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Abstract- The storage and management of information has always been a challenge for software engineering, new
programing approaches had to be found, parallel processing and then distributed computing programing models were
developed, and new programing frameworks were developed to assist software developers. This is where Hadoop
framework, an open source implementation of MapReduce programing model, that also takes advantage of a distributed
file system, takes its lead, but in the meantime, since its presentation, there were evolutions to the MapReduce and new

programing models that were introduced by Spark and Storm frameworks, that show promising results.
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l. Introduction

Through time, size of information kept rising and that
immense growth generated the need to change the way
this information is processed and managed, as individual
processors clock speed evolution slowed, systems
evolved to a multi-processor oriented architecture.
However there are scenarios, where the data size is too
big to be analysed in acceptable time by a single system,
and in this cases is where the MapReduce and a
distributed file system are able to shine.

Apache Hadoop is a distributed processing infrastructure.
It can be used on a single machine, but to take advantage
and achieve its full potential, we must scale it to hundreds
or thousands of computers, each with several processor
cores. It’s also de- signed to efficiently distribute large
amounts of work and data across multiple systems.

Apache Spark is a data parallel general-purpose batch-
processing engine. Work- flows are defined in a similar
and reminiscent style of MapReduce, however, is much
more capable than traditional Hadoop MapReduce.
Apache Spark has its Streaming API project that allows
for continuous processing via short interval batches.
Similar to Storm, Spark Streaming jobs run until
shutdown by the user or encounter an unrecoverable
failure

Apache Storm is a task parallel continuous
computational engine. It defines its workflows in
Directed Acyclic Graphs (DAG’s) called “topologies”.
These topologies run until shutdown by the user or
encountering an unrecoverable failure.
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The big data challenge

Performing computation on big data is quite a big
challenge. To work with volumes of data that easily
surpass several terabytes in size, requires distributing
parts of data to several systems to handle in parallel. By
doing it, the probability of failure rises. In a single-
system, failure is not something that usually program
designers explicitly worry about.[1]

However, in a distributed scenario, partial failures are
expected and common, but if the rest of the distributed
system is fine, it should be able to recover from the
component failure or transient error condition and
continue to make progress. Providing such resilience is a
major software engineering challenge. [1]

In addition, to these sorts of bugs and challenges, there is
also the fact that the compute hardware has finite
resources available. The major hardware restrictions
include:

e Processor time

e Memory

e Hard drive space
e Network bandwidth

Individual systems usually have few gigabytes of
memory. If the input dataset is several terabytes, then this
would require a thousand or more machines to hold it in
RAM and even then, no single machine would be able to
process or address all of the data.
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Hard drives are a lot bigger than RAM, and a
single machine can currently hold multiple terabytes of
information on its hard drives. But generated data of a
large- scale computation can easily require more space
than what original data had occupied. During this, some
of the storage devices employed by the system may get
full, and the distributed system will have to send the data
to other node, to store the overflow.

Finally, bandwidth is a limited resource. While
a pack of nodes directly connected by a gigabit Ethernet
generally experience high throughput between them, if all
transmit multi-gigabyte, they would saturate the switch's
bandwidth. Plus, if the systems were spread across
multiple racks, the bandwidth for the data transfer would
be more diminished [1].

To achieve a successful large-scale distributed
system, the mentioned resources must be efficiently
managed. Furthermore, it must allocate some of these
resources toward maintaining the system as a whole,
while devoting as much time as possible to the actual core
computation[1].

Synchronization between multiple systems
remains the biggest challenge in distributed system
design. If nodes in a distributed system can explicitly
communicate with one another, then application designers
must be cognizant of risks associated with such
communication patterns. Finally, the ability to continue
computation in the face of failures becomes more
challenging[1].

