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Abstract— Aboodh transform (AT) in combination with the homotopy perturbation method (HPM) is employed to solve the 

nonlinear differential equation of motion for Euler-Bernoulli beams in a unified way. Aboodh transform based homotopy 

perturbation method (ATHPM) is found to give analytic solutions with all perturbative corrections to both the displacement and 

the oscillation frequency in a very simple and straight forward manner. Here, we have also demonstrated the sophistication and 

simplicity of this technique. 
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I.  INTRODUCTION  

From simply supported to clamped-clamped structures, 

understanding of the dynamic response of large amplitudes 

of beam vibration has attracted numerous researchers and 

engineers over several decades. They are encountered in 

many engineering applications from bridges to robot arms. 

The main inquisitiveness is to find the difference in the 

characteristics of dynamic response from those defined via 

linear theory. Researchers have explored the problem of 

beam vibration with different boundary conditions and 

hypotheses. They predicted the nonlinear frequency of beams 

which is principal to the design of engineering structures. 

The Euler-Bernoulli theory of beams, relating the beam’s 

deflection and applied load, provides a reasonable 

explanation for the bending behavior of long isotropic 

beams. These vibration problems of the beam can be solved 

by both analytical and numerical methods. 

The solution to the nonlinear problems are difficult to find 

and most of them are not exactly solvable. Although the 

numerical solution to the nonlinear problems is easy, one 

desires to find the analytical solution to get a better insight of 

the problem. There are many techniques for solving 

nonlinear problems such as the harmonic balance method, 

Krylov-Bogoliubov-Mitropolsky method, weighted 

linearization method, perturbation procedure for limit cycle 

analysis, modified Lindstedt-Poincare method, Adomain 

decomposition method, artificial parameter method, and 

Nikiforov-Uvarov method [1-9]. Not only these methods 

have complex calculations, but they fail to handle problems 

with strong nonlinearity. 

The homotopy perturbation method (HPM) has been found to 

be very efficient for solving nonlinear equations with known 

initial or boundary values especially for systems with strong 

non-linearity in classical and quantum mechanical problems 

[10-14]. In this method, the solution is given in an infinite 

series usually converges to an accurate solution [13]. Aboodh 

introduced a transform derived from the classical Fourier 

integral for solving ordinary and partial differential equations 

easily in the time (t) domain [15]. Aboodh transform (AT) 

has been applied to different types of problems and is found 

to be very simple but powerful technique [17,18]. 

In this article, we have applied ATHPM to solve the 

nonlinear differential equations with different types of Euler-

Bernoulli beams in a generalized way to obtain the 

approximate displacement u and the oscillating frequency ω 

with high accuracy. 

This paper is organized as follows. In section II, we 

demonstrate briefly the formulation of ATHPM. 

Applications of ATHPM to the Euler-Bernoulli beams 

problems have been shown in section III. In section IV we 

present some examples cases. Finally, in section V we 

provide a brief discussion and our conclusion. 
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II. FORMULATION OF ATHPM  

Aboodh transform is defined for function of exponential 

order in a set A where 
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The constant M must be finite number and
1 2,k k may be finite 

or infinite. If ( )u t is the piecewise continuous function 

for 0t  , the corresponding Aboodh Transform ( )u  is 

defined as 
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Some properties of Aboodh Transform which are necessary 

for our calculations are 
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Let us consider a nonlinear non-homogeneous differential 

equation as 

 2( ) ( ) ( ) ( ) ( )Lu t u t Ru t Nu t g t            (7)

with the initial condition
0

(0) (0)u u and '

0 (0) 0u  . Here, L is 

the second order linear differential operator 2 2( / )L t   , R  

is the linear operator having an order less than L , N is the 

nonlinear operator, ( )g t is the non-homogeneous term and 2  

is any parameter. 

