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Abstract- The storage and management of information has always been a challenge for software engineering, new 

programing approaches had to be found, parallel processing and then distributed computing programing models were 

developed, and new programing frameworks were developed to assist software developers. This is where Hadoop 

framework, an open source implementation of MapReduce programing model, that also takes advantage of a distributed 

file system, takes its lead, but in the meantime, since its presentation, there were evolutions to the MapReduce and new 

programing models that were introduced by Spark and Storm frameworks, that show promising results. 
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I. Introduction 

 

Through time, size of information kept rising and that 

immense growth generated the need to change the way 

this information is processed and managed, as individual 

processors clock speed evolution slowed, systems 

evolved to a multi-processor oriented architecture. 

However there are scenarios, where the data size is too 

big to be analysed in acceptable time by a single system, 

and in this cases is where the MapReduce and a 

distributed file system are able to shine. 

Apache Hadoop is a distributed processing infrastructure. 

It can be used on a single machine, but to take advantage 

and achieve its full potential, we must scale it to hundreds 

or thousands of computers, each with several processor 

cores. It’s also de- signed to efficiently distribute large 

amounts of work and data across multiple systems. 

Apache Spark is a data parallel general-purpose batch-

processing engine. Work- flows are defined in a similar 

and reminiscent style of MapReduce, however, is much 

more capable than traditional Hadoop MapReduce. 

Apache Spark has its Streaming API project that allows 

for continuous processing via short interval batches. 

Similar to Storm, Spark Streaming jobs run until 

shutdown by the user or encounter an unrecoverable 

failure 

           Apache Storm is a task parallel continuous 

computational engine. It defines its workflows in 

Directed Acyclic Graphs (DAG’s) called “topologies”. 

These topologies run until shutdown by the user or 

encountering an unrecoverable failure. 

The big data challenge 

Performing computation on big data is quite a big 

challenge. To work with volumes of data that easily 

surpass several terabytes in size, requires distributing 

parts of data to several systems to handle in parallel. By 

doing it, the probability of failure rises. In a single-

system, failure is not something that usually program 

designers explicitly worry about.[1] 

 

However, in a distributed scenario, partial failures are 

expected and common, but if the rest of the distributed 

system is fine, it should be able to recover from the 

component failure or transient error condition and 

continue to make progress. Providing such resilience is a 

major software engineering challenge. [1] 

 

In addition, to these sorts of bugs and challenges, there is 

also the fact that the compute hardware has finite 

resources available. The major hardware restrictions 

include: 

 Processor time 

 Memory 

 Hard drive space 

 Network bandwidth 

Individual systems usually have few gigabytes of 

memory. If the input dataset is several terabytes, then this 

would require a thousand or more machines to hold it in 

RAM and even then, no single machine would be able to 

process or address all of the data. 
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                 Hard drives are a lot bigger than RAM, and a 

single machine can currently hold multiple terabytes of 

information on its hard drives. But generated data of a 

large- scale computation can easily require more space 

than what original data had occupied. During this, some 

of the storage devices employed by the system may get 

full, and the distributed system will have to send the data 

to other node, to store the overflow. 

Finally, bandwidth is a limited resource. While 

a pack of nodes directly connected by a gigabit Ethernet 

generally experience high throughput between them, if all 

transmit multi-gigabyte, they would saturate the switch's 

bandwidth. Plus, if the systems were spread across 

multiple racks, the bandwidth for the data transfer would 

be more diminished [1]. 

                To achieve a successful large-scale distributed 

system, the mentioned resources must be efficiently 

managed. Furthermore, it must allocate some of these 

resources toward maintaining the system as a whole, 

while devoting as much time as possible to the actual core 

computation[1]. 

                Synchronization between multiple systems 

remains the biggest challenge in distributed system 

design. If nodes in a distributed system can explicitly 

communicate with one another, then application designers 

must be cognizant of risks associated with such 

communication patterns. Finally, the ability to continue 

computation in the face of failures becomes more 

challenging[1]. 