Big companies like Google, Yahoo, Microsoft
have huge clusters of machines and huge datasets to
analyse, a framework like Hadoop helps the developers
use the cluster without expertise in distributed computing,
and taking advantage of Hadoop Distributed File
System.[2]

I1. State of the Art

This section will begin to explain what is
Apache’s Hadoop Framework and how it works, also a
short presentation of other Apache alternative
frameworks, namely Spark and Storm.

The Hadoop Approach

Hadoop is designed to efficiently process large
volumes of information by connecting many commodity
computers together to work in parallel. One hypothetic
1000-CPU machine would cost a very large amount of
money, far more than 1000 single-CPU or 250 quad-core
machines. Hadoop will tie these smaller and more
reasonably priced machines together into a single cost-
effective compute cluster.[1]

Apache Hadoop has two pillars:

e YARN - Yet Another Resource Negotiator
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(YARN) assigns CPU, memory, and storage
to applications running on a Hadoop cluster.
The first generation of Ha- doop could only
run MapReduce applications. YARN enables
other application frameworks (like Spark) to
run on Hadoop as well, which opens up a
wide set of possibilities.[3]

e HDFS - Hadoop Distributed File System
(HDFS) is a file system that spans all the
nodes in a Hadoop cluster for data storage. It
links together the file systems on many local
nodes to make them into one big file
system.[3]

MapReduce

Hadoop is modelled after Google MapReduce. To store
and process huge amounts of data, we typically need
several machines in some cluster configuration.
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Fig. 1. - MapReduce flow

A distributed file system (HDFS for Hadoop)
uses space across a cluster to store data, so that it appears
to be in a contiguous volume and provides redundancy to
pre- vent data loss. The distributed file system also allows
data collectors to dump data into HDFS, so that it is
already prime for use with MapReduce. Then the
Software Engineer writes a Hadoop MapReduce job [4].

Hadoop job consists of two main steps, a map
step and a reduce step. There may be, optionally, other
steps before the map phase or between the map and
reduce phases. The map step reads in a bunch of data,
does something to it, and emits a series of key-value
pairs. One can think of the map phase as a partitioner. In
text mining, the map phase is where most parsing and
cleaning is performed. The output of the mappers is
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sorted and then fed into a series of reducers. The reduce
step takes the key value pairs and computes some
aggregate (reduced) set of data, i.e. sum, average, etc [4].

The trivial word count exercise starts with a
map phase, where text is parsed and a key-value pair is
emitted: a word, followed by the number “1” indicating
that the key- value pair represents 1 instance of the word.
The user might also emit something to coerce Hadoop
into passing data into different reducers. The words and
1s are sorted and passed to the reducers. The reducers
take like key-value pairs and compute the number of
times the word appears in the original input.[5]
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Fig. 2. - Hadoop workflow [2]
SPARK framework

Apache Spark is an in-memory distributed
data analysis platform, primarily targeted at speeding up
batch analysis jobs, iterative machine learning jobs,
interactive query and graph processing. One of Spark's
primary distinctions is its use of RDDs or Resilient
Distributed Datasets. RDDs are great for pipelining
parallel operators for computation and are, by definition,
immutable, which allows Spark a unique form of fault
tolerance based on lineage information. If you are
interested in, for example, executing a Hadoop
MapReduce job much faster, Spark is a great option
(although memory requirements must be considered)
[19].

It provides high-level APIs in Java, Scala and
Python, and an optimized engine that supports general
execution graphs.

Spark
streaming

MLib (machine

Shark (SQL) learning)

GraphX(graph)

Apache Spark

Fig. 3. - Spark Framework
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It also supports a rich set of higher-level
tools, including Shark SQL for SQL and structured data
processing, MLIib for machine learning, GraphX for
graph processing, and Spark Streaming [6], helping the
development of parallel applications.

The main goal of Spark is to work with
distributed collections, as you would with local ones. It
relays on a resilient distributed datasets (RDDs), that is a
immutable collections of objects spread across a cluster,
built through parallel transformations (map, filter, etc),
automatically rebuilt on failure controllable persistence
(e.g. caching in RAM) for reuse, shared variables that can
be used in parallel operations [6].

