€
AX]CSE International Journal of Computer Sciences and Engineering [pen Access

Research Paper Volume-6, Special Issue-3, April 2018 E-ISSN: 2347-2693

Enhancement of Software and Data Portability by Normalizing Variations
in Hardware

Pon Rahul M*", Rishi Shree S°

YDept. of Information Technology, Loyola-ICAM College of Engineering and Technology, Chennai, India
Z Dept. of Information Technology, Loyola-ICAM College of Engineering and Technology, Chennai, India

“Corresponding Author: theflyingrahul@icloud.com, Tel.: +919487323890

Available online at: www.ijcseonline.org

Abstract— This paper explores the concept of software and user data portability by tackling device driver issues caused due to diversity in
computer hardware. The objective of this paper is to implement a universal interface between the hardware and the software intended to
minimize time and manpower. Drivers are required for software-hardware integration and different hardware manufactured by OEMs require
device drivers designed specifically for the hardware component. Development of a new platform requires the software manufacturer to
target a variety of hardware. Upgrading existing software requires the device drivers to be checked if they are compatible with the newer
version of the software. Device drivers have to be written for each software platform separately. This results in a lot of time being consumed
which directly affects the consumer such as delayed software and firmware updates, security patches, bug fixes etc. This interface addresses

the driver development issues by providing a standard hardware platform for which the software can be developed.

Keywords— software, hardware, portability, platform, interface, drivers, compatibility

l. INTRODUCTION

Drivers are required for software-hardware communication,
designed specifically for the hardware component. Different
OEMs have been producing hardware components under
different product portfolios. These components may have
differences in features and product quality, but the final
product is the same.

A. Kernel

It is a computer program and the core of a computer
operating system which acts as the bridge for
communications between the software and the hardware. It is
usually the first program being loaded on start-up.

B. Device-Driver

Device driver is a computer program that operates a
particular type of hardware device by providing a software
interface (as a kernel module) for the installed hardware. It is
a layer of hardware abstraction too.

Present modular design of the kernel allows any driver to be
loaded or unloaded from the kernel memory space based on
the demand. The problem with the concept of drivers is
technology used in different hardware components and their
functioning might differ from the typical one and this
requires device drivers to be developed specifically for the
component. Same products from different OEMSs require
different drivers and drivers are platform dependent. A single
hardware driver cannot run across all software platforms.
Plus the driver has to be made compatible to the newer
version of the software if the software is undergoing a major
upgrade. This diversity in devices bring up these problems:

© 2018, 1JCSE All Rights Reserved

1. Unnecessary bundling of basic drivers of various
products with the operating system’s kernel as
modules.

2. Incompatibility of old drivers with a new operating
system update.

3. Incompatibility of a hardware component with a
platform’s kernel where the manufacturer doesn’t
provide any device-drivers.

4. Failure of OEMs to provide firmware updates for
older devices which might render them unusable
with new software.

These issues unnecessarily increase the software product’s
package size due to driver bundling. Lack of driver support
on platforms unsupported by the OEMSs renders most
hardware components unusable with other platforms’
kernels, making the hardware partially/fully incompatible
with the platform.

To tackle this issue, we propose the Project Causeway, a
universal interface between the hardware and the software
intended to minimize time and manpower. This interface
addresses driver development issues by providing a standard
hardware platform for which the software can be developed.
We believe this decreases the effort in software development
while making software and user data highly portable and
hardware independent.

I. SUMMARY OF THE CONCEPT

In view of the above disadvantages present in existing
technology, this innovation provides a common platform for
which software development can be targeted to. Hardware
variations can be normalized by providing a standard

135

International Journal of Computer Sciences and Engineering

interface called the CAUSEWAY INTERCONNECT
BRIDGE, hereafter CIB. It has two ends, namely the
software (S/W) end and the hardware (H/W) end. The S/IW
end is the same across all devices and serves as a universal
hardware platform. The Operating System’s kernel can be
supplied only with essential drivers to connect to the S/W
end. OEMs can target any platform by connecting their
device to the H/W end of the bridge. The bridge has virtual
ports via memory mapping to connect the H/W end and the
S/W end. Thereby a virtual connection is achieved between
the kernel and the hardware and further 1/0 can be made.

