
 © 2018, IJCSE All Rights Reserved 135

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-6, Special Issue-3, April 2018 E-ISSN: 2347-2693

Enhancement of Software and Data Portability by Normalizing Variations

in Hardware

Pon Rahul M
1*

, Rishi Shree S
2

1*
Dept. of Information Technology, Loyola-ICAM College of Engineering and Technology, Chennai, India

2
 Dept. of Information Technology, Loyola-ICAM College of Engineering and Technology, Chennai, India

*Corresponding Author: theflyingrahul@icloud.com, Tel.: +919487323890

Available online at: www.ijcseonline.org

Abstract— This paper explores the concept of software and user data portability by tackling device driver issues caused due to diversity in

computer hardware. The objective of this paper is to implement a universal interface between the hardware and the software intended to

minimize time and manpower. Drivers are required for software-hardware integration and different hardware manufactured by OEMs require

device drivers designed specifically for the hardware component. Development of a new platform requires the software manufacturer to

target a variety of hardware. Upgrading existing software requires the device drivers to be checked if they are compatible with the newer

version of the software. Device drivers have to be written for each software platform separately. This results in a lot of time being consumed

which directly affects the consumer such as delayed software and firmware updates, security patches, bug fixes etc. This interface addresses

the driver development issues by providing a standard hardware platform for which the software can be developed.

Keywords— software, hardware, portability, platform, interface, drivers, compatibility

I. INTRODUCTION

Drivers are required for software-hardware communication,

designed specifically for the hardware component. Different

OEMs have been producing hardware components under

different product portfolios. These components may have

differences in features and product quality, but the final

product is the same.

A. Kernel

 It is a computer program and the core of a computer

operating system which acts as the bridge for

communications between the software and the hardware. It is

usually the first program being loaded on start-up.

B. Device-Driver

 Device driver is a computer program that operates a

particular type of hardware device by providing a software

interface (as a kernel module) for the installed hardware. It is

a layer of hardware abstraction too.

Present modular design of the kernel allows any driver to be

loaded or unloaded from the kernel memory space based on

the demand. The problem with the concept of drivers is

technology used in different hardware components and their

functioning might differ from the typical one and this

requires device drivers to be developed specifically for the

component. Same products from different OEMs require

different drivers and drivers are platform dependent. A single

hardware driver cannot run across all software platforms.

Plus the driver has to be made compatible to the newer

version of the software if the software is undergoing a major

upgrade. This diversity in devices bring up these problems:

1. Unnecessary bundling of basic drivers of various

products with the operating system’s kernel as

modules.

2. Incompatibility of old drivers with a new operating

system update.

3. Incompatibility of a hardware component with a

platform’s kernel where the manufacturer doesn’t

provide any device-drivers.

4. Failure of OEMs to provide firmware updates for

older devices which might render them unusable

with new software.

These issues unnecessarily increase the software product’s

package size due to driver bundling. Lack of driver support

on platforms unsupported by the OEMs renders most

hardware components unusable with other platforms’

kernels, making the hardware partially/fully incompatible

with the platform.

To tackle this issue, we propose the Project Causeway, a

universal interface between the hardware and the software

intended to minimize time and manpower. This interface

addresses driver development issues by providing a standard

hardware platform for which the software can be developed.

We believe this decreases the effort in software development

while making software and user data highly portable and

hardware independent.

II. SUMMARY OF THE CONCEPT

In view of the above disadvantages present in existing

technology, this innovation provides a common platform for

which software development can be targeted to. Hardware

variations can be normalized by providing a standard

 International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 136

interface called the CAUSEWAY INTERCONNECT

BRIDGE, hereafter CIB. It has two ends, namely the

software (S/W) end and the hardware (H/W) end. The S/W

end is the same across all devices and serves as a universal

hardware platform. The Operating System’s kernel can be

supplied only with essential drivers to connect to the S/W

end. OEMs can target any platform by connecting their

device to the H/W end of the bridge. The bridge has virtual

ports via memory mapping to connect the H/W end and the

S/W end. Thereby a virtual connection is achieved between

the kernel and the hardware and further I/O can be made.