Resilient Distributed Datasets (RDDs)

Spark’s main abstraction is resilient distributed
datasets (RDDs), which are immutable, partitioned
collections that can be created through various data-
parallel operators.

visits
(HDFS file)
N\

&

(URL, 1)

pairs counts

map reduceByKey
Fig. 4. - Lineage graph for the RDDs in our Spark
example.[7]

Each RDD is either a collection stored in an
external storage system, such as a file in HDFS, or a
derived dataset created by applying operators to other
RDDs. For ex- ample, given an RDD of (visitID, URL)
pairs for visits to a website, we might compute an RDD
of (URL, count) pairs by applying a map operator to turn
each event into a (URL, 1) pair, and afterward a reduce
to add the counts by URL.[7]

Spark provides three options for persist RDDs:

1.In-memory storage as deserialized Java
Objects (fastest, JVM can access RDD
natively) [2].

2. In-memory storage as serialized data (space
limited) [2].

3.0n-disk storage (RDD too large to keep in
memory, and costly to recomputed) [2].
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Spark streaming

The key idea behind the model is to treat
streaming computations, as a series of deterministic batch
computations, on small time intervals. The input data
received during each interval is stored, reliably across the
cluster, to form an input dataset for that interval. Once the
time interval completes, this dataset is processed via
deterministic parallel operations, such as map, reduce and
groupBy, to produce new datasets representing program
outputs or intermediate state. It stores these results in
resilient distributed datasets (RDDs) [8].

Apache Spark does not itself require Hadoop to
operate. However, its data parallel paradigm requires a
shared file system for optimal use of stable data. The
stable source can be S3, NFS, or, more typically, HDFS)

[9].

Storm Framework

Apache Storm is, a free and open source
distributed real-time computation system, focused on
stream processing or what some call complex event
processing. Storm implements a fault tolerant method for
performing a computation or pipelining multi- ple
computations on an event, as it flows into a system. One
might use Storm to trans- form unstructured data, as it
flows into a system into a desired format)[9].

Apache Storm makes it easy to reliably process
unbounded streams of data, doing for real-time
processing what Hadoop did for batch processing. Storm
has many use cases: real-time analytics, online machine
learning, continuous computation, distrib- uted RPC, ETL
and more. It’s scalable, fault-tolerant, guarantees your
data will be processed, is easy to set up and operate [9].

Supervisor
ZooKeeper Supervisor
Ul
” ZooKeeper Supervisor
NIMBUS -
ZooKeeper Supervisor
Supervisor

Fig. 5. - Storm Framework system architecture

System architecture:

e Nimbus: Like JobTracker in Hadoop
e Supervisor: Manage workers

e Zookeeper: Store meta data

e Ul: Web-UI
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A Storm cluster is superficially similar to a
Hadoop cluster. Whereas on Hadoop you run
"MapReduce jobs", on Storm you run "topologies".
"Jobs" and "topologies" themselves are very different;
one key difference is that a MapReduce job eventually
finishes, while a topology processes messages forever (or
until you Kill it).

There are two kinds of nodes on a Storm cluster:
the master node and the worker nodes. The master node
runs a daemon called "Nimbus" that is similar to Hadoop
"JobTracker". Nimbus is responsible for distributing code
around the cluster, assigning tasks to machines, and
monitoring for failures [9].

Each worker node runs a daemon called the
"Supervisor”. The supervisor listens for work assigned to
its machine, starts and stops worker processes, as
necessary based on what Nimbus has assigned to it. Each
worker process executes a subset of a topology. A
running topology consists of many worker processes,
spread across many machines [9].

Storm does not natively run on top of typical
Hadoop clusters, it uses Apache ZooKeeper and its own
master/minion worker processes to coordinate topologies,
master and worker state, and the message guarantee
semantics [9].

