

 © 2017, IJCSE All Rights Reserved 201

International Journal of Computer Sciences and Engineering Open Access

 Research Paper Volume-5, Issue-12 E-ISSN: 2347-2693

KMerHuffman upon Biological Sequence Compression

S.Roy
1*

, S.Khatua
2

1* Computer Science and Engineering, Academy of Technology, MAKAUT, Kolkata, India

2
 Computer Science and Engineering, University of Calcutta, Kolkata, India

*Corresponding Author: subhankar.roy2012@gmail.com, Tel.: +91-9804542898

Available online at: www.ijcseonline.org

Received: 17/Nov/2017, Revised: 29/Nov/2017, Accepted: 15/Dec/2017, Published: 31/Dec/2017

Abstract— Huge amount of genomic data are produced due to high-throughput sequencing technology. Those enormous

volumes of sequence data require effective storage, fast transmission and provision of quick access for alignment and analysis

to any record. It has been proved that standard general purpose lossless compression techniques failed to compress these

sequences rather they may increase the size. But some general purpose compression method may be useful with a modification

for genome compression. In this paper, a variation of statistical Huffman algorithm have been proposed named KMerHuffman,

which instead of calculating frequency of individual character it comes as a substring of length four which we have experiment

to be optimal due to redundancy of genome sequence. Then KMerHuffman result on benchmark sequence has been compare

with the other biological sequence specific compression algorithm. The result shows that KMerHuffman is competitive with

other method. Another important aspect is that there is no need of any reference sequence so it is useful for upcoming

sequence.

Keywords—Storage, Transmission, Alignment, Analysis, Compression, Huffman

I. INTRODUCTION

Huffman encoding [1], for lossless compression ―A Method

for the Construction of Minimum Redundancy Codes‖

generates different length binary code of bases to encode

text. In genomic sequence bases have different frequency.

But all bases occupy equal space whether it is a, c, g or t/u

i.e. 1 byte/base.

The purpose of compression is to reduce sequence volume

and online transmission [2]. For general purpose text

document, databases, or multimedia data; compression allow

reclamation of information quicker than the raw data. The

cost of decoding is compensating by disk storage reductions

and cost of transmission.

All special-purpose encoding method should meet the

following criteria [3]. i) It must permit autonomous use of

encoded sequence and independent decompression of data.

ii) For alignment and analysis compressed only once, but

decompressed on demand. iii) Must be type independent of

data.

Our proposed algorithm which a variation of Huffman

algorithm [1] for genomic data as mentioned earlier that

general purpose algorithm failed to compress genomic data

instead they might increase its size. Here instead of single

base statistics a four base block statistics have been

considered which gives optimal compression ratio as stated

in the result section. Details procedure has been discussed in

the proposed methodology.

Firstly a review of all basic related work on DNA data

compression has been discussed. Section 3 details base

method on which the algorithm is build. Then, in Section 4,

details the results of experiments with the new approach,

before conclusions and discussions are offered in Section 5.

II. RELATED WORK

All Genome compression algorithms utilize redundancy

within the sequence, but especially vary in the way they do

so. Sequence compression method can be classified into four

categories 1) Bit Manipulation algorithm 2) Dictionary based

method 3) Statistical procedure and 4) Referential

Algorithms.

2.1 Bit Manipulation Algorithm

Using ASCII byte to encode four different bases ignoring n

and ten other infrequently bases [4] obviously a waste of

memory space. A simple encoding method for genome data

of bases is map block of four bases to one byte by assigning

4 unique two bits (a = 00, c = 01, g = 10, and t/u = 11) to

different four DNA bases before the encoding process. Bit

complexity comes when someone consider infrequent bases

such as n, k, etc. Three consecutive bases can be map into

 International Journal of Computer Sciences and Engineering Vol. 5(12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 202

one character. If one takes in account all fifteen bases then

four bit encoding is needed. The compression rate of bit

manipulation algorithms is slightly less than 4:1 [5], if the

most frequent alphabets i.e. four are taken into account.

Although further improvement is possible by having

multilevel encoding which is applied at the top to the

compression data. Some bit manipulation algorithms are

DNABIT Compress [6], SBVRLDNAComp [7],

OBRLDNAComp [8] etc.