I11. DESIGN

Packet
Verification
and Delivery

Module

Random CIB
Access microcontroller
Buffer unit

H/W Virtual Port
Memory

S/W Virtual Port
Memory

Figure 1. Chip design of Causeway Interconnect Bridge

The CIB will be a standalone hardware component of the
mainboard of a computer with no control by the CPU. This
can be achieved by using the PING PORT ALLOTMENT
technique to allot ports for kernel-hardware connection. The
chip will feature two virtual layers, completely abstracted
from each other. These layers are RANDOM ACCESS
MEMORY STREAMS. These memory streams will follow
the QUEUE algorithm — First-In-First-Out (FIFO). First one
is the software-end (S/W) and the other one is the hardware-
end (H/W). The S/W end will act as a virtual hardware layer
and as a standard hardware configuration for all software
platforms. Software vendors will have to design the required
STANDARD S/W-INTERFACE DRIVER for their kernel
which will connect the kernel to the CIB. This driver will be
the normalization layer for variations in hardware, thus

© 2018, 1JCSE All Rights Reserved

Vol.6(3), April 2018, E-ISSN: 2347-2693

making it universal. H/W end will be an OEM customizable
layer which will connect their device to the CIB via the
H/W-INTERFACE DRIVER supplied by them. These
drivers will be stored in the devices” ROMs. The chip will
come with a certain amount of superfast flash memory as
buffer to help transfer instruction packet from the kernel to
the hardware. The CIB chip will have a low-energy
microcontroller to create new ports as per need and to clear
existing ports and buffer memory once the 1/0O operation is
complete. The chip will also have a PACKET
VERIFICATION AND DELIVERY MODULE (PVDM)
under the control of the CIB microcontroller to check the
integrity of the packets and to ensure proper forwarding and
delivery of the packets to and fro from the right hardware
component. The CIB will have a control interface which is a
part of BIOS/UEFI to facilitate firmware updates and patch
deployment. Packet transmission from kernel to hardware
and vice-versa has to follow a set of rules similar to the
Transmission Control Protocol (TCP).

IV. WORK FLOW AND OPERATION

The overall operation workflow is similar to the functioning
of a standard computer. A major change is done in the
method of packet transfer from the kernel to the hardware
and vice-versa using the CIB.

The steps by which this process is executed is stated below.
1. START

2. Application running above the kernel requests the
kernel for connection to hardware for 1/0 (System
Call).

3. Kernel loads the required hardware’s STANDARD
S/W-INTERFACE DRIVER into the KERNEL
SPACE MEMORY.

4. Kernel forwards the request to the CPU for approval
(Hardware Interrupt).

5. If the CPU approves the request, it forwards the
interrupt to the requested hardware for new port
creation in the CIB interface using “PING PORT
ALLOTMENT” technique.

6. The hardware will connect to the CIB using H/W-
INTERFACE DRIVER in its ROM.

Ping Port Allotment (PPA) algorithm

a. The CPU forwards the Hardware Interrupt
directly to the requested hardware device.

136

International Journal of Computer Sciences and Engineering

10.

11.

Hardware Interrupt

Ethernet

USB Devices

Hardware ConnectorEnd <

Internal Port Mapping

Vol.6(3), April 2018, E-ISSN: 2347-2693

- System Call

> Kernel Connector End

Causeway Hardware Interconnect

Figure 2. Flowchart representing workflow during the CIB interface operation

b. The device then attempts to connect to the
CIB interface (H/W end).

c. If the CIB memory has sufficient free
space for new virtual memory port
creation, the microcontroller automatically
assigns a new 1/O port and returns it to the
hardware ~ component. NO TWO
PROCESSES CAN HAPPEN THROUGH
THE SAME PORT.

d. If the port memory is full, the request is
stored in the buffer memory and awaits
memory availability for some time. If

memory is not available, the CIB
microcontroller returns QUEUE FULL
error.

Hardware device returns the virtual port information
from the CIB microcontroller to the CPU.

CPU then forwards this port number to the software
kernel.

Kernel now connects to the S/W end by loading the
supplied Standard S/W Interface driver module.

Once the kernel and the hardware component are
connected using the virtual port number, returned by
the CIB microcontroller, the microcontroller takes
the responsibility of data packet transfer between
the kernel and the hardware device.

