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Abstract— Huge amount of genomic data are produced due to high-throughput sequencing technology. Those enormous 

volumes of sequence data require effective storage, fast transmission and provision of quick access for alignment and analysis 

to any record. It has been proved that standard general purpose lossless compression techniques failed to compress these 

sequences rather they may increase the size. But some general purpose compression method may be useful with a modification 

for genome compression. In this paper, a variation of statistical Huffman algorithm have been proposed named KMerHuffman, 

which instead of calculating frequency of individual character it comes as a substring of length four which we have experiment 

to be optimal due to redundancy of genome sequence. Then KMerHuffman result on benchmark sequence has been compare 

with the other biological sequence specific compression algorithm. The result shows that KMerHuffman is competitive with 

other method. Another important aspect is that there is no need of any reference sequence so it is useful for upcoming 

sequence. 
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I.  INTRODUCTION  

Huffman encoding [1], for lossless compression ―A Method 

for the Construction of Minimum Redundancy Codes‖ 

generates different length binary code of bases to encode 

text. In genomic sequence bases have different frequency. 

But all bases occupy equal space whether it is a, c, g or t/u 

i.e. 1 byte/base.  

The purpose of compression is to reduce sequence volume 

and online transmission [2]. For general purpose text 

document, databases, or multimedia data; compression allow 

reclamation of information quicker than the raw data. The 

cost of decoding is compensating by disk storage reductions 

and cost of transmission.  

All special-purpose encoding method should meet the 

following criteria [3]. i) It must permit autonomous use of 

encoded sequence and independent decompression of data. 

ii) For alignment and analysis compressed only once, but 

decompressed on demand. iii) Must be type independent of 

data.  

Our proposed algorithm which a variation of Huffman 

algorithm [1] for genomic data as mentioned earlier that 

general purpose algorithm failed to compress genomic data 

instead they might increase its size. Here instead of single 

base statistics a four base block statistics have been 

considered which gives optimal compression ratio as stated 

in the result section. Details procedure has been discussed in 

the proposed methodology. 

Firstly a review of all basic related work on DNA data 

compression has been discussed. Section 3 details base 

method on which the algorithm is build. Then, in Section 4, 

details the results of experiments with the new approach, 

before conclusions and discussions are offered in Section 5. 

 

II. RELATED WORK  

All Genome compression algorithms utilize redundancy 

within the sequence, but especially vary in the way they do 

so. Sequence compression method can be classified into four 

categories 1) Bit Manipulation algorithm 2) Dictionary based 

method 3) Statistical procedure and 4) Referential 

Algorithms. 

2.1 Bit Manipulation Algorithm 

Using ASCII byte to encode four different bases ignoring n 

and ten other infrequently bases [4] obviously a waste of 

memory space. A simple encoding method for genome data 

of bases is map block of four bases to one byte by assigning 

4 unique two bits (a = 00, c = 01, g = 10, and t/u = 11) to 

different four DNA bases before the encoding process. Bit 

complexity comes when someone consider infrequent bases 

such as n, k, etc. Three consecutive bases can be map into 
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one character. If one takes in account all fifteen bases then 

four bit encoding is needed. The compression rate of bit 

manipulation algorithms is slightly less than 4:1 [5], if the 

most frequent alphabets i.e. four are taken into account. 

Although further improvement is possible by having 

multilevel encoding which is applied at the top to the 

compression data. Some bit manipulation algorithms are 

DNABIT Compress [6], SBVRLDNAComp [7], 

OBRLDNAComp [8] etc.   

2.2 Dictionary Based Algorithm 

Generally dictionary based algorithm could not use the 

specific characteristics of the input data. Dictionary 

construction can be static or dynamic. In the former case 

dictionary needs to store during decompression process 

whereas for the latter encoding dictionary itself is not stored 

it formed on demand. More or less almost all dictionary 

based encoding algorithms are based on LZ77 or LZ78 [9]. 

One of the basic differences between LZ77 and LZ78 is that 

the LZ77 break the input in overlapping phrases, but later 

one is not. The compression ratio for dictionary encoding is 

from 4:1 to 6:1 depending on the sequence [5]. The position 

and length integer are encoded by Delta coding [10] 

Fibonacci coding [10], Golomb encoding [11], Golomb–Rice 

codes [11] and Elias or Elias Gamma codes [11] etc.   

2.3 Statistical Algorithm 

Here the probability distribution of each base within a 

sequence is calculated. A single base or fixed size sub-

sequences with a high occurence is represented by shorter 

codes. Shannon-Fano [12] is a Statistical encoding algorithm. 

