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Abstract— Aboodh transform (AT) in combination with the homotopy perturbation method (HPM) is employed to solve the
nonlinear differential equation of motion for Euler-Bernoulli beams in a unified way. Aboodh transform based homotopy
perturbation method (ATHPM) is found to give analytic solutions with all perturbative corrections to both the displacement and
the oscillation frequency in a very simple and straight forward manner. Here, we have also demonstrated the sophistication and

simplicity of this technique.
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l. INTRODUCTION

From simply supported to clamped-clamped structures,
understanding of the dynamic response of large amplitudes
of beam vibration has attracted numerous researchers and
engineers over several decades. They are encountered in
many engineering applications from bridges to robot arms.
The main inquisitiveness is to find the difference in the
characteristics of dynamic response from those defined via
linear theory. Researchers have explored the problem of
beam vibration with different boundary conditions and
hypotheses. They predicted the nonlinear frequency of beams
which is principal to the design of engineering structures.
The Euler-Bernoulli theory of beams, relating the beam’s
deflection and applied load, provides a reasonable
explanation for the bending behavior of long isotropic
beams. These vibration problems of the beam can be solved
by both analytical and numerical methods.

The solution to the nonlinear problems are difficult to find
and most of them are not exactly solvable. Although the
numerical solution to the nonlinear problems is easy, one
desires to find the analytical solution to get a better insight of
the problem. There are many techniques for solving
nonlinear problems such as the harmonic balance method,
Krylov-Bogoliubov-Mitropolsky method, weighted
linearization method, perturbation procedure for limit cycle
analysis, modified Lindstedt-Poincare method, Adomain
decomposition method, artificial parameter method, and
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Nikiforov-Uvarov method [1-9]. Not only these methods
have complex calculations, but they fail to handle problems
with strong nonlinearity.

The homotopy perturbation method (HPM) has been found to
be very efficient for solving nonlinear equations with known
initial or boundary values especially for systems with strong
non-linearity in classical and quantum mechanical problems
[10-14]. In this method, the solution is given in an infinite
series usually converges to an accurate solution [13]. Aboodh
introduced a transform derived from the classical Fourier
integral for solving ordinary and partial differential equations
easily in the time (t) domain [15]. Aboodh transform (AT)
has been applied to different types of problems and is found
to be very simple but powerful technique [17,18].

In this article, we have applied ATHPM to solve the
nonlinear differential equations with different types of Euler-
Bernoulli beams in a generalized way to obtain the
approximate displacement u and the oscillating frequency o
with high accuracy.

This paper is organized as follows. In section I, we
demonstrate  briefly the formulation of ATHPM.
Applications of ATHPM to the Euler-Bernoulli beams
problems have been shown in section Ill. In section IV we
present some examples cases. Finally, in section V we
provide a brief discussion and our conclusion.
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Il.  FORMULATION OF ATHPM

Aboodh transform is defined for function of exponential
order in a set A where

A={u(t):3M,k_k, >0, u(t) |< Me "} (1)

17

The constant M must be finite number and k;, k, may be finite
or infinite. If u(t) is the piecewise continuous function
for t >0, the corresponding Aboodh Transform u(v) is
defined as

Alu(®)] =u(v) = Ejfu(t)e’”dt,t >0,k <v<k, @)
v 0

Some properties of Aboodh Transform which are necessary
for our calculations are

u(0)
Alu'(t)] = vu(v) - BV u(0) ®)
2 u'(0)

Alu"®] =vu(v) - y —u(0) (4)

. 2a
Alcos at] = e Altsinat] = m (5)

. n!

At ] =—3 (6)

Let us consider a nonlinear non-homogeneous differential
equation as

Lu(t) + wu(t) + Ru(t) + Nu(t) = g(t) (7
with the initial condition u(0) =u,(0) and u,(0) =0. Here, L is
the second order linear differential operator (L =% /6t%),R
is the linear operator having an order less than L, N is the
nonlinear operator, g(t) is the non-homogeneous term and *
is any parameter.