The microcontroller does a secure port mapping
between the S/W and the H/W end and establishes a

© 2018, 1JCSE All Rights Reserved

12.

13.

14.

15.

16.

17.

18.

19.
20.

connection between them for the allotted port
number.

The PVDM module, controlled by the CIB
microcontroller, verifies the integrity of each packet
and pushes it to the right port — to the right
hardware from the kernel and vice versa.

If any packet is found missing, the kernel again
requests the same packet from the device [1][2].

Once a 1/0O is completed successfully, the kernel
compiles and verifies the integrity of the compiled
data packets and sends a STOP packet to the CIB.

When the PVVDM reads this STOP packet, it reports
the same to the CIB microcontroller.

The microcontroller then severs the virtual
connection between the two memory structures and
pushes the port memory out of the queue, releasing
free space for the next 1/O request.

The device then gives a hardware interrupt signal to
the CPU indicating 1/0 completion.

The CPU removes this completed process from the
memory and clears all buffer files the from memory,
if any.

This process is repeated again as per the need.
STOP

V. MODULAR DESIGN OF BRIDGE DRIVERS

Providing the kernel with a single driver to connect to the CIB
will result in excess workload for the CIB microcontroller to

137

International Journal of Computer Sciences and Engineering

segregate and forward packets to the requested hardware. CIB
is designed to be a low-power and an energy efficient chip.
Therefore, this load can be minimized by segregating all
information packets at the kernel and then sending them
through the S/W layer. This is achieved by providing generic
drivers for individual hardware components (say a printer or a
network card) with the CIB interface as the target hardware
specification. Drivers can be designed to be modular in
nature. Therefore, the required generic driver can be loaded
into the kernel as a module during the time of system call and
can be unloaded from the memory once the 1/O operation is
complete [3]. This design also keeps the kernel space memory
freer.

V1. VARIATIONS IN HARDWARE DESIGN

Present day’s computer hardware designs are:

1. PC design:

a. Devices soldered permanently to
mainboard with no provision for
customization.

b. Devices connected to mainboard through
the PCI or a similar slot with an option for
expansion.

c. Plug-n-Play hardware through USB or
similar interface.

2. Mobile/System-on-Chip design.

Implementation of the CIB device architecture on these
designs is almost the same from the hardware end. The
variations are mentioned below:

A. PC design:
a. Permanently soldered hardware:

Since the hardware is permanently fixed, devices
can be assigned with a permanent port number in
the H/W end during the manufacturing process.
Similarly all Standard S/W-Interface drivers can be
assigned the same port number during the operating
system installation. Therefore PPA is not required
and only CPU’s approval is enough for kernel-
hardware connection.

b. PCIl/ExpressCard or
customizable hardware:

similar interface-based

Hardware variations from user-to-user requires PPA
logic to be followed to establish kernel-hardware
connection. No port numbers can be pre-defined in
this hardware design as the user may change his
installed devices from time to time.

c. Plug-n-Play hardware:

© 2018, 1JCSE All Rights Reserved

Vol.6(3), April 2018, E-ISSN: 2347-2693

This refers to removable hardware installed on the
computer, like removable storage media or camera [4].
Plug-n-Play hardware will use the same logic as the
previous case. Certain changes have to be done in the
CIB’s microcontroller firmware to provision dynamic
hardware initialization and port allotment for such
devices. This is because the CIB’s microcontroller
memory will keep a record on connected devices and
Plug-n-Play devices need separate provision in the
microcontroller firmware to dynamically include these
devices in this record. And these devices have to be
removed from the record once disconnected.

B. System-on-Chip design:

A typical SoC has all major hardware components
like a LTE modem, a DSP (Digital Signal Processor),
an ISP (Image Signal Processor), a SPU(Secure
Processing Unit — Vault) and a TPM (Trusted
Platform Module) bundled as a single unit along with
the CPU. This is a more efficient design for light-
weight, low-power handheld devices.[5] These chips
can be targeted by permanently mapping the entire
SoC to the H/W connector end of the CIB with the
same logic used in permanently soldered hardware PC
design. Permanent port numbers have to be allotted
for different components of the SoC and necessary
H/W-Interface drivers have to be provided.

These drivers can be upgraded to match the CIB
microcontroller’s firmware version through SoC
firmware updates from the chip vendor.