                Big companies like Google, Yahoo, Microsoft 

have huge clusters of machines and huge datasets to 

analyse, a framework like Hadoop helps the developers 

use the cluster without expertise in distributed computing, 

and taking advantage of Hadoop Distributed File 

System.[2] 

II. State of the Art 

This section will begin to explain what is 

Apache’s Hadoop Framework and how it works, also a 

short presentation of other Apache alternative 

frameworks, namely Spark and Storm. 

The Hadoop Approach 

Hadoop is designed to efficiently process large 

volumes of information by connecting many commodity 

computers together to work in parallel. One hypothetic 

1000-CPU machine would cost a very large amount of 

money, far more than 1000 single-CPU or 250 quad-core 

machines. Hadoop will tie these smaller and more 

reasonably priced machines together into a single cost-

effective compute cluster.[1] 

Apache Hadoop has two pillars: 

 YARN - Yet Another Resource Negotiator 

(YARN) assigns CPU, memory, and storage 

to applications running on a Hadoop cluster. 

The first generation of Ha- doop could only 

run MapReduce applications. YARN enables 

other application frameworks (like Spark) to 

run on Hadoop as well, which opens up a 

wide set of possibilities.[3] 

 HDFS - Hadoop Distributed File System 

(HDFS) is a file system that spans all the 

nodes in a Hadoop cluster for data storage. It 

links together the file systems on many local 

nodes to make them into one big file 

system.[3] 

MapReduce 

Hadoop is modelled after Google MapReduce. To store 

and process huge amounts of data, we typically need 

several machines in some cluster configuration. 

 

                                    

 

               Fig. 1. - MapReduce flow 

 

                  A distributed file system (HDFS for Hadoop) 

uses space across a cluster to store data, so that it appears 

to be in a contiguous volume and provides redundancy to 

pre- vent data loss. The distributed file system also allows 

data collectors to dump data into HDFS, so that it is 

already prime for use with MapReduce. Then the 

Software Engineer writes a Hadoop MapReduce job [4]. 

                 Hadoop job consists of two main steps, a map 

step and a reduce step. There may be, optionally, other 

steps before the map phase or between the map and 

reduce phases. The map step reads in a bunch of data, 

does something to it, and emits a series of key-value 

pairs. One can think of the map phase as a partitioner. In 

text mining, the map phase is where most parsing and 

cleaning is performed. The output of the mappers is 
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sorted and then fed into a series of reducers. The reduce 

step takes the key value pairs and computes some 

aggregate (reduced) set of data, i.e. sum, average, etc [4]. 

                 The trivial word count exercise starts with a 

map phase, where text is parsed and a key-value pair is 

emitted: a word, followed by the number “1” indicating 

that the key- value pair represents 1 instance of the word. 

The user might also emit something to coerce Hadoop 

into passing data into different reducers. The words and 

1s are sorted and passed to the reducers. The reducers 

take like key-value pairs and compute the number of 

times the word appears in the original input.[5] 

                                     

 
Fig. 2. - Hadoop workflow [2] 

SPARK framework 

                   Apache Spark is an in-memory distributed 

data analysis platform, primarily targeted at speeding up 

batch analysis jobs, iterative machine learning jobs, 

interactive query and graph processing. One of Spark's 

primary distinctions is its use of RDDs or Resilient 

Distributed Datasets. RDDs are great for pipelining 

parallel operators for computation and are, by definition, 

immutable, which allows Spark a unique form of fault 

tolerance based on lineage information. If you are 

interested in, for example, executing a Hadoop 

MapReduce job much faster, Spark is a great option 

(although memory requirements must be considered) 

[19]. 

                   It provides high-level APIs in Java, Scala and 

Python, and an optimized engine that supports general 

execution graphs. 

 

Fig. 3. - Spark Framework 

 

                    It also supports a rich set of higher-level 

tools, including Shark SQL for SQL and structured data 

processing, MLlib for machine learning, GraphX for 

graph processing, and Spark Streaming [6], helping the 

development of parallel applications. 

                The main goal of Spark is to work with 

distributed collections, as you would with local ones. It 

relays on a resilient distributed datasets (RDDs), that is a 

immutable collections of objects spread across a cluster, 

built through parallel transformations (map, filter, etc), 

automatically rebuilt on failure controllable persistence 

(e.g. caching in RAM) for reuse, shared variables that can 

be used in parallel operations [6]. 

