
 © 2018, IJCSE All Rights Reserved 269

International Journal of Computer Sciences and Engineering Open Access

Review Paper Volume-6, Issue-3 E-ISSN: 2347-2693

A Study on Distributed Computing Framework: Hadoop, Spark and

Storm

Vairaprakash Gurusamy
1
, S. Kannan

2*
, K. Nandhini

3

1
Department of Computer Applications, School of IT, Madurai Kamaraj University, Madurai, India

2*
 Department of Computer Applications, School of IT, Madurai Kamaraj University, Madurai, India

3
Technical Support Engineer, Concentrix India Pvt Ltd, Chennai, India

*Corresponding Author: skannanmku@gmail.com

Available online at: www.ijcseonline.org

Received: 11/Feb//2018, Revised: 19/Feb2018, Accepted: 16/Mar/2018, Published: 30/Mar/2018

Abstract- The storage and management of information has always been a challenge for software engineering, new

programing approaches had to be found, parallel processing and then distributed computing programing models were

developed, and new programing frameworks were developed to assist software developers. This is where Hadoop

framework, an open source implementation of MapReduce programing model, that also takes advantage of a distributed

file system, takes its lead, but in the meantime, since its presentation, there were evolutions to the MapReduce and new

programing models that were introduced by Spark and Storm frameworks, that show promising results.

Keywords: Distributed framework, Big Data, Hadoop, Spark, Storm, distributed computing.

I. Introduction

Through time, size of information kept rising and that

immense growth generated the need to change the way

this information is processed and managed, as individual

processors clock speed evolution slowed, systems

evolved to a multi-processor oriented architecture.

However there are scenarios, where the data size is too

big to be analysed in acceptable time by a single system,

and in this cases is where the MapReduce and a

distributed file system are able to shine.

Apache Hadoop is a distributed processing infrastructure.

It can be used on a single machine, but to take advantage

and achieve its full potential, we must scale it to hundreds

or thousands of computers, each with several processor

cores. It’s also de- signed to efficiently distribute large

amounts of work and data across multiple systems.

Apache Spark is a data parallel general-purpose batch-

processing engine. Work- flows are defined in a similar

and reminiscent style of MapReduce, however, is much

more capable than traditional Hadoop MapReduce.

Apache Spark has its Streaming API project that allows

for continuous processing via short interval batches.

Similar to Storm, Spark Streaming jobs run until

shutdown by the user or encounter an unrecoverable

failure

 Apache Storm is a task parallel continuous

computational engine. It defines its workflows in

Directed Acyclic Graphs (DAG’s) called “topologies”.

These topologies run until shutdown by the user or

encountering an unrecoverable failure.

The big data challenge

Performing computation on big data is quite a big

challenge. To work with volumes of data that easily

surpass several terabytes in size, requires distributing

parts of data to several systems to handle in parallel. By

doing it, the probability of failure rises. In a single-

system, failure is not something that usually program

designers explicitly worry about.[1]

However, in a distributed scenario, partial failures are

expected and common, but if the rest of the distributed

system is fine, it should be able to recover from the

component failure or transient error condition and

continue to make progress. Providing such resilience is a

major software engineering challenge. [1]

In addition, to these sorts of bugs and challenges, there is

also the fact that the compute hardware has finite

resources available. The major hardware restrictions

include:

 Processor time

 Memory

 Hard drive space

 Network bandwidth

Individual systems usually have few gigabytes of

memory. If the input dataset is several terabytes, then this

would require a thousand or more machines to hold it in

RAM and even then, no single machine would be able to

process or address all of the data.

International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 270

 Hard drives are a lot bigger than RAM, and a

single machine can currently hold multiple terabytes of

information on its hard drives. But generated data of a

large- scale computation can easily require more space

than what original data had occupied. During this, some

of the storage devices employed by the system may get

full, and the distributed system will have to send the data

to other node, to store the overflow.