VIl. FIRMWARE UPDATE DELIVERY MECHANISM FOR
CIB MICROCONTROLLER AND SYSTEM HARDWARE

Complete abstraction of hardware’s vendor information and
its specification demands a special logic for the delivery of
firmware updates and patches to the hardware component’s
controller. Same logic can also be followed to update CIB
microcontroller’s firmware and apply patches for unforeseen
vulnerabilities.

This can be made possible by assuming S/W updates are
delivered on a timely basis. All firmware updates should be
digitally signed [6] to expire on a specific date so that it will
trigger the firmware update process. The entire update
process will run below the kernel layer as a measure of
hardware abstraction. This process must be integrated into
the Power On Self-Test (POST) process so that all the
firmware update processes can be performed before the
operating system starts up.

A. Firmware Update

Algorithm:
1. START

and Patch Delivery (FUPD)

2. Hardware components’ firmware
verified during the POST process.

signatures are

138

International Journal of Computer Sciences and Engineering

Vol.6(3), April 2018, E-ISSN: 2347-2693

3. If the signature of the hardware component’s -
firmware is expired, the device will request the CIB userspace Application
microcontroller for a update search.

4. The CIB will connect itself to the internet using the
network hardware of the computer using the PPA el space

. . . Kernel Core
logic and will search for the update package. This
process will take place in the CIB’s control interface
embedded within the BIOS/UEFI as a measure of
hardware abstraction.

5. If an update is found, the package is downloaded and
forwarded to the target hardware component’s reserve]
memory for unpacking and installing. This is (NS D T 52
managed by the PVDM module. This update might
require a system reboot based on the hardware’s role.

A notification - in case of system reboot - will be AW Driver 1
forwarded to the kernel by the CIB microcontroller. ' N

6. Enhanced POST is run again after the update to i ; ;
ensure proper functioning of all updated components m “
before connecting the CIB’s S/W end to the O.S Figure 4. Flowchart representing workflow in CIB model
kernel. In case of any error, the performed update is
rolled back. Tab. 1: Comparison between Legacy and CIB Design

7. If no updates are found, the microcontroller will self- Legacy Design CIB Design
sign the hardware’s firmware for a grace period and it Kernel is connected | Kernel is connected to the
will continue checking for a new firmware update directly to the hardware | hardware using a dedicated
package and push them to the relevant hardware using device drivers. chip which can handle 1/0
periodically. traffic.

8. Emergency patches are checked regularly on the !Dewce drivers are specific It. requires tWO. set of
- . in nature. Each hardware | drivers. One set is for the
internet by the microcontroller and deployed . .
accordingly cc_)mponent “may have a ker_neI-C_:IB c_hlp connection

' different design and may be | which is universal for all

9. STOP manufactured by a different | devices belonging to the

EM, ther requirin me cl f hardware.
VIII. COMPARISON BETWEEN LEGACY HARDWARE OEM, _ thereby _requiring | same class of hardware

MoDEL AND CIB MODEL

drivers built specifically for
the hardware product.
These drivers are also

These drivers are kernel
dependent. Other set of
drivers is for the CIB chip-

platform dependent. hardware communication
prarseace which are built by the
manufacturers.
Hardware abstraction is not | Hardware abstraction is
Kernel Space present. fully enforced.
Operating systems depend | Operating systems have

m
ry s n

Hardware

on the availability of
compatible device drivers.

universal drivers bundled
with the kernel, hence they
don’t have to compromise
on driver availability.

IX. SIGNIFICANCE OF THIS TECHNOLOGY

As the title says, the very motto of this innovation is to
enhance the user experience of the software by empowering
every user to carry their own software in their pocket which
can work across any hardware specification platform.
Significances are mentioned below:

Figure 3. Flowchart representing workflow in legacy hardware model

© 2018, 1JCSE All Rights Reserved 139

International Journal of Computer Sciences and Engineering

1. Cross-compatibility of a software product across any
hardware specification with the same CPU architecture
using the versatile CIB driver bundle in the kernel.

2. Software vendor can make their software work across
all CPU architecture by providing multiple kernels
which are compatible with most common architectures
in the market (like AMD64 and ARM). This also
enables faster software updates as developer can target
all devices at once [7]. Software will become cheaper
as the vendor no longer has to bundle any device-
drivers with their product package.