2.2 Dictionary Based Algorithm

Generally dictionary based algorithm could not use the

specific characteristics of the input data. Dictionary

construction can be static or dynamic. In the former case

dictionary needs to store during decompression process

whereas for the latter encoding dictionary itself is not stored

it formed on demand. More or less almost all dictionary

based encoding algorithms are based on LZ77 or LZ78 [9].

One of the basic differences between LZ77 and LZ78 is that

the LZ77 break the input in overlapping phrases, but later

one is not. The compression ratio for dictionary encoding is

from 4:1 to 6:1 depending on the sequence [5]. The position

and length integer are encoded by Delta coding [10]

Fibonacci coding [10], Golomb encoding [11], Golomb–Rice

codes [11] and Elias or Elias Gamma codes [11] etc.

2.3 Statistical Algorithm

Here the probability distribution of each base within a

sequence is calculated. A single base or fixed size sub-

sequences with a high occurence is represented by shorter

codes. Shannon-Fano [12] is a Statistical encoding algorithm.

One of the best statistical compression algorithms is

Huffman encoding [1]. For DNA data compression K-mer

Huffman encoding with k=4, taking into account a, c, g and

t/u obtained better result. An example of variable length code

obtained from Huffman encoding for the string

―acgacanatga‖ is a:0, c:10, g: 111, t: 1101 and n: 1100.

Huffman table contains character and their frequency stored

along with encoded data. Random distribution of the

characters gives benefits towards Huffman encoding. That is

why it is not suitable for DNA sequences where redundancy

is natural. Another statistical encoding algorithm is

Arithmetic encoding [13] which encode whole input stream

into a number (0=<n<=1). Arithmetic encoding of the string

―baca‖ is 0.59375. Markov model [14] is used to

approximate DNA sequence. The compression ratio varies

from 4:1 to 8:1 [5] depending on the compression algorithm.

2.4 Referential Algorithms

The best above all for genome sequence is referential

encoding procedure. Like dictionary-based method,

referential algorithm replaces long subsequence of input

sequence with respect to other standard artificial or normal

external sequences and reference is may be static or dynamic,

while dictionaries are extended during compression time.

Generally reference based encoding algorithm compressed

the difference between a reference and a target genome.

Mapping motivation is LZ77 [15] and LZ78 [16]. Window

can be static or dynamic. All reference genomes are from the

same species or an artificial reference genome is formed to

get optimal mapping, the resulting sequences exhibit

extremely high levels of similarity. But reference selection

time is also come under performance measurements because

a good reference selection is crucial towards optimal

compression ratio. Some reference based compression

algorithms are RLZ [17], RLZopt [18], GDC [19],

COMRAD [20] etc.

III. METHODOLOGY

Proposed KMerHuffman algorithm is a special purpose

method for genomic data and it is a variation of famous

general purpose statistical algorithm known as Huffman

algorithm. By encoding high occurrence block with shorter

codes and vice versa, the input sequence is encoded. The

prefix problem of Huffman encoding is taken care of to

eliminate ambiguity during decoding.

Algorithm

Input: Genome Sequence

Output: Compressed sequence

1. Calculate all substring of length 4

2. Store last substring if length is less than 4

3. Sort each block

4. Build KMEHuffman tree

5. By tree traversal determine all code words

6. Read input again to create a temporary binary codes file

7. Finally map binary code to character

IV. RESULTS AND DISCUSSION

The performance of the KMerHuffman (KMH) is tested on

some standards Genome file [28]. KHM result is compared

to the best known DNA compression algorithms

Huffman(Huff) [1], Arithmetic (Arith)[14], BioCompress

(BioC)[21],[22], GenCompress (GenC)[23], DNACompress

(DNAC)[24], GeNML [25], CTW+LZ (CTW)[26] and

DNAE[27]. Table 1 shows the size of data before and after

compression by the existing and proposed algorithm. Table 2

shows the compression ratios (bpb) generated from

KMERHuffman. KMH achieves the competitive

compression ratio.

Although KMH performance has been tested on benchmark

DNA sequence; this algorithm can be applied on any DNA

or RNA sequence of any size.

 International Journal of Computer Sciences and Engineering Vol. 5(12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 203

The definition of compression ratio is the number of

characters after compression (l) divided by the number of

base within input (n).

