

language tools for English language. It integrates all

Stanford NLP tools including the POS tagger and Named

Entity Recognizer, the parser, the co-reference resolution

system and the sentiment analysis tools.

F. sharpnlp

sharpnlp is a collection of NLP tools written in C#. It

provides sentence splitter, tokenizer, POS tagger, chunker,

parser, name finder, co-reference tool and an interface to

WordNet lexical database.

G. Lexalytics

Lexalytics is a text analytics tool. It breaks sentences and

phrases to evaluate semantics, syntax, and context.

Supervised, semi-supervised machine learning, and NLP

techniques are deployed to perform sentiment analysis to

extract named entities, themes, categories and intentions

and thus to create summaries. The complex relationship

within the text is revealed as connections between entities,

themes, sentiment of individual entities and categories to

offer rich context insights.

H. SAS Text Miner

This TM software lets one analyze easily text data from

the web, comment fields, books and other text sources.

Visual interrogation of results, native support for multi-

lingual, term profiling are the important features supported

by the software.

I. Aika

Aika is a Java library that automatically extracts and

annotates semantic information into text. It allows to

model linguistic concepts like words, entities, categories,

and grammatical word types as neurons in a neural

network. By choosing appropriate synapse weights, these

neurons can take on different functions within the network.

Aika generates multiple mutually exclusive interpretations

of a word, phrase, or sentence and select the most likely

interpretation. It has two layers, viz., neural layer; logic

layer. The neural layer consists of a Boolean

representation of all the neurons. The logic layer uses

lattice to store the individual logic nodes.

J. Open NLP

The Apache OpenNLP library is a machine learning based

toolkit for the processing of natural language text. It

supports the most common NLP tasks, such as

tokenization, sentence segmentation, POS tagging, named

entity extraction, chunking, parsing, and co-reference

resolution. These tasks are usually required to build more

advanced text processing services. The Apache OpenNLP

Library contains several components such as sentence

detector, tokenizer, name finder, document categorizer,

part-of-speech tagger, chunker, parser, and co-reference

resolution. It also consists of an API which is accessible by

all the components and a command line interface for

conducting experiments.

K. Rosette

Its a multilingual text Analytics tool. It fetches the power

of Artificial Intelligence to text analysis. Its applications

are in business intelligence, e-discovery, social media,

financial compliance, and enterprises. Its strength lies in

International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 153

speed and accuracy in analyzing massive volumes of data

to enable multilingual analysis or to build other specialized

AI applications.

Rosette‟s value is in enabling applications to manipulate

text like numbers. The following are its capabilities:

Categorization, Entity Extraction & Linking, Language

Identification, Morphological Analysis, Name Matching,

Name Translation, Relationship Extraction, Sentence

Tagging, Sentiment Analysis, Tokenization, and Topic

Extraction. This tool is integrated with curl, implemented

in Python, PHP, JAVA, C#, nodejs, and Ruby.

L. Buzzlogix

It has a distinctive set of features. Social media specialists

using these features simplify campaigns related to social

media, automate tasks, measure results, extract valuable

insights, and make useful recommendations throughout the

process.

It brings advanced automation to its All-In-One Social

Media Monitoring, Analytics and Engagement solution.

The following are its special features: Classification,

Entity Extraction, Gender Detection, Keyword Extraction,

Sentiment Analysis, Subjectivity Analysis, and Twitter

Sentiment Analysis.

M. KBSPortal

It‟s a NLP Library coded in Ruby. This portal is used for

tagging and categorizing automatically content submitted

by user on web site, to identify named entities in text,

using ngram analysis and Latent Semantic Indexing to

generate summaries of text automatically, to link related

documents by people, products and companies discussed

in the documents, to cluster documents with similar nature

and to rate user content by sentiment.

N. meaningcloud

This tool extracts semantic meaning from unstructured

content like articles, documents, social conversation, etc.

The special features are as follow: Corporate Reputation,

Deep Categorization, Document Structure Analysis,

Language Identification, Lemmatization, POS and Parsing,

Sentiment Analysis, Summarization, Text Classification,

Text Clustering, and Topics Extraction.