Finally, bandwidth is a limited resource. While

a pack of nodes directly connected by a gigabit Ethernet

generally experience high throughput between them, if all

transmit multi-gigabyte, they would saturate the switch's

bandwidth. Plus, if the systems were spread across

multiple racks, the bandwidth for the data transfer would

be more diminished [1].

 To achieve a successful large-scale distributed

system, the mentioned resources must be efficiently

managed. Furthermore, it must allocate some of these

resources toward maintaining the system as a whole,

while devoting as much time as possible to the actual core

computation[1].

 Synchronization between multiple systems

remains the biggest challenge in distributed system

design. If nodes in a distributed system can explicitly

communicate with one another, then application designers

must be cognizant of risks associated with such

communication patterns. Finally, the ability to continue

computation in the face of failures becomes more

challenging[1].

 Big companies like Google, Yahoo, Microsoft

have huge clusters of machines and huge datasets to

analyse, a framework like Hadoop helps the developers

use the cluster without expertise in distributed computing,

and taking advantage of Hadoop Distributed File

System.[2]

II. State of the Art

This section will begin to explain what is

Apache’s Hadoop Framework and how it works, also a

short presentation of other Apache alternative

frameworks, namely Spark and Storm.

The Hadoop Approach

Hadoop is designed to efficiently process large

volumes of information by connecting many commodity

computers together to work in parallel. One hypothetic

1000-CPU machine would cost a very large amount of

money, far more than 1000 single-CPU or 250 quad-core

machines. Hadoop will tie these smaller and more

reasonably priced machines together into a single cost-

effective compute cluster.[1]

Apache Hadoop has two pillars:

 YARN - Yet Another Resource Negotiator

(YARN) assigns CPU, memory, and storage

to applications running on a Hadoop cluster.

The first generation of Ha- doop could only

run MapReduce applications. YARN enables

other application frameworks (like Spark) to

run on Hadoop as well, which opens up a

wide set of possibilities.[3]

 HDFS - Hadoop Distributed File System

(HDFS) is a file system that spans all the

nodes in a Hadoop cluster for data storage. It

links together the file systems on many local

nodes to make them into one big file

system.[3]

MapReduce

Hadoop is modelled after Google MapReduce. To store

and process huge amounts of data, we typically need

several machines in some cluster configuration.

 Fig. 1. - MapReduce flow

 A distributed file system (HDFS for Hadoop)

uses space across a cluster to store data, so that it appears

to be in a contiguous volume and provides redundancy to

pre- vent data loss. The distributed file system also allows

data collectors to dump data into HDFS, so that it is

already prime for use with MapReduce. Then the

Software Engineer writes a Hadoop MapReduce job [4].

 Hadoop job consists of two main steps, a map

step and a reduce step. There may be, optionally, other

steps before the map phase or between the map and

reduce phases. The map step reads in a bunch of data,

does something to it, and emits a series of key-value

pairs. One can think of the map phase as a partitioner. In

text mining, the map phase is where most parsing and

cleaning is performed. The output of the mappers is

International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 271

sorted and then fed into a series of reducers. The reduce

step takes the key value pairs and computes some

aggregate (reduced) set of data, i.e. sum, average, etc [4].

 The trivial word count exercise starts with a

map phase, where text is parsed and a key-value pair is

emitted: a word, followed by the number “1” indicating

that the key- value pair represents 1 instance of the word.

The user might also emit something to coerce Hadoop

into passing data into different reducers. The words and

1s are sorted and passed to the reducers. The reducers

take like key-value pairs and compute the number of

times the word appears in the original input.[5]

Fig. 2. - Hadoop workflow [2]

SPARK framework

 Apache Spark is an in-memory distributed

data analysis platform, primarily targeted at speeding up

batch analysis jobs, iterative machine learning jobs,

interactive query and graph processing. One of Spark's

primary distinctions is its use of RDDs or Resilient

Distributed Datasets. RDDs are great for pipelining

parallel operators for computation and are, by definition,

immutable, which allows Spark a unique form of fault

tolerance based on lineage information. If you are

interested in, for example, executing a Hadoop

MapReduce job much faster, Spark is a great option

(although memory requirements must be considered)

[19].