 Compression ratio = l / n

= l * 8 / n bpb

= (Nopt. / n) bpb

Where, Nopt. = l * 8 total number of bits after compression

Table 1. Size of Genome (Bytes) Before and After Compression

Seq. Name Size Huff Arith BioC GenC

chmpxx 121024 30018 29259 24659 25264

chntxx 155844 38984 39146 31558 31558

hehcmvcg 229354 57961 57938 53038 53038

humdystrop 38770 9913 10461 9353 9305

humghcsa 66495 16646 17647 10889 9143

humhdabcd 58864 16738 15723 13833 13392

humhprtb 56737 13712 15001 13475 13120

mpomtcg 186608 46675 47288 45252 44553

panmtpacga 100314 24394 24590 23448 23323

vaccg 191,737 47,957 47019 42182 42182

Table 1. Size of Genome (Bytes) Before and After Compression (Contd.)

Seq. Name DNAC GeNML CTW DNAE KMH

chmpxx 25264 25112 25264 24507 29552

chntxx 31364 31364 31364 30974 38712

hehcmvcg 53038 52751 52751 51891 34629

humdystrop 9256 9256 9305 9256 2529

humghcsa 8561 8395 9143 8727 16559

humhdabcd 13244 12582 13392 12950 14590

humhprtb 12908 12482 13050 12553 14115

mpomtcg 44086 43853 44319 43153 47775

panmtpacga 23323 22194 23323 22445 15712

vaccg 42182 42182 42182 41703 15712

Table 2. Compression ratio (bpb) of different method

Seq. Name Huff Arith BioC GenC DNAC

chmpxx 1.98 1.93 1.63 1.67 1.67

chntxx 2.00 2.01 1.62 1.62 1.61

hehcmvcg 2.02 2.02 1.85 1.85 1.85

humdystrop 2.05 2.16 1.93 1.92 1.91

humghcsa 2.00 2.12 1.31 1.10 1.03

humhdabcd 2.28 2.14 1.88 1.82 1.80

humhprtb 1.93 2.12 1.90 1.85 1.82

mpomtcg 2.00 2.03 1.94 1.91 1.89

panmtpacga 1.95 1.96 1.87 1.86 1.86

vaccg 2.00 1.96 1.76 1.76 1.76

Table 2. Compression ratio (bpb) of different method (Contd.)

Seq. Name GeNML CTW DNAE KMH

chmpxx 1.66 1.67 1.62 1.95

chntxx 1.61 1.61 1.59 1.98

hehcmvcg 1.84 1.84 1.81 1.20

humdystrop 1.91 1.92 1.91 0.52

humghcsa 1.01 1.10 1.05 1.99

humhdabcd 1.71 1.82 1.76 1.98

humhprtb 1.76 1.84 1.77 1.99

mpomtcg 1.88 1.90 1.85 2.04

panmtpacga 1.77 1.86 1.79 1.25

vaccg 1.76 1.76 1.74 1.98

Table 3. Average compression ratio (bpb)

Method Huff Arith BioC GenC CTW

Avg. 2.02 2.05 1.77 1.74 1.73

Table 3. Average compression ratio (bpb) (Contd.)

Method DNAC GeNML DNAE KMH

Avg. 1.72 1.69 1.69 1.69

V. CONCLUSION and Future Scope

KMerHuffman encoding is an efficient compression

method for genome data. As it has been known it

follows statistical encoding technique and frequent

occurrence blocks have smaller binary code.

KMerHuffman coding result is compared with Huffman

and Arithmetic encoding technique. The result shows

KMerHuffman outperform the other famous statistical

encoding technique. Works well for any sort of genome

compressing and transmissions. It uses several data

structures. KMerHuffman encoding is an application of

binary tree and priority queue.

This technique can be merging with referential

compression method for referenced based algorithm.

ACKNOWLEDGMENT

This research work is supported in part by the CSE Dept.

of CU, Bose Institute and AOT under MAKAUT, India.

Got valuable information from Rituparna Mitra, Ranjan

Kumar Maji, Dr. Zumur Ghosh and Prof. Utpal Nandi.

REFERENCES

[1] D.A. Huffman, ―A method for the construction of minimum-

redundancy codes‖, Proc. Inst. Radio Eng., vol. 40, pp. 1098–

1101, 1952.