O. megaputerTextAnalyst

It is a unique software tool for semantic analysis,

navigation, and search of unstructured texts. This tool

helps to meet the ever increasing challenges of skimming

and scanning through large volumes of textual data to

arrive at a decision. It is an intelligent electronic tool to

extract textual meaning in a concise form, to inspect

accurate summaries, to traverse through large text bases

and to accomplish NLP IR. Many such tasks are efficiently

handled by TextAnalyst. A synergy of unique linguistic

and neural network technologies implemented in

TextAnalyst ensures high speed and accuracy in the

analysis of unstructured texts.

P. monkeylearn

This tool helps to turn tweets, emails, documents,

webpages and more into actionable data. Automate

business processes and save hours of manual data

processing. Also to analyze text data to tag customized

categories for obtaining actionable insights, to automate

workflows ranging from marketing, sales and customer

service. It also automates business processes. A special

feature is implementation of NLP for developers in

monkeylearn. Monkeylearn APIs are available to interface

with languages like: -python, ruby, node, php, and java.

Q. PolyVista Text Analytics

It simplifies data obtained from various sources like, social

media, call center data, chats, returns feedback, survey

responses, etc. to unearth similarity, relatedness, and

common patterns existing in the data. Features such as

sentiment analysis and classification of data are special to

this tool.

R. Skyttle

It is a Software as a Service tool that offers services to

extract patterns from text in text analytics and stock them

in a structured format for an exhaustive data analysis in

future. It integrates text analytics into applications with

complex NLP functionalities into software, and gain fast

and valuable insights into large text collections.

Its features are Customizable to specific applications,

Domain customization, Easily scalable, Keyword

extraction, Named Entity Recognition, Phrase-level

Sentiment Analysis, Sentiment analysis,

Terminology/Keyword/Concept Extraction, XML

annotation.

V. FEATURE ANALYSIS OF TEXT PRE-

PROCESSING TOOLS

Various pre-processing techniques and tools available for

TM were taken for an in-depth study. Feature analysis

with respect to the tools studied was carried out

highlighting the various features of the tools. The URL of

the tool along with NLP and TM techniques and the

language of implementation were summarized in the form

of a table 1.

This article presents various text pre-processing techniques

and the tools implementing these techniques that might be

useful to the researchers in order to improve the

performance of the various preprocessing techniques and

to enhance the existing tools or to innovate new ones.

Selection and use of right pre-processing techniques and

https://www.rosette.com/capability/categorization/
https://www.rosette.com/capability/entity-extraction/
https://www.rosette.com/capability/entity-linking/
https://www.rosette.com/capability/language-identification/
https://www.rosette.com/capability/language-identification/
https://www.rosette.com/capability/morphological-analysis/
https://www.rosette.com/capability/name-matching/
https://www.rosette.com/capability/name-translation/
https://www.rosette.com/capability/relationship-extraction/
https://www.rosette.com/capability/sentence-tagging/
https://www.rosette.com/capability/sentence-tagging/
https://www.rosette.com/capability/sentiment-analysis/
https://www.rosette.com/capability/tokenization/
https://www.rosette.com/capability/topic-extraction/
https://www.rosette.com/capability/topic-extraction/
https://buzzlogix.com/text-analysis
https://buzzlogix.com/text-analysis
https://buzzlogix.com/gender-detection.html
https://buzzlogix.com/keyword-extraction.html
https://buzzlogix.com/subjectivity-analysis.html
https://buzzlogix.com/twitter-sentiment-analysis.html
https://buzzlogix.com/twitter-sentiment-analysis.html
https://www.meaningcloud.com/developer/document-structure
https://www.meaningcloud.com/developer/language-identification
https://www.meaningcloud.com/developer/lemmatization-pos-parsing
https://www.meaningcloud.com/developer/sentiment-analysis
https://www.meaningcloud.com/developer/summarization
https://www.meaningcloud.com/developer/text-classification
https://www.meaningcloud.com/developer/text-clustering
https://github.com/monkeylearn/monkeylearn-python
https://github.com/monkeylearn/monkeylearn-python
https://github.com/monkeylearn/monkeylearn-ruby
https://github.com/monkeylearn/monkeylearn-node
https://github.com/monkeylearn/monkeylearn-php
https://github.com/monkeylearn/monkeylearn-java

International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 154

tools according to the domain might help to make the text

pre-processing easy and efficient.