Now, taking the Aboodh Transform on both sides of (7) we 

get 

 2[ ( )] [ ( )] [ ( )] [ ( )] [ ( )]A Lu t A u t A Ru t A Nu t A g t           (8) 

Using the differential properties of the Aboodh Transform as 

mentioned above and the initial conditions (8) can be written
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Taking Inverse Aboodh Transform on both sides of (9) leads 

to 
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where the solution of zeroth order correction is 
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According to the homotopy perturbation method, we can 

write 
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and the nonlinear term as 
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where He’s polynomial ( )nH u is given by 
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Here, n corresponds to the order of correction terms. 

Substituting the value of ( )u t and ( )Nu t in (10), we get 
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Equation (15) is the combination of the Aboodh Transform 

and the homotopy perturbation method using He’s 

polynomials. Comparing the coefficient of like power of p, 

we get from (15) the following equations 

              0
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The approximate solution is 
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III. APPLICATION OF ATHPM TO SOLVE NONLINEAR 

DIFFERENTIAL EQUATIONS 

To assess the advantages and accuracy of ATHPM, we 

consider the following non-linear differential equation as 
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Now, for our purpose we rewrite (20) as 
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where, is the unknown frequency to be determined. Using 

the differential properties of the Aboodh Transform and the 
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Taking the inverse Aboodh Transform on both sides of (22) 

we get 
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Applying the HPM to (23) as before, we get the zeroth order 

correction of the displacement as 

 0

0: ( ) cosp u t a t                   (24) 

and the first order correction as 
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After some mathematical calculation of inverse Aboodh 

Transform, we get the first order correction as 
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Finally, we obtain the approximate solution by ATHPM up 

to first order correction as 
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and the frequency of oscillation as, 
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Figure 1.  Time(t) vs displacement(x) curves obtained from numerical 

(RK), ATHMP and IPM with A1 = 1, A2 = 0, A3 = 10, A5 = 100 and a = 0.1 

We have plotted the displacement x(t) from numerical 

solution for A1 = 1, A2 = 0, A3 = 10, A5 = 100, a = 0.1 and 

compared the same obtained from Runge-Kutta (RK) and 

Iteration Perturbation Method (IPM) calculations. It is found 

that the displacement obtained from RK, ATHPM and IPM 

are matching very closely. 

IV. RESULTS AND DISCUSSION 

Here we discuss different cases of Euler-Bernoulli beams 

subjected to different kinds of loading. 

Case 1 

Using ATHPM we obtain the analytical expression for 

geometrically non-linear vibration of clamped-clamped 

Euler-Bernoulli beams fixed at one end. This type of 

geometric nonlinearity arises from nonlinear strain-

displacement relationships. Sources of this type of 

nonlinearity include mid-plane stretching, large curvatures of 

structural elements and large rotation of elements.  

Consider a straight beam on an elastic foundation with length 

L, cross-section area A, mass per unit length μ, moment of 

inertia I and modulus of elasticity E that is subjected to an 

axial force of magnitude F' as shown in figure 2. 

 

Figure 2.  Schematic of Euler-Bernoulli beam subjected to an axial load 

We assumed that the cross-sectional area of the beam is 

uniform and its material is homogenous. Here the schematic 

is modelled according to the Euler-Bernoulli beam theory 

[19]. Planes of the cross section remain plane after 

deformation, straight lines normal to mid plane of the beam 

remain normal, and straight lines in the transverse direction 

of the cross section do not change length. First, we assume 

that there is no in plane deformation. Second, we ignore the 

transverse shear strains and consequently the rotation of the 

cross section is due to bending. Lastly, we assume that there 

are no transverse normal strains. The equation of motion with 

the effects of mid-plane stretching is given by 
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where, C is the viscous damping coefficient, K' is the 

foundation modulus and U is the distributed load in the 

transverse direction. We assume that here the non-

conservative force ( ', ')U x t is zero. So, (29) can be written as 
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For convenience, we have used the following non-

dimensional variables 
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where, /R I A is the radius of gyration of the cross-

section. With the help of (31), (30) can be written as 
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Using separation of variables as ( , ) ( ) ( )W x t x u t , where 