[2] D.A. Lelewer, D.S. Hirschberg, ―Data compression.

Computing Surveys‖, vol. 19, no. 3, pp. 261–296, 1987.

[3] A. Cannane, H.E. Williams, ―General-Purpose Compression

for Efficient Retrieval‖, Journal of the American Society for

Information Science & Technology, vol. 52, no. 5, pp. 430–437,

2001.

[4] Department of Chemistry, Queen Mary University of London,

―Nomenclature for Incompletely Specified Bases in Nucleic Acid

Sequences‖.

[5] S. Wandelt, M. Bux, U. Leser, ―Trends in Genome

Compression‖, June 4, 2013.

[6] P. R. Rajeswari and Dr. A. AppaRao, ―DNABIT Compress –

Genome compression algorithm‖, Bioinformation,vol. 5 no. 8,

(2011) January, pp. 350-360.

[7] S. Roy, A. Bhagat, K.A. Sharma, S. Khatua‖,

SBVRLDNACOMP: AN EFFECTIVE DNA SEQUENCE

COMPRESSION ALGORITHM‖, IJCSA, Vol.5, No.4, pp. 73-85,

August 2015.

[8] S. Roy, S. Mondal, S. Khatua, M. Biswas, ―An Efficient

Compression Algorithm for Forthcoming New Species‖, IJHIT,

Vol.8, No.11, pp.323-332, November 2015.

[9] J. Ziv and A. Lempel, ―A Universal Algorithm for Sequential

Data Compression,‖ IEEE Trans. Information Theory, vol. IT-23,

no. 3, pp. 337-343, May 1977.

 International Journal of Computer Sciences and Engineering Vol. 5(12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 204

 [10] B. G. Chern, I. Ochoa, A. Manolakos, A. No, K. Venkat and

T. Weissman, ―Reference Based Genome Compression‖,

Information Systems Laboratory, Stanford University.

[11] M.C. Brandon, D.C. Wallace, P. Baldi, ―Data structures and

compression algorithms for genomic sequence data‖,

Bioinformatics, Vol. 25, no. 14, pages 1731–1738, May, 2009.

[12] http://site.iugaza.edu.ps/jroumy/files/Shanon-Fano.pdf

[13] A.S.E. Campos, ―Arithmetic coding

―http://www.arturocampos.com/ac_arithmetic.html. (Accessed 02

February 2009)

[14] G. Cormack, N. Horspool. Data compression using dynamic

markov modelling. Comput. J., vol. 30: pp. 541-550, 1987.

[15] Ziv, Jacob and Lempel, Abraham, "A Universal Algorithm

for Sequential Data Compression", IEEE Transactions on

Information Theory, Vol. 23, no. 3, pp. 337–343, May 1977.

[16] Ziv, Jacob and Lempel, Abraham, "Compression of

Individual Sequences via Variable-Rate Coding", IEEE

Transactions on Information Theory, vol. 24, no. 5, pp. 530–536,

September 1978.

[17] S. Kuruppu, S.J. Puglisi, and J. Zobel, ―Relative Lempel-Ziv

Compression of Genomes for Large-Scale Storage and Retrieval,‖

Proc. 17th Int’l Conf. String Processing and Information Retrieval

(SPIRE ’10), pp. 201-206, 2010.

[18] S. Kuruppu, S. Puglisi, and J. Zobel, ―Optimized Relative

Lempel- Ziv Compression of Genomes‖, Australasian Computer

Science Conf., 2011.

[19] S. Deorowicz and S. Grabowski, ―Robust Relative

Compression of Genomes with Random Access‖, Bioinformatics,

vol. 27, pp. 2979- 2986, Nov. 2011.

[20] S. Kuruppu, B. Beresford-Smith, T. Conway, and J. Zobel,

―Iterative Dictionary Construction for Compression of Large DNA

Data Sets‖, IEEE/ACM Trans. Computational Biology and

Bioinformatics, vol. 9, no. 1, Jan./Feb. 2012.

[21] S. Grumbach and F. Tahi, ―Compression of DNA sequences‖,

IEEE Symp. on the Data Compression Conf., DCC-93, Snowbird,

UT, (1993), pp. 340–350.