 It provides high-level APIs in Java, Scala and

Python, and an optimized engine that supports general

execution graphs.

Fig. 3. - Spark Framework

 It also supports a rich set of higher-level

tools, including Shark SQL for SQL and structured data

processing, MLlib for machine learning, GraphX for

graph processing, and Spark Streaming [6], helping the

development of parallel applications.

 The main goal of Spark is to work with

distributed collections, as you would with local ones. It

relays on a resilient distributed datasets (RDDs), that is a

immutable collections of objects spread across a cluster,

built through parallel transformations (map, filter, etc),

automatically rebuilt on failure controllable persistence

(e.g. caching in RAM) for reuse, shared variables that can

be used in parallel operations [6].

Resilient Distributed Datasets (RDDs)

Spark’s main abstraction is resilient distributed

datasets (RDDs), which are immutable, partitioned

collections that can be created through various data-

parallel operators.

Fig. 4. - Lineage graph for the RDDs in our Spark

example.[7]

Each RDD is either a collection stored in an

external storage system, such as a file in HDFS, or a

derived dataset created by applying operators to other

RDDs. For ex- ample, given an RDD of (visitID, URL)

pairs for visits to a website, we might compute an RDD

of (URL, count) pairs by applying a map operator to turn

each event into a (URL, 1) pair, and afterward a reduce

to add the counts by URL.[7]

Spark provides three options for persist RDDs:

1. In-memory storage as deserialized Java

Objects (fastest, JVM can access RDD

natively) [2].

2. In-memory storage as serialized data (space

limited) [2].

3. On-disk storage (RDD too large to keep in

memory, and costly to recomputed) [2].

International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 272

Spark streaming

The key idea behind the model is to treat

streaming computations, as a series of deterministic batch

computations, on small time intervals. The input data

received during each interval is stored, reliably across the

cluster, to form an input dataset for that interval. Once the

time interval completes, this dataset is processed via

deterministic parallel operations, such as map, reduce and

groupBy, to produce new datasets representing program

outputs or intermediate state. It stores these results in

resilient distributed datasets (RDDs) [8].

Apache Spark does not itself require Hadoop to

operate. However, its data parallel paradigm requires a

shared file system for optimal use of stable data. The

stable source can be S3, NFS, or, more typically, HDFS)

[9].

Storm Framework

 Apache Storm is, a free and open source

distributed real-time computation system, focused on

stream processing or what some call complex event

processing. Storm implements a fault tolerant method for

performing a computation or pipelining multi- ple

computations on an event, as it flows into a system. One

might use Storm to trans- form unstructured data, as it

flows into a system into a desired format)[9].

Apache Storm makes it easy to reliably process

unbounded streams of data, doing for real-time

processing what Hadoop did for batch processing. Storm

has many use cases: real-time analytics, online machine

learning, continuous computation, distrib- uted RPC, ETL

and more. It’s scalable, fault-tolerant, guarantees your

data will be processed, is easy to set up and operate [9].

Fig. 5. - Storm Framework system architecture

System architecture:

 Nimbus: Like JobTracker in Hadoop

 Supervisor: Manage workers

 Zookeeper: Store meta data

 UI: Web-UI

 A Storm cluster is superficially similar to a

Hadoop cluster. Whereas on Hadoop you run

"MapReduce jobs", on Storm you run "topologies".

"Jobs" and "topologies" themselves are very different;

one key difference is that a MapReduce job eventually

finishes, while a topology processes messages forever (or

until you kill it).

 There are two kinds of nodes on a Storm cluster:

the master node and the worker nodes. The master node

runs a daemon called "Nimbus" that is similar to Hadoop

"JobTracker". Nimbus is responsible for distributing code

around the cluster, assigning tasks to machines, and

monitoring for failures [9].