III. DESIGN

Figure 1. Chip design of Causeway Interconnect Bridge

The CIB will be a standalone hardware component of the

mainboard of a computer with no control by the CPU. This

can be achieved by using the PING PORT ALLOTMENT

technique to allot ports for kernel-hardware connection. The

chip will feature two virtual layers, completely abstracted

from each other. These layers are RANDOM ACCESS

MEMORY STREAMS. These memory streams will follow

the QUEUE algorithm – First-In-First-Out (FIFO). First one

is the software-end (S/W) and the other one is the hardware-

end (H/W). The S/W end will act as a virtual hardware layer

and as a standard hardware configuration for all software

platforms. Software vendors will have to design the required

STANDARD S/W-INTERFACE DRIVER for their kernel

which will connect the kernel to the CIB. This driver will be

the normalization layer for variations in hardware, thus

making it universal. H/W end will be an OEM customizable

layer which will connect their device to the CIB via the

H/W-INTERFACE DRIVER supplied by them. These

drivers will be stored in the devices’ ROMs. The chip will

come with a certain amount of superfast flash memory as

buffer to help transfer instruction packet from the kernel to

the hardware. The CIB chip will have a low-energy

microcontroller to create new ports as per need and to clear

existing ports and buffer memory once the I/O operation is

complete. The chip will also have a PACKET

VERIFICATION AND DELIVERY MODULE (PVDM)

under the control of the CIB microcontroller to check the

integrity of the packets and to ensure proper forwarding and

delivery of the packets to and fro from the right hardware

component. The CIB will have a control interface which is a

part of BIOS/UEFI to facilitate firmware updates and patch

deployment. Packet transmission from kernel to hardware

and vice-versa has to follow a set of rules similar to the

Transmission Control Protocol (TCP).

IV. WORK FLOW AND OPERATION

The overall operation workflow is similar to the functioning

of a standard computer. A major change is done in the

method of packet transfer from the kernel to the hardware

and vice-versa using the CIB.

The steps by which this process is executed is stated below.

1. START

2. Application running above the kernel requests the

kernel for connection to hardware for I/O (System

Call).

3. Kernel loads the required hardware’s STANDARD

S/W-INTERFACE DRIVER into the KERNEL

SPACE MEMORY.

4. Kernel forwards the request to the CPU for approval

(Hardware Interrupt).

5. If the CPU approves the request, it forwards the

interrupt to the requested hardware for new port

creation in the CIB interface using “PING PORT

ALLOTMENT” technique.

6. The hardware will connect to the CIB using H/W-

INTERFACE DRIVER in its ROM.

Ping Port Allotment (PPA) algorithm

a. The CPU forwards the Hardware Interrupt

directly to the requested hardware device.

 International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 137

b. The device then attempts to connect to the

CIB interface (H/W end).

c. If the CIB memory has sufficient free

space for new virtual memory port

creation, the microcontroller automatically

assigns a new I/O port and returns it to the

hardware component. NO TWO

PROCESSES CAN HAPPEN THROUGH

THE SAME PORT.

d. If the port memory is full, the request is

stored in the buffer memory and awaits

memory availability for some time. If

memory is not available, the CIB

microcontroller returns QUEUE FULL

error.

7. Hardware device returns the virtual port information

from the CIB microcontroller to the CPU.

8. CPU then forwards this port number to the software

kernel.

9. Kernel now connects to the S/W end by loading the

supplied Standard S/W Interface driver module.

10. Once the kernel and the hardware component are

connected using the virtual port number, returned by

the CIB microcontroller, the microcontroller takes

the responsibility of data packet transfer between

the kernel and the hardware device.

11. The microcontroller does a secure port mapping

between the S/W and the H/W end and establishes a

connection between them for the allotted port

number.

12. The PVDM module, controlled by the CIB

microcontroller, verifies the integrity of each packet

and pushes it to the right port – to the right

hardware from the kernel and vice versa.