One of the best statistical compression algorithms is 

Huffman encoding [1]. For DNA data compression K-mer 

Huffman encoding with k=4, taking into account a, c, g and 

t/u obtained better result. An example of variable length code 

obtained from Huffman encoding for the string 

―acgacanatga‖ is a:0, c:10, g: 111, t: 1101 and n: 1100. 

Huffman table contains character and their frequency stored 

along with encoded data. Random distribution of the 

characters gives benefits towards Huffman encoding. That is 

why it is not suitable for DNA sequences where redundancy 

is natural. Another statistical encoding algorithm is 

Arithmetic encoding [13] which encode whole input stream 

into a number (0=<n<=1). Arithmetic encoding of the string 

―baca‖ is 0.59375. Markov model [14] is used to 

approximate DNA sequence. The compression ratio varies 

from 4:1 to 8:1 [5] depending on the compression algorithm. 

2.4 Referential Algorithms 

The best above all for genome sequence is referential 

encoding procedure.  Like dictionary-based method, 

referential algorithm replaces long subsequence of input 

sequence with respect to other standard artificial or normal 

external sequences and reference is may be static or dynamic, 

while dictionaries are extended during compression time. 

Generally reference based encoding algorithm compressed 

the difference between a reference and a target genome. 

Mapping motivation is LZ77 [15] and LZ78 [16]. Window 

can be static or dynamic. All reference genomes are from the 

same species or an artificial reference genome is formed to 

get optimal mapping, the resulting sequences exhibit 

extremely high levels of similarity. But reference selection 

time is also come under performance measurements because 

a good reference selection is crucial towards optimal 

compression ratio. Some reference based compression 

algorithms are RLZ [17], RLZopt [18], GDC [19], 

COMRAD [20] etc. 

III. METHODOLOGY 

Proposed KMerHuffman algorithm is a special purpose 

method for genomic data and it is a variation of famous 

general purpose statistical algorithm known as Huffman 

algorithm. By encoding high occurrence block with shorter 

codes and vice versa, the input sequence is encoded. The 

prefix problem of Huffman encoding is taken care of to 

eliminate ambiguity during decoding. 

Algorithm 

Input: Genome Sequence 

Output: Compressed sequence 

1. Calculate all substring of length 4 

2. Store last substring if length is less than 4 

3. Sort each block  

4. Build KMEHuffman tree 

5. By tree traversal determine all code words 

6. Read input again to create a temporary binary codes file 

7. Finally map binary code to character 

IV. RESULTS AND DISCUSSION 

The performance of the KMerHuffman (KMH) is tested on 

some standards Genome file [28]. KHM result is compared 

to the best known DNA compression algorithms 

Huffman(Huff) [1], Arithmetic (Arith)[14], BioCompress 

(BioC)[21],[22], GenCompress (GenC)[23], DNACompress 

(DNAC)[24], GeNML [25], CTW+LZ (CTW)[26] and 

DNAE[27]. Table 1 shows the size of data before and after 

compression by the existing and proposed algorithm. Table 2 

shows the compression ratios (bpb) generated from 

KMERHuffman. KMH achieves the competitive 

compression ratio. 

Although KMH performance has been tested on benchmark 

DNA sequence; this algorithm can be applied on any DNA 

or RNA sequence of any size. 
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The definition of compression ratio is the number of 

characters after compression (l) divided by the number of 

base within input (n). 

  Compression ratio = l / n 

= l * 8 / n bpb 

= (Nopt. / n) bpb 

Where, Nopt. = l * 8 total number of bits after compression 

Table 1. Size of Genome (Bytes) Before and After Compression 

Seq. Name Size Huff Arith BioC GenC 

chmpxx 121024 30018 29259 24659 25264 

chntxx 155844 38984 39146 31558 31558 

hehcmvcg 229354 57961 57938 53038 53038 

humdystrop 38770 9913 10461 9353 9305 

humghcsa 66495 16646 17647 10889 9143 

humhdabcd 58864 16738 15723 13833 13392 

humhprtb 56737 13712 15001 13475 13120 

mpomtcg 186608 46675 47288 45252 44553 

panmtpacga 100314 24394 24590 23448 23323 

vaccg 191,737 47,957 47019 42182 42182 

 

Table 1. Size of Genome (Bytes) Before and After Compression (Contd.) 