Having said that, both Yahoo! and Hortonworks
are working on providing libraries for running Storm
topologies on top of Hadoop 2.x YARN clusters.

Regardless, Storm can certainly still consume
files from HDFS and/or write files to HDFS[18][21].

I11. Discussion

Spark is one of the newest players in the
MapReduce field. Its purpose is to make data analytics
fast to write, and fast to run. Unlike many MapReduce
systems (Hadoop inclusive), Spark allows in-memory
querying of data (even distributed across ma- chines)
rather than using disk I/O. It’s no surprise that Spark out-
performs Hadoop on many iterative algorithms. Spark is
implemented in Scala, a functional object-oriented
language that runs on top of the JVM. Similar to other
languages like Python and Ruby, Scala has an interactive
prompt that users can use to query big data straight from
the Scala interpreter, making it a good choice in some
scenarios. However, it does not support a distributed file
system on its own, it depends on Hadoop, if a HDFS is
required.

The Storm framework is referred as being the
Hadoop of Real-time Processing. Hadoop is a batch-
processing system, this means, give it a big set of static
data and it will do something with it. Storm is real-time, it
processes data in parallel as it streams. Therefore, Storm
is more a complement to Hadoop rather than a real
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replacement, as Storm fails when it comes to process
large persistent data, as its focus is to be able to process a
large number of streams of data (in real time
computation), while Hadoop focus is on large amount of
persistent data (batch processing).

Frameworks features summary

In the beginning of this survey, | did not know
what | would find on programing frameworks for
distributed computing. Therefore, after this review,
summarizing the main features and benefits of each of the
evaluated frameworks, may serve as contribution to an
appropriated and better-informed selection of the
framework, that aims the deployment of a new distributed
computing platform, or for those considering to improve
an already existing one.

Storm Spark
Streaming
Processing Model _
Sub second Few seconds

[ Fault tolerant — |
every recor
EEVGHBIEINENWGIgY Not available Spark
integration

processed
Supported
languages

Table 1. Storm vs. Spark Streaming

Based on my research, the comparison must be made
based on use cases oriented view, as the frameworks end
up being more complementary than competitive among
each other. One thing was made clear, in all references, it
does not matter if you choose Hadoop, Spark or Storm,
having the HDFS is an advantage, because it solves many
of storage problems associated with big data computing.
So Hadoop is kind of “mandatory”, if you need HDFS
benefits.

For Spark, its best use cases, are iterative
Machine Learning algorithms and Inter- active analytics.
Furthermore, Spark plus Hadoop is always better than
only Hadoop, except when the work dataset size exceeds
the individual node RAM size, so in a way it depends on
the available infrastructure or required work dataset size.

Storm is a good choice if you need sub-
second latency and no data loss. Spark Streaming is better
if you need stateful computation, with the guarantee that
each event is processed exactly once. Spark Streaming
programming logic may also be easier because it’s similar
to batch programming, in that way, you are working with
batches (albeit very small ones) [19].

One key difference between these two
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technologies
computations
computations.

is that Spark performs Data- Parallel
while Storm performs Task-Parallel

After this analysis it is possible to realize that
the Hadoop framework will stay around for a while, and
for a good reason. Even knowing that MapReduce cannot
solve every problem, it is still a good choice for research,
experimentation, and everyday data manipulation. One of
the other frameworks abovementioned, may be better if
the advantages of HDFS are not necessarily imperative,
or if the use cases are compatible with the framework
capabilities, and consequently able to take advantage of
its benefits.

In overall, the most suitable platform must
always take into account the scenario to witch the system
is most focussed.

It’s important to acknowledge that the newer
Hadoop versions based on YARN, allow Spark to run on
top of Hadoop, and there is on-going work to achieve the
same with Storm.

It remains to be seen how successful those
implementations are, and also how they compare its
native counterparts versions Spark and Storm, since these
aspects weren’t approached by this survey.
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