( )x is the first eigen mode of the beam and applying the 

Galerkin method, the equation of motion is obtained from 

(32) as 
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Equation (33) is the governing nonlinear vibration equation 

of Euler-Bernoulli beams. The center of the beam is 

subjected to the following initial conditions 

as (0) , '(0) 0u a u  . Here a is the non-dimensional 

maximum amplitude of oscillation. Comparing (20) and (33), 

we get the approximate solution up to first order from (27) as 

 
3 3

3 3

2 2
( ) cos cos3

32 32

A a A a
u t a t t 

 

   
     
   

      (35) 

and the frequency of oscillation is obtained from (28) as 
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In figure 3 we have plotted the displacement x(t) from 

numerical solution for A1 = 3.1415, A3 = 0.15, a = 1 and 

compared the same obtained from Runge-Kutta (RK) and 

Analytical Approximation Technique (AAT) calculations. It 

is found that the displacement obtained from RK, ATHPM 

and AAT are matching very closely. 

 

Figure 3.  Time(t) vs displacement(x) curves obtained from numerical 

(RK), ATHMP and AAT with A1 = 3.1415, A3 = 0.15 and a = 1 

Case 2 

Here, we consider a straight Euler-Bernoulli beam that is 

subjected to an axial force of magnitude P  as shown in 

figure 4 and figure 5. If we substitute 0K  , the equation of 

motion is directly obtained from (33) as 
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where,
1 1 2 3 3,A a a F A a   and 

1 2 3, ,a a a are same as in (34). 

 

Figure 4.  Schematic of Euler-Bernoulli simply supported beam subjected 

to an axial load 

 

Figure 5.  Schematic of Euler-Bernoulli clamped-clamped beam subjected 

to an axial load 

Now the post-bucking load-deflection relation for the 

problem can be obtained from (37) as 

 
 3

1 3

2

a a u
F

a


                    (38) 
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Neglecting the contribution of u in (38), the buckling load 

can be determined as 

 1

2

c

a
F

a
                    (39) 

The center of the beam is subjected to the following initial 

conditions as (0) , '(0) 0.u a u  Here a is the non-

dimensional maximum amplitude of oscillation. Comparing 

(20) and (33), we get the approximate solution up to the first 

order from (27) as 

 
3 3

3 3

2 2
( ) cos cos3

32 32

A a A a
u t a t t 

 

   
     
   

      (40) 

and the frequency of oscillation is obtained from (28) as 

 
3

3

1

3

4

A a
A                     (41) 

which is same as obtained by the max-min approach [21]. 

The approximate solution obtained by max-min approach is 

 
2

3

1

3
( ) cos

4
MMA

A a
u t a A t

 
  
 
 

      (42) 

 

Figure 6.  Time(t) vs displacement(x) curves obtained from numerical 

(RK), ATHMP and MMA with A1 = 1, A2 = 0, A3 = 1.814 and a = 1 

We have plotted the displacement x(t) from numerical 

solution for A1 = 1, A2 = 0, A3 = 1.814, a = 1 and compared 

the same obtained from Runge-Kutta (RK) and Maximum-

Minimum Approach (MMA) calculations. It is found that the 

displacement obtained from RK, ATHPM and MMA are 

matching very closely. 

Case 3 

A new kind of composite material known as functionally 

graded materials (FGMs) has received significant interest 

recently [22]. FGMs mare made from a mixture of materials 

and ceramics. They are further characterized by a smooth and 

continuous change of mechanical properties from one surface 

to another. FGMs were initially designed as thermal barrier 

materials for aerospace structures and fusion reactors where 

extremely higher temperature and large thermal gradient 

exist. With the increasing demand, FGMs have been widely 

used in general structures. Hence, many FGM structures have 

been studied, such as functionally graded(FG) beams, plates 

and shells. Due to the huge application of the beams in 

different fields such as civil, marine and aerospace 

engineering, it is necessary to study the dynamical behavior 

at large amplitudes which are effectively nonlinear. 