Resilient Distributed Datasets (RDDs) 

Spark’s main abstraction is resilient distributed 

datasets (RDDs), which are immutable, partitioned 

collections that can be created through various data-

parallel operators. 

 

 
 

Fig. 4. - Lineage graph for the RDDs in our Spark 

example.[7] 

 

Each RDD is either a collection stored in an 

external storage system, such as a file in HDFS, or a 

derived dataset created by applying operators to other 

RDDs. For ex- ample, given an RDD of (visitID, URL) 

pairs for visits to a website, we might compute an RDD 

of (URL, count) pairs by applying a map operator to turn 

each event into a (URL, 1) pair, and afterward a reduce 

to add the counts by URL.[7] 

Spark provides three options for persist RDDs: 

1. In-memory storage as deserialized Java 

Objects (fastest, JVM can access RDD 

natively) [2]. 

2. In-memory storage as serialized data (space 

limited) [2]. 

3. On-disk storage (RDD too large to keep in 

memory, and costly to recomputed) [2]. 
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Spark streaming 

The key idea behind the model is to treat 

streaming computations, as a series of deterministic batch 

computations, on small time intervals. The input data 

received during each interval is stored, reliably across the 

cluster, to form an input dataset for that interval. Once the 

time interval completes, this dataset is processed via 

deterministic parallel operations, such as map, reduce and 

groupBy, to produce new datasets representing program 

outputs or intermediate state. It stores these results in 

resilient distributed datasets (RDDs) [8]. 

Apache Spark does not itself require Hadoop to 

operate. However, its data parallel paradigm requires a 

shared file system for optimal use of stable data. The 

stable source can be S3, NFS, or, more typically, HDFS) 

[9]. 

Storm Framework 

                 Apache Storm is, a free and open source 

distributed real-time computation system, focused on 

stream processing or what some call complex event 

processing. Storm implements a fault tolerant method for 

performing a computation or pipelining multi- ple 

computations on an event, as it flows into a system. One 

might use Storm to trans- form unstructured data, as it 

flows into a system into a desired format)[9]. 

Apache Storm makes it easy to reliably process 

unbounded streams of data, doing for real-time 

processing what Hadoop did for batch processing. Storm 

has many use cases: real-time analytics, online machine 

learning, continuous computation, distrib- uted RPC, ETL 

and more. It’s scalable, fault-tolerant, guarantees your 

data will be processed, is easy to set up and operate [9]. 

      
Fig. 5. - Storm Framework system architecture 

  

System architecture: 

 Nimbus: Like JobTracker in Hadoop 

 Supervisor: Manage workers 

 Zookeeper: Store meta data 

 UI: Web-UI 

                A Storm cluster is superficially similar to a 

Hadoop cluster. Whereas on Hadoop you run 

"MapReduce jobs", on Storm you run "topologies". 

"Jobs" and "topologies" themselves are very different; 

one key difference is that a MapReduce job eventually 

finishes, while a topology processes messages forever (or 

until you kill it). 

               There are two kinds of nodes on a Storm cluster: 

the master node and the worker nodes. The master node 

runs a daemon called "Nimbus" that is similar to Hadoop 

"JobTracker". Nimbus is responsible for distributing code 

around the cluster, assigning tasks to machines, and 

monitoring for failures [9]. 

               Each worker node runs a daemon called the 

"Supervisor". The supervisor listens for work assigned to 

its machine, starts and stops worker processes, as 

necessary based on what Nimbus has assigned to it. Each 

worker process executes a subset of a topology. A 

running topology consists of many worker processes, 

spread across many machines [9]. 

               Storm does not natively run on top of typical 

Hadoop clusters, it uses Apache ZooKeeper and its own 

master/minion worker processes to coordinate topologies, 

master and worker state, and the message guarantee 

semantics [9]. 

               Having said that, both Yahoo! and Hortonworks 

are working on providing libraries for running Storm 

topologies on top of Hadoop 2.x YARN clusters. 

             Regardless, Storm can certainly still consume 

files from HDFS and/or write files to HDFS[18][21]. 

