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Abstract— Huge amount of genomic data are produced due to high-throughput sequencing technology. Those enormous
volumes of sequence data require effective storage, fast transmission and provision of quick access for alignment and analysis
to any record. It has been proved that standard general purpose lossless compression techniques failed to compress these
sequences rather they may increase the size. But some general purpose compression method may be useful with a modification
for genome compression. In this paper, a variation of statistical Huffman algorithm have been proposed named KMerHuffman,
which instead of calculating frequency of individual character it comes as a substring of length four which we have experiment
to be optimal due to redundancy of genome sequence. Then KMerHuffman result on benchmark sequence has been compare
with the other biological sequence specific compression algorithm. The result shows that KMerHuffman is competitive with
other method. Another important aspect is that there is no need of any reference sequence so it is useful for upcoming

sequence.
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l. INTRODUCTION

Huffman encoding [1], for lossless compression “A Method
for the Construction of Minimum Redundancy Codes”
generates different length binary code of bases to encode
text. In genomic sequence bases have different frequency.
But all bases occupy equal space whether it is a, ¢, g or t/u
i.e. 1 byte/base.

The purpose of compression is to reduce sequence volume
and online transmission [2]. For general purpose text
document, databases, or multimedia data; compression allow
reclamation of information quicker than the raw data. The
cost of decoding is compensating by disk storage reductions
and cost of transmission.

All special-purpose encoding method should meet the
following criteria [3]. i) It must permit autonomous use of
encoded sequence and independent decompression of data.
ii) For alignment and analysis compressed only once, but
decompressed on demand. iii) Must be type independent of
data.

Our proposed algorithm which a variation of Huffman
algorithm [1] for genomic data as mentioned earlier that
general purpose algorithm failed to compress genomic data
instead they might increase its size. Here instead of single
base statistics a four base block statistics have been
considered which gives optimal compression ratio as stated
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in the result section. Details procedure has been discussed in
the proposed methodology.

Firstly a review of all basic related work on DNA data
compression has been discussed. Section 3 details base
method on which the algorithm is build. Then, in Section 4,
details the results of experiments with the new approach,
before conclusions and discussions are offered in Section 5.

Il.  RELATED WORK

All Genome compression algorithms utilize redundancy
within the sequence, but especially vary in the way they do
s0. Sequence compression method can be classified into four
categories 1) Bit Manipulation algorithm 2) Dictionary based
method 3) Statistical procedure and 4) Referential
Algorithms.

2.1 Bit Manipulation Algorithm

Using ASCII byte to encode four different bases ignoring n
and ten other infrequently bases [4] obviously a waste of
memory space. A simple encoding method for genome data
of bases is map block of four bases to one byte by assigning
4 unique two bits (a = 00, ¢ = 01, g = 10, and t/u = 11) to
different four DNA bases before the encoding process. Bit
complexity comes when someone consider infrequent bases
such as n, k, etc. Three consecutive bases can be map into
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one character. If one takes in account all fifteen bases then
four bit encoding is needed. The compression rate of bit
manipulation algorithms is slightly less than 4:1 [5], if the
most frequent alphabets i.e. four are taken into account.
Although further improvement is possible by having
multilevel encoding which is applied at the top to the
compression data. Some bit manipulation algorithms are
DNABIT  Compress [6], SBVRLDNAComp [7],
OBRLDNAComp [8] etc.

2.2 Dictionary Based Algorithm

Generally dictionary based algorithm could not use the
specific characteristics of the input data. Dictionary
construction can be static or dynamic. In the former case
dictionary needs to store during decompression process
whereas for the latter encoding dictionary itself is not stored
it formed on demand. More or less almost all dictionary
based encoding algorithms are based on LZ77 or LZ78 [9].
One of the basic differences between LZ77 and LZ78 is that
the LZ77 break the input in overlapping phrases, but later
one is not. The compression ratio for dictionary encoding is
from 4:1 to 6:1 depending on the sequence [5]. The position
and length integer are encoded by Delta coding [10]
Fibonacci coding [10], Golomb encoding [11], Golomb—Rice
codes [11] and Elias or Elias Gamma codes [11] etc.