13. If any packet is found missing, the kernel again

requests the same packet from the device [1][2].

14. Once a I/O is completed successfully, the kernel

compiles and verifies the integrity of the compiled

data packets and sends a STOP packet to the CIB.

15. When the PVDM reads this STOP packet, it reports

the same to the CIB microcontroller.

16. The microcontroller then severs the virtual

connection between the two memory structures and

pushes the port memory out of the queue, releasing

free space for the next I/O request.

17. The device then gives a hardware interrupt signal to

the CPU indicating I/O completion.

18. The CPU removes this completed process from the

memory and clears all buffer files the from memory,

if any.

19. This process is repeated again as per the need.

20. STOP

V. MODULAR DESIGN OF BRIDGE DRIVERS

Providing the kernel with a single driver to connect to the CIB

will result in excess workload for the CIB microcontroller to

Figure 2. Flowchart representing workflow during the CIB interface operation

 International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 138

segregate and forward packets to the requested hardware. CIB

is designed to be a low-power and an energy efficient chip.

Therefore, this load can be minimized by segregating all

information packets at the kernel and then sending them

through the S/W layer. This is achieved by providing generic

drivers for individual hardware components (say a printer or a

network card) with the CIB interface as the target hardware

specification. Drivers can be designed to be modular in

nature. Therefore, the required generic driver can be loaded

into the kernel as a module during the time of system call and

can be unloaded from the memory once the I/O operation is

complete [3]. This design also keeps the kernel space memory

freer.

VI. VARIATIONS IN HARDWARE DESIGN

Present day’s computer hardware designs are:

1. PC design:

a. Devices soldered permanently to

mainboard with no provision for

customization.

b. Devices connected to mainboard through

the PCI or a similar slot with an option for

expansion.

c. Plug-n-Play hardware through USB or

similar interface.

2. Mobile/System-on-Chip design.

Implementation of the CIB device architecture on these

designs is almost the same from the hardware end. The

variations are mentioned below:

A. PC design:

a. Permanently soldered hardware:

Since the hardware is permanently fixed, devices

can be assigned with a permanent port number in

the H/W end during the manufacturing process.

Similarly all Standard S/W-Interface drivers can be

assigned the same port number during the operating

system installation. Therefore PPA is not required

and only CPU’s approval is enough for kernel-

hardware connection.

b. PCI/ExpressCard or similar interface-based

customizable hardware:

Hardware variations from user-to-user requires PPA

logic to be followed to establish kernel-hardware

connection. No port numbers can be pre-defined in

this hardware design as the user may change his

installed devices from time to time.

c. Plug-n-Play hardware:

This refers to removable hardware installed on the

computer, like removable storage media or camera [4].

Plug-n-Play hardware will use the same logic as the

previous case. Certain changes have to be done in the

CIB’s microcontroller firmware to provision dynamic

hardware initialization and port allotment for such

devices. This is because the CIB’s microcontroller

memory will keep a record on connected devices and

Plug-n-Play devices need separate provision in the

microcontroller firmware to dynamically include these

devices in this record. And these devices have to be

removed from the record once disconnected.

B. System-on-Chip design:

A typical SoC has all major hardware components

like a LTE modem, a DSP (Digital Signal Processor),

an ISP (Image Signal Processor), a SPU(Secure

Processing Unit – Vault) and a TPM (Trusted

Platform Module) bundled as a single unit along with

the CPU. This is a more efficient design for light-

weight, low-power handheld devices.[5] These chips

can be targeted by permanently mapping the entire

SoC to the H/W connector end of the CIB with the

same logic used in permanently soldered hardware PC

design. Permanent port numbers have to be allotted

for different components of the SoC and necessary

H/W-Interface drivers have to be provided.

These drivers can be upgraded to match the CIB

microcontroller’s firmware version through SoC

firmware updates from the chip vendor.