Now, taking the Aboodh Transform on both sides of (7) we
get

AlLuD)]+ o Au®)]+ ARu®1+ ANu@®]1= Alg®]l ~ (8)
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Using the differential properties of the Aboodh Transform as
mentioned above and the initial conditions (8) can be written

1= (vz —ia)2 )U(O) " v(vuz'(fioz)

—{( 1 JA[Ru(t)]{ 1 ZJA[Nua)] ©)
vV +o Vi +w

{ = sz[g(t)]}
Vi i+

Taking Inverse Aboodh Transform on both sides of (9) leads
to

u<t)=uo<t)—{A'1K 1 ZJA[Rum]}
vV i+

(10)
+A1K - sz[Nu(t)]}AlK - sz[g(t)]}
vV t+w Vi t+w
where the solution of zeroth order correction is
Uo(t){ - zju(0)+ v (1)
Vit v(v: + o)

According to the homotopy perturbation method, we can
write

u()) =3 P, ® (12)

and the nonlinear term as
Nu(t) = > p"H, (u) (13)
n=0

where He’s polynomial H, (u) is given by

H. () =%;pnn {N (i p”un(t)ﬂ n=0123... (1)

Here, n corresponds to the order of correction terms.
Substituting the value of u(t) and Nu(t) in (10), we get

> n _ _ -1 1 > n
nZ:Op un(t)_UO(t) p{A |:(V2+CUZJA[RnZ_Op un(t):|
a 1 S
+A KV2+COZJALZ;p Hn(t)ﬂ (15)

i o]
vV +w
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Equation (15) is the combination of the Aboodh Transform
and the homotopy perturbation method using He’s
polynomials. Comparing the coefficient of like power of p,
we get from (15) the following equations

0 Uy () = Uy () (16)
1 1 1
p :ul(t)=—{A KVZWZJA[Ruo(t)]}
+A1K = sz[Ho(uo(t»]ﬂ an
Vi +w
+A{[ 1 sz[g(t)]}
vV i+

Pziuz(t)=—{A'lK 3 : 2jA[RUl(t)]}
vV +o

(18)
+Al{( = sz[HAuo(t),ul(t)]}}
Ve +w
The approximate solution is
u(t) = I,J'Lnli p"u, (t) = u, (t) +u, (t) +u, (t) +... (19)

I11.  APPLICATION OF ATHPM TO SOLVE NONLINEAR

DIFFERENTIAL EQUATIONS

To assess the advantages and accuracy of ATHPM, we
consider the following non-linear differential equation as

2
%+Au+A2u2+%u3+A5u5:O (20)

Now, for our purpose we rewrite (20) as

%+w2u =(o® -A)u-AU" - AU -AL®  (21)

where, w is the unknown frequency to be determined. Using
the differential properties of the Aboodh Transform and the
initial condition u(0) = a,u'(0) =0 (21) can be written as

u(v)=(V2iwzja+(w2—m(vziwsz[u]

—Az[ L sz[UZ]—Ag( L jA{uS] 22)

Vi+w v+ o?

Sy

2 2
Vit

jA[uS]
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Taking the inverse Aboodh Transform on both sides of (22)
we get

u(t):acosa)t+(a)2—A1)A‘1K 5 ! 2jA[u]}
Vit
1 1 2 -1 1 3
+AA K 2 ZJA[U ]:|_A3A |:(—2 ZJA[U ]} (23)
Vo t+w vV t+w

_ASA—1|:( 21 ZJA[US]:|
vV +o

Applying the HPM to (23) as before, we get the zeroth order
correction of the displacement as

p° :u, (t) = acos mt (24)

and the first order correction as

pl:ul(t):a(wz—Ai)AIK - ! 2jA[coswt]}
Vi +w

2 71— 1 2
~Aa’A (V2+w2jA[COS a)t]}

3 71_ 1 3
—Aa’A _(Vz_"_wsz[COS a)tﬂ

5 71_ 1 5
~Aa’A (V2+w2]A[cos cotﬂ

(25)

After some mathematical calculation of inverse Aboodh
Transform, we get the first order correction as

2
Lou(t :acoswt—AZ—a 1-cos ot
P () o7 )
2 3 5
_2232 (coswt—cosZwt)—Siz[AZa +5'i56a J (26)
[0 [0
A@’

(cos wt —cos3mt)— (cos wt —cos5amt)

40*

Finally, we obtain the approximate solution by ATHPM up
to first order correction as