 Each worker node runs a daemon called the

"Supervisor". The supervisor listens for work assigned to

its machine, starts and stops worker processes, as

necessary based on what Nimbus has assigned to it. Each

worker process executes a subset of a topology. A

running topology consists of many worker processes,

spread across many machines [9].

 Storm does not natively run on top of typical

Hadoop clusters, it uses Apache ZooKeeper and its own

master/minion worker processes to coordinate topologies,

master and worker state, and the message guarantee

semantics [9].

 Having said that, both Yahoo! and Hortonworks

are working on providing libraries for running Storm

topologies on top of Hadoop 2.x YARN clusters.

 Regardless, Storm can certainly still consume

files from HDFS and/or write files to HDFS[18][21].

III. Discussion

 Spark is one of the newest players in the

MapReduce field. Its purpose is to make data analytics

fast to write, and fast to run. Unlike many MapReduce

systems (Hadoop inclusive), Spark allows in-memory

querying of data (even distributed across ma- chines)

rather than using disk I/O. It’s no surprise that Spark out-

performs Hadoop on many iterative algorithms. Spark is

implemented in Scala, a functional object-oriented

language that runs on top of the JVM. Similar to other

languages like Python and Ruby, Scala has an interactive

prompt that users can use to query big data straight from

the Scala interpreter, making it a good choice in some

scenarios. However, it does not support a distributed file

system on its own, it depends on Hadoop, if a HDFS is

required.

 The Storm framework is referred as being the

Hadoop of Real-time Processing. Hadoop is a batch-

processing system, this means, give it a big set of static

data and it will do something with it. Storm is real-time, it

processes data in parallel as it streams. Therefore, Storm

is more a complement to Hadoop rather than a real

International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 273

replacement, as Storm fails when it comes to process

large persistent data, as its focus is to be able to process a

large number of streams of data (in real time

computation), while Hadoop focus is on large amount of

persistent data (batch processing).

Frameworks features summary

In the beginning of this survey, I did not know

what I would find on programing frameworks for

distributed computing. Therefore, after this review,

summarizing the main features and benefits of each of the

evaluated frameworks, may serve as contribution to an

appropriated and better-informed selection of the

framework, that aims the deployment of a new distributed

computing platform, or for those considering to improve

an already existing one.

 Storm Spark

Streaming

Processing Model Record at a time Mini batches

Latency Sub second Few seconds

Fault tolerant –

every record

processed

At least one (may be duplicates) Exactly one

Batch framework

integration

Not available Spark

Supported

languages

Storm was designed from the
ground up to be usable with

any programming language [9].

Python,
Scala, Java

Table 1. Storm vs. Spark Streaming

Based on my research, the comparison must be made

based on use cases oriented view, as the frameworks end

up being more complementary than competitive among

each other. One thing was made clear, in all references, it

does not matter if you choose Hadoop, Spark or Storm,

having the HDFS is an advantage, because it solves many

of storage problems associated with big data computing.

So Hadoop is kind of “mandatory”, if you need HDFS

benefits.

 For Spark, its best use cases, are iterative

Machine Learning algorithms and Inter- active analytics.

Furthermore, Spark plus Hadoop is always better than

only Hadoop, except when the work dataset size exceeds

the individual node RAM size, so in a way it depends on

the available infrastructure or required work dataset size.

 Storm is a good choice if you need sub-

second latency and no data loss. Spark Streaming is better

if you need stateful computation, with the guarantee that

each event is processed exactly once. Spark Streaming

programming logic may also be easier because it’s similar

to batch programming, in that way, you are working with

batches (albeit very small ones) [19].

 One key difference between these two

technologies is that Spark performs Data- Parallel

computations while Storm performs Task-Parallel

computations.