VII. FIRMWARE UPDATE DELIVERY MECHANISM FOR

CIB MICROCONTROLLER AND SYSTEM HARDWARE

Complete abstraction of hardware’s vendor information and

its specification demands a special logic for the delivery of

firmware updates and patches to the hardware component’s

controller. Same logic can also be followed to update CIB

microcontroller’s firmware and apply patches for unforeseen

vulnerabilities.

This can be made possible by assuming S/W updates are

delivered on a timely basis. All firmware updates should be

digitally signed [6] to expire on a specific date so that it will

trigger the firmware update process. The entire update

process will run below the kernel layer as a measure of

hardware abstraction. This process must be integrated into

the Power On Self-Test (POST) process so that all the

firmware update processes can be performed before the

operating system starts up.

A. Firmware Update and Patch Delivery (FUPD)

Algorithm:

1. START

2. Hardware components’ firmware signatures are

verified during the POST process.

 International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 139

3. If the signature of the hardware component’s

firmware is expired, the device will request the CIB

microcontroller for a update search.

4. The CIB will connect itself to the internet using the

network hardware of the computer using the PPA

logic and will search for the update package. This

process will take place in the CIB’s control interface

embedded within the BIOS/UEFI as a measure of

hardware abstraction.

5. If an update is found, the package is downloaded and

forwarded to the target hardware component’s reserve

memory for unpacking and installing. This is

managed by the PVDM module. This update might

require a system reboot based on the hardware’s role.

A notification - in case of system reboot - will be

forwarded to the kernel by the CIB microcontroller.

6. Enhanced POST is run again after the update to

ensure proper functioning of all updated components

before connecting the CIB’s S/W end to the OS

kernel. In case of any error, the performed update is

rolled back.

7. If no updates are found, the microcontroller will self-

sign the hardware’s firmware for a grace period and it

will continue checking for a new firmware update

package and push them to the relevant hardware

periodically.

8. Emergency patches are checked regularly on the

internet by the microcontroller and deployed

accordingly.

9. STOP

VIII. COMPARISON BETWEEN LEGACY HARDWARE

MODEL AND CIB MODEL

Figure 3. Flowchart representing workflow in legacy hardware model

Figure 4. Flowchart representing workflow in CIB model

Tab. 1: Comparison between Legacy and CIB Design

Legacy Design CIB Design

Kernel is connected

directly to the hardware

using device drivers.

Kernel is connected to the

hardware using a dedicated

chip which can handle I/O

traffic.

Device drivers are specific

in nature. Each hardware

component may have a

different design and may be

manufactured by a different

OEM, thereby requiring

drivers built specifically for

the hardware product.

These drivers are also

platform dependent.

It requires two set of

drivers. One set is for the

kernel-CIB chip connection

which is universal for all

devices belonging to the

same class of hardware.

These drivers are kernel

dependent. Other set of

drivers is for the CIB chip-

hardware communication

which are built by the

manufacturers.

Hardware abstraction is not

present.

Hardware abstraction is

fully enforced.

Operating systems depend

on the availability of

compatible device drivers.

Operating systems have

universal drivers bundled

with the kernel, hence they

don’t have to compromise

on driver availability.

IX. SIGNIFICANCE OF THIS TECHNOLOGY

As the title says, the very motto of this innovation is to

enhance the user experience of the software by empowering

every user to carry their own software in their pocket which

can work across any hardware specification platform.

Significances are mentioned below:

 International Journal of Computer Sciences and Engineering Vol.6(3), April 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 140

1. Cross-compatibility of a software product across any

hardware specification with the same CPU architecture

using the versatile CIB driver bundle in the kernel.

2. Software vendor can make their software work across

all CPU architecture by providing multiple kernels

which are compatible with most common architectures

in the market (like AMD64 and ARM). This also

enables faster software updates as developer can target

all devices at once [7]. Software will become cheaper

as the vendor no longer has to bundle any device-

drivers with their product package.

3. Hardware information can be completely abstracted

from the software using this technology as the

software-kernel knows only the port number where the

hardware is mapped to (only in case of permanently

fixed hardware or SoC design).