2 2 3 5
u(t):—Aza2 +| a+ Azaz - A3a2 _Aa 5 |coswt
2w 3w° 320° 384w
2 3 5
+A2a2 COSZa)t+i2 Ad +5A5a cos 3wt 27)
@ 8w 4 16
5
+3§Za 5 COsSat
0

and the frequency of oscillation as,
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2 4
3Aa° 5Aa
w= p& +A3_ + L (28)
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Figure 1. Time(t) vs displacement(x) curves obtained from numerical
(RK), ATHMP and IPM with A; =1, A, =0, A; =10, As=100anda=0.1

We have plotted the displacement x(t) from numerical
solution for A;=1, A, =0, A; =10, As= 100, a = 0.1 and
compared the same obtained from Runge-Kutta (RK) and
Iteration Perturbation Method (IPM) calculations. It is found
that the displacement obtained from RK, ATHPM and IPM
are matching very closely.

IV. RESULTS AND DISCUSSION

Here we discuss different cases of Euler-Bernoulli beams
subjected to different kinds of loading.

Case 1

Using ATHPM we obtain the analytical expression for
geometrically non-linear vibration of clamped-clamped
Euler-Bernoulli beams fixed at one end. This type of
geometric nonlinearity arises from nonlinear strain-
displacement relationships. Sources of this type of
nonlinearity include mid-plane stretching, large curvatures of
structural elements and large rotation of elements.

Consider a straight beam on an elastic foundation with length
L, cross-section area A, mass per unit length x, moment of
inertia 1 and modulus of elasticity E that is subjected to an
axial force of magnitude F' as shown in figure 2.

-

x

giees
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Figure 2. Schematic of Euler-Bernoulli beam subjected to an axial load

We assumed that the cross-sectional area of the beam is
uniform and its material is homogenous. Here the schematic
is modelled according to the Euler-Bernoulli beam theory
[19]. Planes of the cross section remain plane after
deformation, straight lines normal to mid plane of the beam
remain normal, and straight lines in the transverse direction
of the cross section do not change length. First, we assume
that there is no in plane deformation. Second, we ignore the
transverse shear strains and consequently the rotation of the
cross section is due to bending. Lastly, we assume that there
are no transverse normal strains. The equation of motion with
the effects of mid-plane stretching is given by
o'W

IW' AW
+ El +F' +
oz T T e
_ﬁ@ZW'L(8W'
2L ox” g\ ox'

CaW +K'W'
atl

(29)

jdx'=U(x',t')

where, C is the viscous damping coefficient, K' is the
foundation modulus and U is the distributed load in the
transverse direction. We assume that here the non-
conservative force U (x',t") is zero. So, (29) can be written as

2 1 ] 2 ] 1
yaV\i +El aAV\i +F'8V\2 +CaW +K'W'
ot ox' ox' ot' (30)
EAOW ' (oW ") , ,
___.2'[ — |dx'=0
2L ox" ¢\ ox

For convenience, we have used the following non-
dimensional variables

' [ 2 4
X W EE R TR
L R El El 71N

where, R=+/17A is the radius of gyration of the cross-
section. With the help of (31), (30) can be written as

o'W o'W _ W oW
> +El—f+F —+C—+KW
ot OX OX ot
2 L 2 (32)
EA 0°W ¢ oW
CEATW I Y k=0
2L ox® y\ ox

Using separation of variables as W(x,t) =w (x)u(t) , where
w(x)is the first eigen mode of the beam and applying the

Galerkin method, the equation of motion is obtained from
(32) as
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d2 u(t)

— 2+ Au+AU = (33)

where, A =a, +a,F +K, A, =a, and a,,a,,a, are givenas

fdw(x) 1d7y(x)
! (;/;4 w (X)dx £ (;’; w (X)dx
a = T 8 = T
j w2 (X)dx j v (X)dx

(34)

j w? (X)dx

Equation (33) is the governing nonlinear vibration equation
of Euler-Bernoulli beams. The center of the beam is
subjected to  the  following initial  conditions
as u(0)=a,u'(0)=0 . Here a is the non-dimensional
maximum amplitude of oscillation. Comparing (20) and (33),
we get the approximate solution up to first order from (27) as

u(t) =[a— A3a3’2 jcoswt+[ Aiaz jcosSa)t (35)
2w 32w

and the frequency of oscillation is obtained from (28) as

A+ B2 3A3a (36)

which is same as obtained by analytical approximation
technique and zeroth order approximate solution is

U, (1) = acos[ A +¥]t [20].