[22] S. Grumbach and F. Tahi, ―A new challenge for compression

algorithms: genetic sequences‖, Info. Process. & Manage,

Elsevier, (1994), pp.875-866.

[23] X. Chen, S. Kwong, M. Li, ―A compression algorithm for

DNA sequences and its applications in genome comparison‖, In

Proc. 4th Annual Int. Conf. Computation. Molecular Biol.

(RECOMB), pp.107 – 117, 2000.

[24] X. Chen, M. Li, B. Ma and J. Tromp, ―DNACompress: Fast

and Effective DNA Sequence Compression‖, Bioinformatics, vol.

18, (2002) June, pp. 1696-1698.

[25] G. Korodi and I. Tabus, ―An Efficient Normalized

MaximumLikelihood Algorithm for DNA Sequence

Compression‖, ACM Trans. Information Systems, vol. 23, no. 1,

pp. 3-34, 2005.

[26] J. Zhen, J. Zhou, L. Jiang, Q. H. Wu. Overview of DNA

sequence data compression techniques. Acta Electronica Sinica,

pp. 1113 – 1121, 2010.

[27] L. TAN, J. SUN, W. XIONG, ―A Compression Algorithm for

DNA Sequence Using Extended Operations‖, Journal of

Computational Information Systems, vol. 8, no. 18 pp. 7685–7691,

2012.

[28] The GeNML homepage:

http://www.cs.tut.fi/~tabus/genml/results.html.

Authors Profile

Mr. S. Roy pursed Bachelor of Technology
from University of Calcutta, India in 2010 and
Master of Technology from University of
Calcutta in year 2012. He is currently pursuing
Ph.D. and working as Assistant Professor in
Department of Computer Science and Engg.
Academy of Technology, AOT,
MAKAUT,India since 2013. He is a member
of IEEE since 2014. He has published more than 5 research papers
in reputed international journals. His main research work focuses on
Genome data Compression, Big Data Analytics and IoT. He has 5
years of teaching experience and 2 years of Research Experience.

0

20

40

60

80

100

1st Qtr 2nd Qtr 3rd Qtr 4th Qtr

East

West

North

Mr S. Khatua currently working as Assistant

Professor in Department of Computer Science

and Engineering, University of Calcutta, India.

He has received the M.E. degree in Computer

Science and Engg. from Jadavpur University ,

India in 2006. He is a member of IEEE and

IETE. He has published more than 20 research

papers in reputed international journals and conferences including

IEEE. His main research work focuses on Cloud Computing,

Network Security, Security and Parallel and Distributed Computing.

He has 11 years of teaching experience and 8 years of Research

Experience.

 International Journal of Computer Sciences and Engineering Vol. 5(12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 205

Large Tables
Table 4. Symbols and the corresponding Huffman code from Huffman tree