Seq. Name DNAC  GeNML CTW DNAE KMH 

chmpxx 25264 25112 25264 24507 29552 

chntxx 31364 31364 31364 30974 38712 

hehcmvcg 53038 52751 52751 51891 34629 

humdystrop 9256 9256 9305 9256 2529 

humghcsa 8561 8395 9143 8727 16559 

humhdabcd 13244 12582 13392 12950 14590 

humhprtb 12908 12482 13050 12553 14115 

mpomtcg 44086 43853 44319 43153 47775 

panmtpacga 23323 22194 23323 22445 15712 

vaccg 42182 42182 42182 41703 15712 

 

Table 2. Compression ratio (bpb) of different method 

Seq. Name Huff Arith BioC GenC DNAC 

chmpxx 1.98 1.93 1.63 1.67 1.67 

chntxx 2.00 2.01 1.62 1.62 1.61 

hehcmvcg 2.02 2.02 1.85 1.85 1.85 

humdystrop 2.05 2.16 1.93 1.92 1.91 

humghcsa 2.00 2.12 1.31 1.10 1.03 

humhdabcd 2.28 2.14 1.88 1.82 1.80 

humhprtb 1.93 2.12 1.90 1.85 1.82 

mpomtcg 2.00 2.03 1.94 1.91 1.89 

panmtpacga 1.95 1.96 1.87 1.86 1.86 

vaccg 2.00 1.96 1.76 1.76 1.76 

 

Table 2. Compression ratio (bpb) of different method (Contd.) 

Seq. Name GeNML CTW DNAE KMH 

chmpxx 1.66 1.67 1.62 1.95 

chntxx 1.61 1.61 1.59 1.98 

hehcmvcg 1.84 1.84 1.81 1.20 

humdystrop 1.91 1.92 1.91 0.52 

humghcsa 1.01 1.10 1.05 1.99 

humhdabcd 1.71 1.82 1.76 1.98 

humhprtb 1.76 1.84 1.77 1.99 

mpomtcg 1.88 1.90 1.85 2.04 

panmtpacga 1.77 1.86 1.79 1.25 

vaccg 1.76 1.76 1.74 1.98 

 
Table 3. Average compression ratio (bpb) 

Method Huff Arith BioC GenC CTW 

Avg.  2.02 2.05 1.77  1.74   1.73 

 

Table 3. Average compression ratio (bpb) (Contd.) 

Method DNAC GeNML DNAE KMH 

Avg.  1.72 1.69  1.69 1.69 

 

V. CONCLUSION and Future Scope  

KMerHuffman encoding is an efficient compression 

method for genome data. As it has been known it 

follows statistical encoding technique and frequent 

occurrence blocks have smaller binary code. 

KMerHuffman coding result is compared with Huffman 

and Arithmetic encoding technique. The result shows 

KMerHuffman outperform the other famous statistical 

encoding technique. Works well for any sort of genome 

compressing and transmissions. It uses several data 

structures. KMerHuffman encoding is an application of 

binary tree and priority queue.  

This technique can be merging with referential 

compression method for referenced based algorithm. 
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Large Tables 
Table 4. Symbols and the corresponding Huffman code from Huffman tree 