A binary matrix is constructed using the table 1 and a Rank

Order Clustering algorithm is applied for deducing the

following findings:

i) Classification, Language translation and detection,

Noun phrase extraction, Parsing& Chunking, Parts-of-

speech tagging, Sentiment analysis and Tokenization are

commonly available in most of the tools surveyed.

ii) TextBlob, meaningcloud, KBSPortal, Lexalytics,

Skyttle, StanfordCoreNLP for .NET, SAS Text Miner,

Aika, Open NLP, sharpnlp, MILA Tokenizer, Rosette, and

Buzzlogix are the popular tools supporting the commonly

available techniques. The tools are ordered according to

the number of features supported by each tool. For

example TextBlob is a tool which supports nine features

whereas Buzzlogix supports five only. The comparison of

features supported by the tools is exhibited using a graph

as shown in Figure 1.

iii) Most of the preprocessing tools are implemented in

Python.

Figure 1: A Comparison of features supported by tools

Tools

0

1

2

3

4

5

6

7

8

9

10

11

T
ex

tB
lo

b

m
ea

n
in

g
cl

o
u
d

K
B

S
P

o
rt

al

L
ex

al
y
ti

cs

S
k
y

tt
le

S
ta

n
fo

rd
C

o
re

N
L

P

S
A

S
 T

ex
t

M
in

er

A
ik

a

O
p

en
 N

L
P

sh
ar

p
n

lp

M
IL

A
 T

o
k
en

iz
er

R
o

se
tt

e

B
u

zz
lo

g
ix

F
ea

tu
re

s

A comparison of Feautres Supported

by the Tools

International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 155

S.No

.

Name of the Tool

URL

NLP and Text Pre-processing Techniques/Features

N
o

u
n

 p
h

ra
se

 e
x

tr
a
c
ti

o
n

P
a

r
ts

-o
f-

sp
e
e
c
h

 t
a
g

g
in

g

S
e
n

ti
m

e
n

t
a

n
a

ly
si

s

C
la

ss
if

ic
a

ti
o

n

L
a

n
g

u
a
g

e
tr

a
n

sl
a

ti
o

n
 a

n
d

d
e
te

c
ti

o
n

T
o

k
e
n

iz
a

ti
o

n

P
a

r
si

n
g
&

 C
h

u
n

k
in

g

n
-g

r
a
m

s

A
d

d
 n

e
w

 m
o

d
e
ls

 o
r
 l

a
n

g
u

a
g
e
s

th
r
o

u
g

h
 e

x
te

n
si

o
n

L
e
m

m
a

ti
za

ti
o

n
\S

te
m

m
in

g

S
e
m

a
n

ti
c
 R

e
a

so
n

in
g

/W
S

D

G
ra

p
h

 a
n

a
ly

si
s

&
 v

is
u

a
li

z
a

ti
o

n
.

S
e
n

te
n

c
e

S
eg

m
e
n

ta
ti

o
n

c
o

-
r
e
fe

r
e
n

ce
 r

e
so

lu
ti

o
n

 s
y

st
em

Language Used

1
TextBlob

https://pypi.python.org/pypi/textblob
X X X X X X X X X

Python

2
Pattern

https://www.clips.uantwerpen.be/pattern
 X X X X X

Python

3

Word Tokenization with Python NLTK

http://text-

processing.com/demo/tokenize/

 X X X X X

Python

4

MILA Tokenizer

http://www.mila.cs.technion.ac.il/tools_to

ken.html

X X X X X X

JSP

5

Stanford CoreNLP for .NET

www.sergey-

tihon.github.io/Stanford.NLP.NET/Stanf

ordCoreNLP.html

X X X X

X
.NET

6
sharpnlp

www.sharpnlp.codeplex.com
X X X X X X X

C#

7
Lexalytics

https://www.lexalytics.com/
X X X X X

Ruby, .NET, JS, python,

JAVA,C++ and PHP

International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 156

S.No

.