2.3 Statistical Algorithm

Here the probability distribution of each base within a
sequence is calculated. A single base or fixed size sub-
sequences with a high occurence is represented by shorter
codes. Shannon-Fano [12] is a Statistical encoding algorithm.
One of the best statistical compression algorithms is
Huffman encoding [1]. For DNA data compression K-mer
Huffman encoding with k=4, taking into account a, ¢, g and
t/u obtained better result. An example of variable length code
obtained from Huffman encoding for the string
“acgacanatga” is a:0, c¢:10, g: 111, t: 1101 and n: 1100.
Huffman table contains character and their frequency stored
along with encoded data. Random distribution of the
characters gives benefits towards Huffman encoding. That is
why it is not suitable for DNA sequences where redundancy
is natural. Another statistical encoding algorithm is
Arithmetic encoding [13] which encode whole input stream
into a number (0=<n<=1). Arithmetic encoding of the string
“baca” is 0.59375. Markov model [14] is used to
approximate DNA sequence. The compression ratio varies
from 4:1 to 8:1 [5] depending on the compression algorithm.

2.4 Referential Algorithms

The best above all for genome sequence is referential
encoding procedure. Like dictionary-based method,
referential algorithm replaces long subsequence of input
sequence with respect to other standard artificial or normal
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external sequences and reference is may be static or dynamic,
while dictionaries are extended during compression time.
Generally reference based encoding algorithm compressed
the difference between a reference and a target genome.
Mapping motivation is LZ77 [15] and LZ78 [16]. Window
can be static or dynamic. All reference genomes are from the
same species or an artificial reference genome is formed to
get optimal mapping, the resulting sequences exhibit
extremely high levels of similarity. But reference selection
time is also come under performance measurements because
a good reference selection is crucial towards optimal
compression ratio. Some reference based compression
algorithms are RLZ [17], RLZopt [18], GDC [19],
COMRAD [20] etc.

I1l. METHODOLOGY

Proposed KMerHuffman algorithm is a special purpose
method for genomic data and it is a variation of famous
general purpose statistical algorithm known as Huffman
algorithm. By encoding high occurrence block with shorter
codes and vice versa, the input sequence is encoded. The
prefix problem of Huffman encoding is taken care of to
eliminate ambiguity during decoding.

Algorithm

Input: Genome Sequence

Output: Compressed sequence

. Calculate all substring of length 4

. Store last substring if length is less than 4

. Sort each block

. Build KMEHuffman tree

. By tree traversal determine all code words

. Read input again to create a temporary binary codes file
. Finally map binary code to character

[N

~NOoO Ok, W

IV. RESULTS AND DISCUSSION

The performance of the KMerHuffman (KMH) is tested on
some standards Genome file [28]. KHM result is compared
to the best known DNA compression algorithms
Huffman(Huff) [1], Arithmetic (Arith)[14], BioCompress
(BioC)[21],[22], GenCompress (GenC)[23], DNACompress
(DNAC)[24], GeNML [25], CTW+LZ (CTW)[26] and
DNAE[27]. Table 1 shows the size of data before and after
compression by the existing and proposed algorithm. Table 2
shows the compression ratios (bpb) generated from
KMERHuffman. KMH  achieves the  competitive
compression ratio.

Although KMH performance has been tested on benchmark

DNA sequence; this algorithm can be applied on any DNA
or RNA sequence of any size.
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The definition of compression ratio is the number of
characters after compression (1) divided by the number of
base within input (n).
Compression ratio=1/n
=1*8/nbpb
= (Nopt. / n) bpb

Where, Nopt. = | * 8 total number of bits after compression

Table 1. Size of Genome (Bytes) Before and After Compression

Seq. Name Size Huff Arith BioC GenC
chmpxx 121024 30018 29259 24659 25264
chntxx 155844 38984 39146 31558 31558
hehcmvcg 229354 57961 57938 53038 53038
humdystrop | 38770 9913 10461 9353 9305

humghcsa 66495 16646 17647 10889 9143

humhdabcd | 58864 16738 15723 13833 13392

humhprtb 56737 13712 15001 13475 13120

mpomtcg 186608 46675 47288 45252 44553

panmtpacga | 100314 24394 24590 23448 23323

vaccg 191,737 47,957 47019 42182 42182

Table 1. Size of Genome (Bytes) Before and After Compression (Contd.)