 After this analysis it is possible to realize that

the Hadoop framework will stay around for a while, and

for a good reason. Even knowing that MapReduce cannot

solve every problem, it is still a good choice for research,

experimentation, and everyday data manipulation. One of

the other frameworks abovementioned, may be better if

the advantages of HDFS are not necessarily imperative,

or if the use cases are compatible with the framework

capabilities, and consequently able to take advantage of

its benefits.

 In overall, the most suitable platform must

always take into account the scenario to witch the system

is most focussed.

 It’s important to acknowledge that the newer

Hadoop versions based on YARN, allow Spark to run on

top of Hadoop, and there is on-going work to achieve the

same with Storm.

 It remains to be seen how successful those

implementations are, and also how they compare its

native counterparts versions Spark and Storm, since these

aspects weren’t approached by this survey.

Reference
[1]. Vairaprakash Gurusamy, S.Kannan, K.Nandhini, “ The Real Time Big

Data Processing Framework: Advantages and Limitations”,

International Journal of Computer Science and Engineering (IJCSE),

ISSN: 2347-2693, Volume 5, Issue 12, December 2017, OI:

https://doi.org/10.26438/ijcse/v5i12.305312

[2]. Yahoo! Hadoop Tutorial.

https://developer.yahoo.com/hadoop/tutorial/. Accessed 20 Dec

2014.

[3]. Aridhi S (2014) Frameworks for Distributed Computing Sabeur
Aridhi.

[4]. What is Hadoop. http://www-

01.ibm.com/software/data/infosphere/hadoop/. Accessed

22 Dec 2014.

[5]. Rosario R (2011) No Title.

http://www.bytemining.com/2011/08/hadoop-fatigue- alternatives-

to-hadoop/. Accessed 15 Dec 2014.

[6]. Welcome to ApacheTM Hadoop®! http://hadoop.apache.org/.

Accessed 20 Dec 2014.

[7]. Apache Spark. https://spark.apache.org/. Accessed 26 Dec 2014.

[8]. Xin R, Rosen J, Zaharia M (2013) Shark: SQL and rich analytics at

scale.

[9]. Zaharia M, Das T, Li H, et al. (2012) Discretized streams: an

efficient and fault-tolerant model for stream processing on large

clusters. Proc. 4th Edition. Apache Storm. https://storm.apache.org/.

Accessed 27 Dec 2014.

[10]. Xuhui Liu; Jizhong Han; Yunqin Zhong; Chengde Han; Xubin He,

Implementing WebGIS on Hadoop: A case study of improving

small file I/O performance on HDFS, Cluster Computing and

Workshops, 2009. CLUSTER '09. IEEE International Conference

on , vol., no., pp.1,8, Aug. 31 2009-Sept. 4 2009.

http://www-01.ibm.com/software/data/infosphere/hadoop/
http://www-01.ibm.com/software/data/infosphere/hadoop/
http://www.bytemining.com/2011/08/hadoop-fatigue-
http://hadoop.apache.org/
http://hadoop.apache.org/

International Journal of Computer Sciences and Engineering Vol.6(3), Mar 2018, E-ISSN: 2347-2693

 © 2018, IJCSE All Rights Reserved 274

[11]. L. Jiang, B. Li, M. Song, THE optimization of HDFS based on

small files, In 3rd IEEE International Conference on Broadband

Network and Multimedia Technology (IC- BNMT2010), Beijing,

2010. pp. 912-915.

[12]. G. Mackey, S. Sehrish, J. Wang, Improving metadata management

for small files in HDFS, In 2009 IEEE International Conference on

Cluster Computing and Workshops (CLUSTER'09), New

Orleans,Sept, 2009, pp.1-4.

[13]. Jiong Xie; Shu Yin; Xiaojun Ruan; Zhiyang Ding; Yun Tian;
Majors, J.; Manzanares, A.; Xiao Qin, Improving MapReduce

performance through data placement in heterogeneous Hadoop

clusters, Parallel & Distributed Processing, Workshops and Phd
Forum (IPDPSW), 2010 IEEE International Symposium on , vol.,

no., pp.1,9, 19-23 April 2010

[14]. hanh, T.D.; Mohan, S.; Eunmi Choi; SangBum Kim; Pilsung Kim,

A Taxonomy and Survey on Distributed File Systems, Networked
Computing and Advanced Information Management, 2008. NCM

'08. Fourth International Conference on, vol.1, no., pp.144,149, 2-4

Sept. 2008.