Name of the Tool

URL

NLP and Text Pre-processing Techniques/Features

N
o

u
n

 p
h

ra
se

 e
x

tr
a
c
ti

o
n

P
a

r
t-

o
f-

sp
e
e
c
h

 t
a
g

g
in

g

S
e
n

ti
m

e
n

t
a

n
a

ly
si

s

C
la

ss
if

ic
a

ti
o

n

L
a

n
g

u
a
g

e
tr

a
n

sl
a

ti
o

n
 a

n
d

d
e
te

c
ti

o
n

T
o

k
e
n

iz
a

ti
o

n

P
a

r
si

n
g
&

 C
h

u
n

k
in

g

n
-g

r
a
m

s

A
d

d
 n

e
w

 m
o

d
e
ls

 o
r
 l

a
n

g
u

a
g
e
s

th
r
o

u
g

h
 e

x
te

n
si

o
n

L
e
m

m
a

ti
za

ti
o

n
\S

te
m

m
in

g

S
e
m

a
n

ti
c
 R

e
a

so
n

in
g

G
ra

p
h

 a
n

a
ly

si
s

&
 v

is
u

a
li

z
a

ti
o

n
.

S
e
n

te
n

c
e

S
eg

m
e
n

ta
ti

o
n

c
o

-
r
e
fe

r
e
n

ce
 r

e
so

lu
ti

o
n

sy
st

e
m

Language Used

8

SAS® TEXT MINER

https://www.sas.com/en_us/software/text-

miner.html

X X X X X X X X X X

C Language

9
Aika

http://www.aika-software.org/
X X X X X X X X X

Java

10
OpenNLP

https://opennlp.apache.org/
X X X X X X X

JSP

11
Basic Technology Rosette

https://www.rosette.com/
X X X X X X

Integrated with curl, Python,

PHP, JAVA, C#, nodejs, Ruby

12
Buzzlogix text analysis api

https://buzzlogix.com/press
X X X X X

Ruby, .NET, JS, python, IOS,

GO Lang and PHP

13 Kbsportal http://kbsportal.com/ X X X X X X X Ruby

14
Meaningcloud

https://www.meaningcloud.com/
X X X X X X X X PHP, Java, GO Lang, Python

15

Megaputer Text Analyst

https://www.megaputer.com/site/textanal

yst.php

 X X C++, Java, JavaScript

16
Monkeylearn

https://monkeylearn.com/
 X X

monkeylearn-python, -ruby, -

node, -php, -java

17
Polyvista

http://www.polyvista.com/Home/
 X X

18 Skyttle APIhttp://www.skyttle.com/ X X X X X Java

https://github.com/monkeylearn/monkeylearn-python
https://github.com/monkeylearn/monkeylearn-ruby
https://github.com/monkeylearn/monkeylearn-node
https://github.com/monkeylearn/monkeylearn-node
https://github.com/monkeylearn/monkeylearn-php
https://github.com/monkeylearn/monkeylearn-java

International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

© 2018, IJCSE All Rights Reserved 157

V. CONCLUSION

The main challenging issue in TM arises from the

complexity of a natural language itself. This survey has

briefly presented pre-processing tools for TM with broad

categories of TM techniques used. The focus of this paper

was to explore and initiate a discussion on feature analysis

of text preprocessing techniques and tools that would

interest researchers in the area of TM.

Integrating domain knowledge base with TM would

increase the efficiency of the IR & IE techniques. There is

a dire need for a powerful tool integrating all the

preprocessing techniques as one product. Multilingual

preprocessing tools are very few in the field and hence

there is more avenue to do further research in this area.

REFERENCES

[1] Feldman Ronen & Dagan Ido, “Knowledge Discovery in

Textual Databases”, KDD, Vol. 95. pp. 112–117, 1995.

[2] Saira, Gillani Andleeb, “From text mining to knowledge

mining: An integrated framework of concept extraction and

categorization for domain ontology”, PhD Dissertation,

Budapesti Corvinus Egyetem, 2015.

[3] J. I. Toledo-Alvarado et al., “Automatic Building of an

Ontology from a Corpus of Text Documents Using Data

Mining Tools”, 2012

[4] Joe Tekli, “An overview on XML Semantic Disambiguation

from Unstructured”, Member, IEEE, 2016.