III. Discussion 

                   Spark is one of the newest players in the 

MapReduce field. Its purpose is to make data analytics 

fast to write, and fast to run. Unlike many MapReduce 

systems (Hadoop inclusive), Spark allows in-memory 

querying of data (even distributed across ma- chines) 

rather than using disk I/O. It’s no surprise that Spark out-

performs Hadoop on many iterative algorithms. Spark is 

implemented in Scala, a functional object-oriented 

language that runs on top of the JVM. Similar to other 

languages like Python and Ruby, Scala has an interactive 

prompt that users can use to query big data straight from 

the Scala interpreter, making it a good choice in some 

scenarios. However, it does not support a distributed file 

system on its own, it depends on Hadoop, if a  HDFS is 

required. 

           The Storm framework is referred as being the 

Hadoop of Real-time Processing. Hadoop is a batch-

processing system, this means, give it a big set of static 

data and it will do something with it. Storm is real-time, it 

processes data in parallel as it streams. Therefore, Storm 

is more a complement to Hadoop rather than a real 
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replacement, as Storm fails when it comes to process 

large persistent data, as its focus is to be able to process a 

large number of streams of data (in real time 

computation), while Hadoop focus is on large amount of 

persistent data (batch processing). 

Frameworks features summary 

In the beginning of this survey, I did not know 

what I would find on programing frameworks for 

distributed computing. Therefore, after this review, 

summarizing the main features and benefits of each of the 

evaluated frameworks, may serve as contribution to an 

appropriated and better-informed selection of the 

framework, that aims the deployment of a new distributed 

computing platform, or for those considering to improve 

an already existing one. 

 Storm Spark 

Streaming 

Processing Model Record at a time Mini batches 

Latency Sub second Few seconds 

Fault tolerant – 

every record 

processed 

At least one (may be duplicates) Exactly one 

Batch framework 

integration 

Not available Spark 

Supported 

languages 

Storm was designed from the 
ground up to be usable with 

any programming language [9]. 

Python, 
Scala, Java 

Table 1. Storm vs. Spark Streaming 

 

Based on my research, the comparison must be made 

based on use cases oriented view, as the frameworks end 

up being more complementary than competitive among 

each other. One thing was made clear, in all references, it 

does not matter if you choose Hadoop, Spark or Storm, 

having the HDFS is an advantage, because it solves many 

of storage problems associated with big data computing. 

So Hadoop is kind of “mandatory”, if you need HDFS 

benefits. 

                     For Spark, its best use cases, are iterative 

Machine Learning algorithms and Inter- active analytics. 

Furthermore, Spark plus Hadoop is always better than 

only Hadoop, except when the work dataset size exceeds 

the individual node RAM size, so in a way it depends on 

the available infrastructure or required work dataset size. 

                    Storm is a good choice if you need sub-

second latency and no data loss. Spark Streaming is better 

if you need stateful computation, with the guarantee that 

each event is processed exactly once. Spark Streaming 

programming logic may also be easier because it’s similar 

to batch programming, in that way, you are working with 

batches (albeit very small ones) [19]. 

                   One key difference between these two 

technologies is that Spark performs Data- Parallel 

computations while Storm performs Task-Parallel 

computations. 

     After this analysis it is possible to realize that 

the Hadoop framework will stay around for a while, and 

for a good reason. Even knowing that MapReduce cannot 

solve every problem, it is still a good choice for research, 

experimentation, and everyday data manipulation. One of 

the other frameworks abovementioned, may be better if 

the advantages of HDFS are not necessarily imperative, 

or if the use cases are compatible with the framework 

capabilities, and consequently able to take advantage of 

its benefits. 

                   In overall, the most suitable platform must 

always take into account the scenario to witch the system 

is most focussed. 

                   It’s important to acknowledge that the newer 

Hadoop versions based on YARN, allow Spark to run on 

top of Hadoop, and there is on-going work to achieve the 

same with Storm. 

                   It remains to be seen how successful those 

implementations are, and also how they compare its 

native counterparts versions Spark and Storm, since these 

aspects weren’t approached by this survey. 
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