In figure 3 we have plotted the displacement x(t) from
numerical solution for A; = 3.1415, A; = 0.15, a = 1 and
compared the same obtained from Runge-Kutta (RK) and
Analytical Approximation Technique (AAT) calculations. It
is found that the displacement obtained from RK, ATHPM
and AAT are matching very closely.
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Figure 3. Time(t) vs displacement(x) curves obtained from numerical
(RK), ATHMP and AAT with A; =3.1415, A;=0.15anda=1

Case 2

Here, we consider a straight Euler-Bernoulli beam that is

subjected to an axial force of magnitude P as shown in
figure 4 and figure 5. If we substitute K =0, the equation of
motion is directly obtained from (33) as

d> u(t)

+AU+AL° = (37)

where, A =a,+a,F, A, =a,and a,,a,,a,are same as in (34).

X |

ol

e

b~

Figure 4. Schematic of Euler-Bernoulli simply supported beam subjected
to an axial load

|t——— P

Yoosa

Figure 5. Schematic of Euler-Bernoulli clamped-clamped beam subjected
to an axial load

Now the post-bucking load-deflection relation for the
problem can be obtained from (37) as

(a +au®)

&,

F=— (38)
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Neglecting the contribution of u in (38), the buckling load
can be determined as

F=-2 (39)

The center of the beam is subjected to the following initial
conditions as u(0)=a,u'(0)=0. Here a is the non-
dimensional maximum amplitude of oscillation. Comparing
(20) and (33), we get the approximate solution up to the first
order from (27) as

u(t) = (a— A3a32 ]cos wt +( Aa JcosSwt (40)
R2w 2w

2

and the frequency of oscillation is obtained from (28) as

a):,’Ai+$

which is same as obtained by the max-min approach [21].
The approximate solution obtained by max-min approach is

(41)

2
3Aa
uMMA(t):acos[ A1+T t (42)
s e T " —
i & 1 ATHPM
08t % i+ 1 + RK
i 4 ® MMA
06t P ¥ 7 7
#* k N .
D4 x * P h
- J *ox 4 g™
=
= 02r i J 4 ¥ 1 - J
= + N i
S oof % N :
g + “
E: ¥ # . *
o #* .,
o 02r * N * 1
] ¥ 4+ b
% #+ o "
D4t A H
¥ o )
0B + IF IR
k3 4 4 >‘ *
E
08+ f A o * 4 N ]
E * . # 4l ¥
" W . G . i \ e !
i 2 4 & 8 W 12 14 1B 18 W
Time (t)

Figure 6. Time(t) vs displacement(x) curves obtained from numerical
(RK), ATHMP and MMA with A; =1, A, =0, A;=1.814anda=1

We have plotted the displacement x(t) from numerical
solution for A;=1, A,=0, A;=1.814, a =1 and compared
the same obtained from Runge-Kutta (RK) and Maximum-
Minimum Approach (MMA) calculations. It is found that the
displacement obtained from RK, ATHPM and MMA are
matching very closely.
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Case 3

A new kind of composite material known as functionally
graded materials (FGMs) has received significant interest
recently [22]. FGMs mare made from a mixture of materials
and ceramics. They are further characterized by a smooth and
continuous change of mechanical properties from one surface
to another. FGMs were initially designed as thermal barrier
materials for aerospace structures and fusion reactors where
extremely higher temperature and large thermal gradient
exist. With the increasing demand, FGMs have been widely
used in general structures. Hence, many FGM structures have
been studied, such as functionally graded(FG) beams, plates
and shells. Due to the huge application of the beams in
different fields such as civil, marine and aerospace
engineering, it is necessary to study the dynamical behavior
at large amplitudes which are effectively nonlinear.

Let us consider a straight functionally graded (FG) beam of
length L, width b and thickness h which rests on an elastic
nonlinear foundation and is subjected to an axial force of

magnitude P as shown in figure 7.