Symbol Huffman Code Symbol Huffman Code Symbol Huffman Code 

tacg 00000000 agac 00111101 cgtt 01111101 

tagc 00000001 cttt 0011111 atga 0111111 

ttgt 0000001 tgtt 0100000 tcga 10000000 

tata 000001 cctc 010000100 gtct 10000001 

gagt 00001000 tggg 010000101 tgat 1000001 

gcat 00001001 cgta 01000011 ctgg 100001000 

aatc 0000101 tatt 010001 gcaa 100001001 

tttg 0000110 tgtc 01001000 tggt 10000101 

caca 00001110 gaag 01001001 aaga 1000011 

cttc 00001111 tttc 0100101 tcat 1000100 

aaat 000100 gttt 0100110 catt 1000101 

tagt 0001010 accg 010011100 tttt 100011 

ggga 000101100 ccca 010011101 acgc 100100000 

gcca 000101101 tgcc 010011110 cgca 100100001 

ctag 00010111 ggct 0100111110 cagg 1001000100 

gatt 0001100 gcgg 0100111111 accc 1001000101 

aaag 0001101 tgta 0101000 cgac 100100011 

cacg 000111000 gtat 0101001 ttct 1001001 

agcg 000111001 aaac 0101010 agag 10010100 

ctga 00011101 aaca 0101011 cggg 10010101000 

taca 0001111 aata 010110 cccc 10010101001 

ataa 001000 aaaa 010111 cgcg 1001010101 

caaa 0010010 catg 01100000 cggc 1001010110 

tacc 00100110 gttc 01100001 gcag 1001010111 

gaac 00100111 acca 01100010 atct 1001011 

attc 0010100 ttgg 01100011 agat 1001100 

caac 00101010 ctat 0110010 ccac 100110100 

ggcg 0010101100 gaat 0110011 gtcg 100110101 

gccc 00101011010 atac 0110100 tctg 10011011 

gggg 00101011011 tcct 01101010 tatc 1001110 

ccga 001010111 ctac 01101011 gtcc 100111100 

ttat 001011 ctcg 011011000 tgct 100111101 

tctt 0011000 tcgg 011011001 ggaa 10011111 

acat 0011001 ggta 01101101 taga 1010000 

gaca 00110100 gaaa 0110111 tcta 1010001 

cgaa 00110101 atag 0111000 atat 101001 

aacg 00110110 aatg 0111001 cgat 10101000 

agga 00110111 taag 01110100 actt 10101001 

acgt 00111000 ccaa 01110101 ccag 101010100 

ccct 0011100100 ctta 01110110 aagc 101010101 

ccgc 0011100101 gcct 0111011100 acga 10101011 

gctt 001110011 cgcc 0111011101 ccgg 1010110000 

acag 00111010 ttgc 011101111 ggtc 1010110001 

gatc 00111011 agaa 0111100 caag 101011001 

tggc 001111000 atgt 0111101 ttcc 10101101 

agct 001111001 gtag 01111100 atca 1010111 

tcgt 10110000 aagg 110011010 aggg 11101010001 

ccta 101100010 cgag 1100110110 cacc 1110101001 

ccgt 101100011 gcgt 1100110111 gctg 1110101010 

caga 10110010 gacg 110011100 cgtg 1110101011 

aacc 101100110 ggca 1100111010 catc 11101011 

acgg 101100111 gggt 1100111011 ttta 1110110 

gccg 1011010000 tgga 11001111 cagt 111011100 

aggc 1011010001 agtc 110100000 gcta 111011101 

gtgg 101101001 agca 110100001 gact 111011110 

atgg 10110101 tgac 110100010 actc 111011111 

ttga 10110110 ttcg 110100011 gtga 111100000 

atcc 10110111 ttag 11010010 ctgt 111100001 

aggt 101110000 ttac 11010011 gaga 11110001 

agtg 101110001 cgga 110101000 cata 11110010 

tagg 101110010 actg 110101001 atgc 111100110 

tgca 101110011 ggag 110101010 ctgc 1111001110 



   International Journal of Computer Sciences and Engineering                                   Vol. 5(12), Dec 2017, E-ISSN: 2347-2693 

  © 2017, IJCSE All Rights Reserved                                                                                                                                        206 

gcac 1011101000 tcgc 1101010110 ggtg 1111001111 

cagc 1011101001 ggac 1101010111 acta 11110100 

agcc 1011101010 ttaa 1101011 gttg 111101010 

gagc 1011101011 tcca 11011000 gacc 1111010110 

ctaa 10111011 gtgt 110110010 cggt 1111010111 

aatt 1011110 cctg 1101100110 attt 1111011 

aagt 10111110 tgcg 1101100111 taaa 1111100 

tccc 1011111100 tatg 11011010 atta 1111101 

gtgc 1011111101 taac 11011011 tact 11111100 

gagg 101111111 tgag 110111000 aact 11111101 

cact 110000000 tgtg 110111001 acaa 11111110 

cttg 110000001 gtaa 11011101 caat 11111111 

tgaa 11000001 attg 11011110 aggg 11101010001 

tcaa 11000010 ctct 11011111 cacc 1110101001 

tctc 11000011 ttca 11100000 gctg 1110101010 

acct 110001000 gtca 111000010 cgtg 1110101011 

ggtt 110001001 ctca 111000011 catc 11101011 

atcg 11000101 acac 111000100 ttta 1110110 

gata 1100011 gtac 111000101 cagt 111011100 

ctcc 110010000 tcac 111000110 gcta 111011101 

gggc 1.10010E+11 tccg 111000111 gact 111011110 

gcgc 1.1001E+11 gatg 11100100 actc 111011111 

ggcc 11001000101 gtta 11100101 gtga 111100000 

gcga 1100100011 agtt 11100110 ctgt 111100001 

ggat 11001001 cgct 1110011100 gaga 11110001 

cctt 110010100 gctc 1110011101 cata 11110010 

cgtc 110010101 tcag 111001111 atgc 111100110 

ccat 11001011 taat 1110100   

agta 11001100 cccg 11101010000   

 