Seg. Name DNAC GeNML CTWwW DNAE KMH

chmpxx 25264 25112 25264 24507 29552
chntxx 31364 31364 31364 30974 38712
hehcmvcg 53038 52751 52751 51891 34629
humdystrop | 9256 9256 9305 9256 2529

humghcsa 8561 8395 9143 8727 16559

humhdabcd | 13244 12582 13392 12950 14590

humhprtb 12908 12482 13050 12553 14115

mpomtcg 44086 43853 44319 43153 47775

panmtpacga | 23323 22194 23323 22445 15712

vaccg 42182 42182 42182 41703 15712
Table 2. Compression ratio (bpb) of different method

Seg. Name Huff Arith BioC GenC DNAC
chmpxx 1.98 1.93 1.63 1.67 1.67
chntxx 2.00 2.01 1.62 1.62 1.61
hehcmvcg 2.02 2.02 1.85 1.85 1.85
humdystrop | 2.05 2.16 1.93 1.92 1.91
humghcsa 2.00 2.12 131 1.10 1.03
humhdabcd | 2.28 2.14 1.88 1.82 1.80
humhprtb 1.93 2.12 1.90 1.85 1.82
mpomtcg 2.00 2.03 1.94 191 1.89
panmtpacga | 1.95 1.96 1.87 1.86 1.86
vaccg 2.00 1.96 1.76 1.76 1.76

Table 2. Compression ratio (bpb) of different method (Contd.)

Seq. Name | GeNML CTW DNAE KMH
chmpxx 1.66 1.67 1.62 1.95
chntxx 1.61 1.61 1.59 1.98
hehcmvcg 1.84 1.84 1.81 1.20
humdystrop | 1.91 1.92 1.91 0.52
humghcsa 1.01 1.10 1.05 1.99
humhdabed | 1.71 1.82 1.76 1.98
humhprtb 1.76 1.84 1.77 1.99
mpomtcg 1.88 1.90 1.85 2.04
panmtpacga 1.77 1.86 1.79 1.25
vaccg 1.76 1.76 1.74 1.98

Table 3. Average compression ratio (bpb)

© 2017, IJCSE All Rights Reserved

Vol. 5(12), Dec 2017, E-ISSN: 2347-2693

Method | Huff | Arith | BioC | GenC | CTW
Avg. 2.02 | 2.05 1.77 1.74 1.73

Table 3. Average compression ratio (bpb) (Contd.)
Method | DNAC | GeNML | DNAE | KMH
Avg. 1.72 1.69 1.69 1.69

V. CONCLUSION and Future Scope

KMerHuffman encoding is an efficient compression
method for genome data. As it has been known it
follows statistical encoding technique and frequent
occurrence  blocks have smaller binary code.
KMerHuffman coding result is compared with Huffman
and Arithmetic encoding technique. The result shows
KMerHuffman outperform the other famous statistical
encoding technique. Works well for any sort of genome
compressing and transmissions. It uses several data
structures. KMerHuffman encoding is an application of
binary tree and priority queue.