4. The CIB interface will also act as an additional

protection layer between the H/W and the S/W.

Therefore, in case of any hardware compromise, I/O

communications can be blocked at the CIB

microcontroller, thus protecting data from being

stolen.

5. This technology will also encourage budding software

developers to write custom kernels for a variety of

operating systems which in turn increases porting of

software ROMs from one device to another. This will

enable users to install any operating system of their

choice on their PCs and phablets.

X. SIMILAR SCHEMES

Google has implemented its Project Treble in its Android

Operating System which is designed for the ARM CPU

architecture. This facilitates the OEMs to provide faster and

uniform software updates across its product portfolio which

comply to Project Treble’s regulations.

XI. CONCLUSION AND FUTURE SCOPE

A universal interface which enables a software to run on

different hardware specifications with the same CPU

architecture is discussed. Modular design of drivers is also

explained which will be an enhancement to the kernel’s

memory management. Workflow and operation of the CIB

during an I/O operation is elaborated. PPA logic is explained

which helps in keeping the CIB chip out of the CPU’s

control. Minor variations in design and logic which has to be

made for different hardware design models is also discussed.

Algorithm to apply firmware updates and patches on

hardware is explained and comparison between present day’s

hardware model and the CIB model is also shown.

Significance of this technology and the potential changes

which might occur after implementation of this technology

by hardware vendors are also mentioned.

Future design of the CAUSEWAY INTERCONNECT

BRIDGE may include a co-processor which can enable any

kernel to run on any CPU architecture. This will further

minimize the process of kernel development to a great extent.

Further an emulation layer to fix kernel panics [8] occurring

in some kernels due to incompatibility of installed hardware

may be designed.

REFERENCES

[1] Anon., “ARM Cortex-A Series Programmers’s Guide”, Literature
number ARM DEN0013D, pp.10-3, 2014.

[2] J.F. & Ross, K.W., “Computer Networking: A Top-Down

Approach”. New York: Addison-Wesley. p. 36, 2010.

[3] Nirav Trivedi, Himanshu Patel, Dharmendra Chauhan,

“Fundamental structure of Linux kernel based device driver and

implementation on Linux host machine”, International Journal of

applied Information Systems (IJAIS), Vol.10, Issue.4, pp.2249-

0868, 2016.

[4] Scott Mueller, “Upgrading and Repairing PCs, Eleventh Edition”,

Que, 2999, ISBN 0-7897-1903-7.

[5] Pete Bennett, EE Times. "The why, where and what of low-power

SoC design." December 2, 2004. Retrieved July 28, 2015.

[6] Hendric, William (2015). "A Complete overview of Trusted

Certificates - CABForum". Retrieved February 26, 2015.

[7] StatCounter, “Desktop macOS Version Market Share Worldwide

Jan 2017 - Jan 2018” January, 2018.

[8] Steven M. Hancock (November 22, 2002). “Tru64 UNIX

troubleshooting: diagnosing and correcting system problems”, HP

Technologies Series, IT Pro collection. Digital Press. pp.119–126.

ISBN 978-1-55558-274-6. Retrieved May 3, 2011.

Authors Profile

Mr Pon Rahul M is pursuing his Bachelor of

Technology in Information Technology

from Loyola-ICAM College of Engineering

and Technology and anticipates his degree

by 2021. He has hands-on experience on

Virtual Desktop Infrastructure. Studying

computer technology is both his hobby as

well as his passion and he thinks on

hilarious ideas during his leisure time, one of which is materialized

now. He has performed several experiments which mainly focusses

on Kernel Dissection, ROM Porting and software cross-

compatibility.

Mr Rishi Shree S is pursuing his Bachelor of

Technology in Information Technology from

Loyola-ICAM College of Engineering and

Technology and anticipates his degree by

2021. He is an inquisitive person with his

mind always being curious. He has hands-on

experience in Business Process Outsourcing

in health-care industry. He is also an avid

automobile and tech enthusiast.