Figure 7. Schematic of FG beam with a nonlinear foundation

The beam is supported on an elastic function with cubic non-
linearity and shearing layer. In this study, material properties
are considered to vary in accordance with the rule of
mixtures as

P=PR,Vy, + PV, (43)
where P and V are the material property and volume fraction,

respectively, and the subscripts M and C refer to the metal
and ceramic constituents respectively. Simple power law

distribution from pure metal at the bottom face (z=—-h/2 )

to pure ceramic at the top face (E:+h/2 ) in terms of
volume fractions of the constituents is assumed as

h+2z !
VC:[ o ] Vy =1-V,

(44)

where n is the volume fraction exponent. The value of n
equal to zero pre-presents a fully ceramic beam. The
mechanical and thermal properties of FGMs are determined
from the volume fraction of material constituents. We
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assume the non-homogeneous material properties such as the

modulus of elasticity E, Poisson’s ratio » and mass density p
which can be determined by substituting (44) into (43) as

- h+2z)
E(z)=E, +(EC—EM)[ o ]
h+2§Jn

v(z)=vy +(ve =y )[ o

p(2)=pu +(pc — P )(h;_thJ

(45)

The force and moment results per unit length, based on
classical theory of beams in a Cartesian coordinate system,
can be written as

@g[@f
N- B x 2| ox
{ x}zb{p‘u 11:| 0X _6 (46)
M; B, Du o’w
ox’

in whichwand u are the transverse and axial displacements

of the beam along the z and x directions respectively. The
stiffness coefficients A, B,,, D,, are given as

E(2)
1-v3(2)

— | T

(Au: By, Dll) = (1,2,22 )dz (47)

NE;

After some mathematical simplifications, the governing
equation of nonlinear free vibration of a FG beam in terms of
transverse displacement can be written as

2. 2 4 ~\? _
|a_‘2’v+b[Dn—ija_‘iv+ P-bAﬂjL[é—WJ dx
ot As) ox 2L %o ox
_bBy[ow(L.b) aw.h) ||o'w _
2L | ox ox ax "

(48)

Here | and F_ are the inertial term and reaction of the elastic
foundation on the beam which are defined as

. - )
/)(Z)dZ, F\Tv =—|(|_W——|(NLW3 +Ks 6_\£V

OX

(S

| = (49)

N Y=
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where, k. and k. are linear and nonlinear elastic foundation

coefficients, respectively, and ks is the coefficient of shear
stiffness of the elastic foundation. For convenience, we use
the following non-dimensional variables

(50)

where, r =/ /A is the radius of gyration of the cross-
section. Using (48) and (49) together with the dimensionless
variables defined in (50), the dimensional form of the
governing equation becomes

2 2 4 2
1 OW p[p, B |TW, P—EQJL(@) dx
at A, ) ox 2 <Jo{ ox

(51)
2 2
B0 MO, ok, T
X X X X
where
o PL’ 0- Art o By
_Bi _BL _Bi
b Dll A1 Dll A& 11 A&
1 1 1
L 14 v 4.2
K = koL : Ky = Kn L'r : (52)
b( 11_& b Dn_&
A, A
L.12
K = ksL

2
o
A,
Assuming w(x,t) =y (X)u(t) where w(x) is the first eigen
mode of the beam and applying the Galerkin method, the

equation of motion is obtained as

d?u

pro Au+Au®+Au’=0 (53)
where, A =a, +a,P+a, +3_,A =38, A=a,+a
and a,,a,,8;,85,3, ,8 & aregivenas
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OBy e TEY goux

a =t ap =2 8, =k

j w? (X)dx j w? (X)dx
a, =-ksa,,a, :—B[w—dy/(o)}ap (54)

s dx dx

) [w* ()ax
a; = _QJWZ(X)dXvakNL =Ky, 2

0 j 2(x)dx

For simply supported beam,
yx(x)—sm(q j q=r.

For clamped-clamped beam,

w(X)= (cosh q—li( —cos%j -

3 coshq—cosg (sinh%—sin %j

sinhg—sing
q=4.730041.

For clamped-simply supported beam,

w(X)= (cosh qL —cos qxj

cosh g —cosq (sinh ax qxj
L L

- - —sin—
sinhg-sing L
0=3.926602.

Now the post-bucking load-deflection relation for the
problem can be obtained from (13) as

F :—(a1+akL +a, +3,u+(a, +akNL)u2)/ap (55)

Neglecting the contribution of u in (55), the buckling load
can be determined as

RLILELY! &

The center of the beam is subjected to the following initial
conditions as u(0) =a,u'(0) =0 where a denotes the non-
dimensional maximum amplitude of oscillation. Comparing
(20) and (33), we get the approximate solution up to the first
order from (27) as
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2 3 3
Uprpem (1) =— ':232 +(a+ gzaz - :2332 ]coswt
9 @ w (57)
2 3
+ A2a2 CoS 2wt + %az cos 3wt
32
and the frequency of oscillation is obtained from (28) as
- a2 (58)

which is same as calculated by variation iteration method
[22].