This technique can be merging with referential
compression method for referenced based algorithm.
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Large Tables
Table 4. Symbols and the corresponding Huffman code from Huffman tree
Symbol Huffman Code Symbol Huffman Code Symbol Huffman Code
tacg 00000000 lagac 00111101 cgtt 01111101
tagc 00000001 cttt 0011111 atga 0111111
ttgt 0000001 tgtt 0100000 tcga 10000000
tata 000001 cctc 010000100 gtct 10000001
gagt 00001000 tgog 010000101 tgat 1000001
gcat 00001001 cgta 01000011 ctgg 100001000
aatc 0000101 tatt 010001 gcaa 100001001
tttg 0000110 tgtc 01001000 tggt 10000101
caca 00001110 gaag 01001001 aaga 1000011
cttc 00001111 tttc 0100101 tcat 1000100
aaat 000100 gttt 0100110 catt 1000101
tagt 0001010 laccg 010011100 ftttt 100011
ggga 000101100 ccca 010011101 lacgc 100100000
gcca 000101101 ltgcc 010011110 cgca 100100001
ctag 00010111 ggct 0100111110 cagg 1001000100
gatt 0001100 gcgg 0100111111 laccc 1001000101
aaag 0001101 tgta 0101000 lcgac 100100011
cacg 000111000 gtat 0101001 ttct 1001001
lagcg 000111001 aaac 0101010 agag 10010100
ctga 00011101 laaca 0101011 cggg 10010101000
taca 0001111 aata 010110 lccce 10010101001
ataa 001000 aaaa 010111 cgcy 1001010101
caaa 0010010 catg 01100000 cggc 1001010110
tacc 00100110 gttc 01100001 gcag 1001010111
gaac 00100111 lacca 01100010 atct 1001011
attc 0010100 ttgg 01100011 agat 1001100
caac 00101010 ctat 0110010 lccac 100110100
ggcg 0010101100 gaat 0110011 gtcg 100110101
gcee 00101011010 atac 0110100 ltctg 10011011
9999 00101011011 tcct 01101010 tatc 1001110
ccga 001010111 ctac 01101011 gtcc 100111100
ttat 001011 ctcg 011011000 ltgct 100111101
tett 0011000 tcgg 011011001 ggaa 10011111
acat 0011001 ggta 01101101 taga 1010000
gaca 00110100 gaaa 0110111 ltcta 1010001
cgaa 00110101 atag 0111000 atat 101001
aacg 00110110 laatg 0111001 cgat 10101000
agga 00110111 taag 01110100 actt 10101001
acgt 00111000 ccaa 01110101 ccag 101010100
ccct 0011100100 ctta 01110110 laagc 101010101
ccge 0011100101 gcct 0111011100 acga 10101011
gctt 001110011 cgce 0111011101 lccgg 1010110000
acag 00111010 ttgc 011101111 ggtc 1010110001
gatc 00111011 agaa 0111100 caag 101011001
tggc 001111000 atgt 0111101 lttcc 10101101
lagct 001111001 gtag 01111100 atca 1010111
tcgt 10110000 aagg 110011010 aggg 11101010001
ccta 101100010 cgag 1100110110 lcacc 1110101001
ccgt 101100011 gcgt 1100110111 gctg 1110101010
caga 10110010 gacg 110011100 cgtg 1110101011
laacc 101100110 ggca 1100111010 catc 11101011
lacgg 101100111 gggt 1100111011 ttta 1110110
gceg 1011010000 tgga 11001111 cagt 111011100
laggc 1011010001 lagtc 110100000 gcta 111011101
gtgg 101101001 agca 110100001 gact 111011110
atgg 10110101 tgac 110100010 lactc 111011111
ttga 10110110 ttcg 110100011 gtga 111100000
atcc 10110111 ttag 11010010 ctgt 111100001
aggt 101110000 ttac 11010011 gaga 11110001
agtg 101110001 cgga 110101000 cata 11110010
tagg 101110010 actg 110101001 latgc 111100110
tgca 101110011 ggag 110101010 ctgc 1111001110
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gcac 1011101000 tcgc 1101010110 gty 1111001111
cagc 1011101001 ggac 1101010111 acta 11110100
lagcc 1011101010 ttaa 1101011 gttg 111101010
gagc 1011101011 tcca 11011000 gacc 1111010110
ctaa 10111011 gtgt 110110010 cggt 1111010111
aatt 1011110 cctg 1101100110 attt 1111011
aagt 10111110 tgcg 1101100111 taaa 1111100
tcce 1011111100 tatg 11011010 atta 1111101
gtgc 1011111101 taac 11011011 tact 11111100
gagg 101111111 tgag 110111000 aact 11111101
cact 110000000 tgtg 110111001 acaa 11111110
cttg 110000001 gtaa 11011101 caat 11111111
tgaa 11000001 attg 11011110 laggg 11101010001
tcaa 11000010 ctct 11011111 lcacc 1110101001
tctc 11000011 ttca 11100000 gctg 1110101010
acct 110001000 gtca 111000010 cgtg 1110101011
ggtt 110001001 ctca 111000011 catc 11101011
atcg 11000101 acac 111000100 ttta 1110110
gata 1100011 gtac 111000101 cagt 111011100
ctcc 110010000 tcac 111000110 gcta 111011101
gggc 1.10010E+11 ltccg 111000111 gact 111011110
gcge 1.1001E+11 gatg 11100100 lactc 111011111
ggce 11001000101 gtta 11100101 gtga 111100000
gcga 1100100011 agtt 11100110 ctgt 111100001
ggat 11001001 cgct 1110011100 gaga 11110001
cctt 110010100 gctc 1110011101 cata 11110010
cgtc 110010101 tcag 111001111 atgc 111100110
ccat 11001011 taat 1110100

agta 11001100 cceg 11101010000
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