Symbol Huffman Code Symbol Huffman Code Symbol Huffman Code

tacg 00000000 agac 00111101 cgtt 01111101

tagc 00000001 cttt 0011111 atga 0111111

ttgt 0000001 tgtt 0100000 tcga 10000000

tata 000001 cctc 010000100 gtct 10000001

gagt 00001000 tggg 010000101 tgat 1000001

gcat 00001001 cgta 01000011 ctgg 100001000

aatc 0000101 tatt 010001 gcaa 100001001

tttg 0000110 tgtc 01001000 tggt 10000101

caca 00001110 gaag 01001001 aaga 1000011

cttc 00001111 tttc 0100101 tcat 1000100

aaat 000100 gttt 0100110 catt 1000101

tagt 0001010 accg 010011100 tttt 100011

ggga 000101100 ccca 010011101 acgc 100100000

gcca 000101101 tgcc 010011110 cgca 100100001

ctag 00010111 ggct 0100111110 cagg 1001000100

gatt 0001100 gcgg 0100111111 accc 1001000101

aaag 0001101 tgta 0101000 cgac 100100011

cacg 000111000 gtat 0101001 ttct 1001001

agcg 000111001 aaac 0101010 agag 10010100

ctga 00011101 aaca 0101011 cggg 10010101000

taca 0001111 aata 010110 cccc 10010101001

ataa 001000 aaaa 010111 cgcg 1001010101

caaa 0010010 catg 01100000 cggc 1001010110

tacc 00100110 gttc 01100001 gcag 1001010111

gaac 00100111 acca 01100010 atct 1001011

attc 0010100 ttgg 01100011 agat 1001100

caac 00101010 ctat 0110010 ccac 100110100

ggcg 0010101100 gaat 0110011 gtcg 100110101

gccc 00101011010 atac 0110100 tctg 10011011

gggg 00101011011 tcct 01101010 tatc 1001110

ccga 001010111 ctac 01101011 gtcc 100111100

ttat 001011 ctcg 011011000 tgct 100111101

tctt 0011000 tcgg 011011001 ggaa 10011111

acat 0011001 ggta 01101101 taga 1010000

gaca 00110100 gaaa 0110111 tcta 1010001

cgaa 00110101 atag 0111000 atat 101001

aacg 00110110 aatg 0111001 cgat 10101000

agga 00110111 taag 01110100 actt 10101001

acgt 00111000 ccaa 01110101 ccag 101010100

ccct 0011100100 ctta 01110110 aagc 101010101

ccgc 0011100101 gcct 0111011100 acga 10101011

gctt 001110011 cgcc 0111011101 ccgg 1010110000

acag 00111010 ttgc 011101111 ggtc 1010110001

gatc 00111011 agaa 0111100 caag 101011001

tggc 001111000 atgt 0111101 ttcc 10101101

agct 001111001 gtag 01111100 atca 1010111

tcgt 10110000 aagg 110011010 aggg 11101010001

ccta 101100010 cgag 1100110110 cacc 1110101001

ccgt 101100011 gcgt 1100110111 gctg 1110101010

caga 10110010 gacg 110011100 cgtg 1110101011

aacc 101100110 ggca 1100111010 catc 11101011

acgg 101100111 gggt 1100111011 ttta 1110110

gccg 1011010000 tgga 11001111 cagt 111011100

aggc 1011010001 agtc 110100000 gcta 111011101

gtgg 101101001 agca 110100001 gact 111011110

atgg 10110101 tgac 110100010 actc 111011111

ttga 10110110 ttcg 110100011 gtga 111100000

atcc 10110111 ttag 11010010 ctgt 111100001

aggt 101110000 ttac 11010011 gaga 11110001

agtg 101110001 cgga 110101000 cata 11110010

tagg 101110010 actg 110101001 atgc 111100110

tgca 101110011 ggag 110101010 ctgc 1111001110

 International Journal of Computer Sciences and Engineering Vol. 5(12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 206

gcac 1011101000 tcgc 1101010110 ggtg 1111001111

cagc 1011101001 ggac 1101010111 acta 11110100

agcc 1011101010 ttaa 1101011 gttg 111101010

gagc 1011101011 tcca 11011000 gacc 1111010110

ctaa 10111011 gtgt 110110010 cggt 1111010111

aatt 1011110 cctg 1101100110 attt 1111011

aagt 10111110 tgcg 1101100111 taaa 1111100

tccc 1011111100 tatg 11011010 atta 1111101

gtgc 1011111101 taac 11011011 tact 11111100

gagg 101111111 tgag 110111000 aact 11111101

cact 110000000 tgtg 110111001 acaa 11111110

cttg 110000001 gtaa 11011101 caat 11111111

tgaa 11000001 attg 11011110 aggg 11101010001

tcaa 11000010 ctct 11011111 cacc 1110101001

tctc 11000011 ttca 11100000 gctg 1110101010

acct 110001000 gtca 111000010 cgtg 1110101011

ggtt 110001001 ctca 111000011 catc 11101011

atcg 11000101 acac 111000100 ttta 1110110

gata 1100011 gtac 111000101 cagt 111011100

ctcc 110010000 tcac 111000110 gcta 111011101

gggc 1.10010E+11 tccg 111000111 gact 111011110

gcgc 1.1001E+11 gatg 11100100 actc 111011111

ggcc 11001000101 gtta 11100101 gtga 111100000

gcga 1100100011 agtt 11100110 ctgt 111100001

ggat 11001001 cgct 1110011100 gaga 11110001

cctt 110010100 gctc 1110011101 cata 11110010

cgtc 110010101 tcag 111001111 atgc 111100110

ccat 11001011 taat 1110100

agta 11001100 cccg 11101010000