3. Hardware information can be completely abstracted
from the software using this technology as the
software-kernel knows only the port number where the
hardware is mapped to (only in case of permanently
fixed hardware or SoC design).

4. The CIB interface will also act as an additional
protection layer between the H/W and the S/W.
Therefore, in case of any hardware compromise, 1/0
communications can be blocked at the CIB
microcontroller, thus protecting data from being
stolen.

5. This technology will also encourage budding software
developers to write custom kernels for a variety of
operating systems which in turn increases porting of
software ROMs from one device to another. This will
enable users to install any operating system of their
choice on their PCs and phablets.

X. SIMILAR SCHEMES

Google has implemented its Project Treble in its Android
Operating System which is designed for the ARM CPU
architecture. This facilitates the OEMSs to provide faster and
uniform software updates across its product portfolio which
comply to Project Treble’s regulations.

XI. CONCLUSION AND FUTURE SCOPE

A universal interface which enables a software to run on
different hardware specifications with the same CPU
architecture is discussed. Modular design of drivers is also
explained which will be an enhancement to the kernel’s
memory management. Workflow and operation of the CIB
during an 1/0 operation is elaborated. PPA logic is explained
which helps in keeping the CIB chip out of the CPU’s
control. Minor variations in design and logic which has to be
made for different hardware design models is also discussed.
Algorithm to apply firmware updates and patches on
hardware is explained and comparison between present day’s
hardware model and the CIB model is also shown.
Significance of this technology and the potential changes
which might occur after implementation of this technology
by hardware vendors are also mentioned.

© 2018, 1JCSE All Rights Reserved

Vol.6(3), April 2018, E-ISSN: 2347-2693

Future design of the CAUSEWAY INTERCONNECT
BRIDGE may include a co-processor which can enable any
kernel to run on any CPU architecture. This will further
minimize the process of kernel development to a great extent.
Further an emulation layer to fix kernel panics [8] occurring
in some Kkernels due to incompatibility of installed hardware
may be designed.

REFERENCES

[1] Anon., “ARM Cortex-A Series Programmers’s Guide”, Literature
number ARM DEN0013D, pp.10-3, 2014.

[21 JF. & Ross, KW., “Computer Networking: A Top-Down
Approach ”. New York: Addison-Wesley. p. 36, 2010.

[3] Nirav Trivedi, Himanshu Patel, Dharmendra Chauhan,
“Fundamental structure of Linux kernel based device driver and
implementation on Linux host machine”, International Journal of
applied Information Systems (IJAIS), Vol.10, Issue.4, pp.2249-
0868, 2016.

[4] Scott Mueller, “Upgrading and Repairing PCs, Eleventh Edition”,
Que, 2999, ISBN 0-7897-1903-7.

[5] Pete Bennett, EE Times. "The why, where and what of low-power
SoC design." December 2, 2004. Retrieved July 28, 2015.

[6] Hendric, William (2015). "A Complete overview of Trusted
Certificates - CABForum". Retrieved February 26, 2015.

[71 StatCounter, “Desktop macOS Version Market Share Worldwide
Jan 2017 - Jan 2018” January, 2018.

[8] Steven M. Hancock (November 22, 2002). “Tru64 UNIX
troubleshooting: diagnosing and correcting system problems”, HP
Technologies Series, IT Pro collection. Digital Press. pp.119-126.
ISBN 978-1-55558-274-6. Retrieved May 3, 2011.

Authors Profile

Mr Pon Rahul M is pursuing his Bachelor of
Technology in Information Technology
from Loyola-ICAM College of Engineering
and Technology and anticipates his degree
by 2021. He has hands-on experience on
Virtual Desktop Infrastructure. Studying
computer technology is both his hobby as
well as his passion and he thinks on
hilarious ideas during his leisure time, one of which is materialized
now. He has performed several experiments which mainly focusses
on Kernel Dissection, ROM Porting and software cross-
compatibility.

Mr Rishi Shree S is pursuing his Bachelor of
Technology in Information Technology from
Loyola-ICAM College of Engineering and
Technology and anticipates his degree by
2021. He is an inquisitive person with his
mind always being curious. He has hands-on
experience in Business Process Outsourcing
in health-care industry. He is also an avid
automobile and tech enthusiast.

140