[15]. S. Ghemawat, H. Gobioff, and S.-T. Leung. The google file system.

In SOSP ’03: Pro- ceedings of the Nineteenth ACM Symposium on
Operating Systems Principles, pages 29– 43, New York, NY, USA,

2003. ACM.

[16]. J. M. Hellerstein, M. Stonebraker, and J. Hamilton. Architecture of a

database system. Foundations and Trends in Databases, 1(2): 141–

259,2007.

[17]. Apache Storm vs. Apache Spark.
http://www.zdatainc.com/2014/09/apache-storm-apache- spark/.

Accessed 20 Dec 2014.

[18]. Vairaprakash Gurusamy, S.Kannan, K.Nandhini, “Facility Location: A
Theoretical Approach for Flood Relief”, International Journal of

Computer Science and Engineering (IJCSE), ISSN: 2347-2693, Volume
5, Issue 11, November 2017, DOI:

https://doi.org/10.26438/ijcse/v5i11.8489

[19]. Storm vs. Spark Streaming: Side-by-side comparison.
http://xinhstechblog.blogspot.pt/ 2014/06/storm-vs-spark-streaming-

side-by-side.html. Accessed 20 Dec 2014.

[20]. How to run Storm on Apache Mesos.
https://mesosphere.com/docs/tutorials/run-storm-on- mesos/.

Accessed 20 Dec 2014.

[21]. Storm on YARN Install on HDP2 Cluster.

http://hortonworks.com/kb/storm-on-yarn- install-on-hdp2-beta-

cluster/. Accessed 20 Dec 2014

[22]. Vairaprakash Gurusamy, K.Nandhini, “Ibis: The New Era for

Distributed Computing”, International Journal of Engineering Sciences

and Research Technology (IJESRT), ISSN: 2277-9655, Volume 7,
Issue 1, DOI: 10.5281/zenodo.1135392

Authors Profile

Dr. S.kannan is an Associate Professor in Department of Computer

Applications, School of Information Technology, Madurai Kamaraj

University, Madurai. He is having more than 25 years of Teaching

experience and 15 years of Research experience. His core area of

research is Data Mining, Image Processing, Soft Computing,

Natural Language Processing and Data Analytics. He published

more than 50 Research articles in reputed journals, act as a

Reviewer in more standard periodicals and serves as a chair for

more Conferences, Workshops, and Viva-voce.

Mr. Vairaprakash Gurusamy pursed MCA from Bharathidasan

University, Trichy in 2010. He is currently pursuing Ph.D. from

Madurai Kamaraj University, Madurai, India. He has published

more than 10 research papers in reputed international journals like

Scopus Indexed, UGC approved, SCI Indexed, Web of Science,

Thomson Reuters etc. His main research work focuses on Bid Data

Analytics, Distributed System, Artificial Intelligence, NLP, Cloud

Computing, Data Mining and IOT. He has 3 years of Industry

Experience and 4 years of Research Experience.

Ms. K. Nandhini pursed B.Tech (ECE) from Kalasalingam

University, Krishnan Kovil, India in 2014. She has published more

than 10 research papers in reputed international journals like

Scopus Indexed, UGC approved, SCI Indexed, Web of Science,

Thomson Reuters etc. His main research work focuses on Bid Data

Analytics, Distributed System, Artificial Intelligence, NLP, Cloud

Computing, Data Mining and IOT. She has 3 years of Industry

Experience.

http://www.zdatainc.com/2014/09/apache-storm-apache-
http://xinhstechblog.blogspot.pt/
http://hortonworks.com/kb/storm-on-yarn-