[5] Harris, Z., „The structure of science information‟, J Biomed.

Inform., Vol. 35(4), pp. 215–221, 2002.

[6] Alexander Gelbukh, ”Special issue: Natural Language

Processing and its Applications”, Institut Politécnico Nacional

Centro de Investigaciónen Computación México, Mexico,

2010.

[7] Sibarani E. M., Nadial M., Panggabean E., & Meryana S., "A

Study of parsing process on natural language processing in

Bahasa Indonesia", International Conference on Computational

Science and Engineering, pp. 309-316 2013.

[8] Andreas Hotho, Andreas Nürnberger, and Gerhard Paaß, “A

Brief Survey of Text Mining. In Ldv Forum”, Vol. 20.19–62.

2005.

[9] Dragomir R Radev, Eduard Hovy, and Kathleen McKeown,

“Introduction to the special issue on summarization”,

Computational linguistics 28, 4, pp. 399–408, 2002.

[10] M. Allahyari, S. Pouriyeh, M. Assefi, S. Safaei, E. D. Trippe, J.

B. Gutierrez, and K. Kochut., Text Summarization Techniques:

A Brief Survey. ArXiv e-prints, 2017, arXiv:1707.02268

[11] Dipanjan Das and André FT Martins, “A survey on automatic

text summarization”, Literature Survey for the Language and

Statistics II course at CMU 4, pp. 192–195, 2007.

[12] Pritam C Gaigole, L. H. Patil, & P. M. Chaudhari,

“Preprocessing Techniques in Text categorization”, National

Conference on Innovative Paradigms in Engineering &

Technology (NVIPET-2013), Proceedings published by

International Journal of Computer Applications (IJCA), 2013.

[13] Katariya Nikita, & Chaudhari M. S., “Text Preprocessing For

Text Mining Using Side Information”, International Journal of

Computer Science and Mobile Applications, vol.3 Issue. 1, pp.

01-05, 2015.

[14] Ramasubramanian C., & Ramya R., “Effective Pre-Processing

Activities in Text Mining using Improved Porter‟s Stemming

Algorithm”, International Journal of Advanced Research in

Computer and Communication Engineering, vol. 2, Issue 12,

pp. 4536-4538, 2013.

[15] Vijayarani S, Ilamathi J, & Nithya, International Journal of

Computer Science & Communication Networks, Vol 5(1), pp.

7-16, 2015.

[16] Vijayarani S, & Janani R, "Text mining: open source

tokenization tools–an analysis", Advanced Computational

Intelligence 3.1: pp. 37-47, 2016.

[17] Vaidya, Swapnil, & Jayshree Aher, "Natural Language

Processing Preprocessing Techniques", International Journal of

Computer Engineering and Applications, Volume XI, Special

Issue, 2017, www.ijcea.com ISSN 2321-3469

[18] Katariya Nikita, & Chaudhari M. S., “Text Preprocessing For

Text Mining Using Side Information”, International Journal of

Computer Science and Mobile Applications, vol.3 Issue. 1, pp.

01-05, 2015.

[19] Nayak Arjun Srinivas, Kanive Ananthu, Chandavekar Naveen,

& Balasubramani R, “Survey on Pre-Processing Techniques for

Text Mining”, International Journal Of Engineering And

Computer Science, Volume 5 Issues 6 2016.

[20] Nazri Mohd Zakree Ahmad, Siti Mariyam Shamsudin,

&Azuraliza Abu Bakar. "An exploratory study of the Malay

text processing tools in ontology learning.", Research project,

Ministry of Higher Learning – Malesia, 2008.

Authors Profile

Ravi Lourdusamy received his Ph.D from Bharathidasan

University, Tamil Nadu, India in 2012. Currently he is HOD and

Associate Professor in the Department of Computer Science,

Sacred Heart College, Tirupattur, India. His research areas

include Software Engineering, Ontology and Knowledge

Engineering. He has presented and published over 20 papers in

international conferences and journals. He was awarded a couple

of UGC funded projects.

Stanislaus Abraham is a Research Scholar at the Department of

Computer Science, Sacred Heart College, Tirupattur, India.