Case 4

To develop the understanding of the nonlinear frequency of
beam vibrations, this paper brings quintic nonlinearities into
consideration. The analytical solution for geometrically
nonlinear vibration of the Euler-Bernoulli beam including
quintic nonlinearity is obtained using Aboodh transform and
homotopy perturbation method [23]. The nonlinear ordinary
differential equation of the beam vibration is extracted from
the partial differential equation with first mode
approximation based on the Galerkin theory.

Consider the Euler-Bernoulli beam of length I, mass per unit
length 4, moment of inertia | and modulus of elasticity E
which is axially compressed by loading P as shown in figure
8 and figure 9.

Elis

| |- P

A , A

Figure 8. Schematic of uniform Euler-Bernoulli simply supported beam

El -

e

Figure 9. Schematic of uniform Euler-Bernoulli clamped-clamped beam

Denoting the transverse deflection by w(x,f), the differential

equation governing the equilibrium in the deformed situation
is derived as
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d’ Elw"(x,t)
dx’® JLHwW?(x,1)

+uW"(X,t) =0

"yt E 20yt
J+PW (X,t)(l+2W (x,t)j (59)

Here, prime defines the derivative with respect to x. Using
the approximation, we can write the exact expression for the
curvature as

Wb e =W"(x,f)(1—§w‘2+EW'4j (60)
(1+W'2(x,f)) 2 8

So, now we can rewrite (59) with the help of (60) as

Elw"™(x,t) (1—%W'2+%W'Aj—gElw'"W"W'

WP = 3EIw 4 22

+§ Elw Elw™ w* (61)

+Pw"(1+gw'2]+,uw =0

This equation is subjected to the following boundary
conditions:

For simply supported (S-S) beam,

w(0,t) =w"(0,t) =0 and w(l,t) =w"(I,t) =0
For clamped-clamped (C-C) beam,

w(0,t) =w(l,t) =0 and w'(0,t) =w'(l,t) =0

Assuming w(x,t) =y (X)u(t) where w(x) is the first eigen
mode of the beam vibration, it can be expressed as

For simply supported beam, (x) = sin (”TX)

2 2
For clamped-clamped beam, y(x) = Gj (1—?]

Now, the Bubnov-Galerkin method gives
|
j(ElW""(X,t)[l—EW'2+EW'4J—9E|W'"W"W'
5 2 8

W= 3E w4 2

+% Elw ® Bl w? (62)
w1, 3,0
+Pw 1+EW + 4w | (X)dx =0
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and

—|CI

Now, introducing the non-dimensional variables u =

t :MEI / ul*, the non-dimensional nonlinear equation of
motion about its first bucking mode can be written as

d?u

F+A&U+A3u3+,%u5 -0 (63)
where,
for S-S beam
_ 4_|3|27r2 _ 3 e_3P|27r4 157°

for C-C beam,

2 2
A 500534 2 142P1 :_6.654_%
A, =-0.3673

In this study, we have employed to solve the governing
equation of vibration of quintic nonlinear beams by using
ATHPM. With the initial conditions as u(0) =a,u'(0)=0
and comparing (20) and (33), we get the approximate
solution up to first order from (27) as

AL A2’
Uprpem (1) = [a "0’ 38407 cos wt

3 5 5
+i2 A2 +5A5a cos 3wt + A 2cosSa)t
8w 4 16 384w

(64)

and the frequency of oscillation is obtained from (28) as

B 3Aa° 5AQ*
W= \/Al + 4 +—8

(65)

which are same as calculated by maximum-minimum
approach [21].

V. CONCLUSION

In this paper, the ATHPM has been implemented in order to
analyse the equation of motion associated with the nonlinear
vibration of Euler-Bernoulli beams. All the examples show
that the presented results are in excellent agreement with
those obtained by the exact numerical solution. We may also
conclude that this technique is not only simple but also
elegant way to study a wide class of realistic non-exactly
solvable problems.
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