Let us consider a straight functionally graded (FG) beam of 

length L, width b and thickness h which rests on an elastic 

nonlinear foundation and is subjected to an axial force of 

magnitude P as shown in figure 7. 

 

Figure 7.  Schematic of FG beam with a nonlinear foundation 

The beam is supported on an elastic function with cubic non-

linearity and shearing layer. In this study, material properties 

are considered to vary in accordance with the rule of 

mixtures as 

 
M M C CP P V P V                    (43) 

where P and V are the material property and volume fraction, 

respectively, and the subscripts M and C refer to the metal 

and ceramic constituents respectively. Simple power law 

distribution from pure metal at the bottom face ( / 2z h   ) 

to pure ceramic at the top face ( / 2z h   ) in terms of 

volume fractions of the constituents is assumed as 

 
2

, 1
2

n

C M C

h z
V V V

h

 
    
 

      (44) 

where n is the volume fraction exponent. The value of n 

equal to zero pre-presents a fully ceramic beam. The 

mechanical and thermal properties of FGMs are determined 

from the volume fraction of material constituents. We 
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assume the non-homogeneous material properties such as the 

modulus of elasticity E, Poisson’s ratio υ and mass density ρ 

which can be determined by substituting (44) into (43) as 

 

   

   

   

2

2

2

2

2

2

n

M C M

n

M C M

n

M C M

h z
E z E E E

h

h z
z

h

h z
z

h

   

   

 
     

 

 
     

 

 
     

 

      (45) 

The force and moment results per unit length, based on 

classical theory of beams in a Cartesian coordinate system, 

can be written as 

 

2

11 11

2
11 11

2

1

2
x

x

u w

N A B x x
b

M B D w

x

   
               

    
 

 

      (46) 

in which w and u  are the transverse and axial displacements 

of the beam along the z and x directions respectively. The 

stiffness coefficients
11 11 11, ,A B D are given as 

    
2

2

11 11 11 2

2

( )
, , 1, ,

1 ( )

h

h

E z
A B D z z dz

z





       (47) 

After some mathematical simplifications, the governing 

equation of nonlinear free vibration of a FG beam in terms of 

transverse displacement can be written as 

 

2
22 4

11 11

112 4 0
11

2

11

2

2

( , ) (0, )

2

L

w

B bAw w w
I b D P d x

A L xt x

bB w L t w t w
F

L x x x

     
             

   
        


       (48) 

Here I and
w

F  are the inertial term and reaction of the elastic 

foundation on the beam which are defined as 

  
22

3

2

2

,

h

L NL S
w

h

w
I z d z F k w k w k

x





    


               (49) 

where, Lk and NLk are linear and nonlinear elastic foundation 

coefficients, respectively, and Sk  is the coefficient of shear 

stiffness of the elastic foundation.  For convenience, we use 

the following non-dimensional variables 

 

2

11
11

11

4
, ,

B
b D

Ax w
x w t t

L r IL

 
 

 
         (50) 

where, /r I A is the radius of gyration of the cross-

section. Using (48) and (49) together with the dimensionless 

variables defined in (50), the dimensional form of the 

governing equation becomes 

 

222 4

11

112 4 0
11

2 2
3

2 2

1

2

(1, ) (0, )
0

L
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Bw w w
I b D P Q dx
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    
            

     
           
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(51) 

where 
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2 2 2
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11 11 11
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A
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 
   

    
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
 
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 

      (52) 

Assuming ( , ) ( ) ( )w x t x u t where ( )x is the first eigen 

mode of the beam and applying the Galerkin method, the 

equation of motion is obtained as 

 
2

2 3

1 2 32
0

d u
Au A u A u

dt
          (53) 

where, 1 1 2 2 3 3, ,
L S NLP k k kA a a P a a A a A a a         

and 1 2 3, , , , , ,
L NL SP k k ka a a a a a a are given as 
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 (54) 

For simply supported beam, 

( ) sin , .
qx

x q
L

 
 

  
 

 

For clamped-clamped beam, 

cosh cos
( ) cosh cos sinh sin

sinh sin

qx qx q q qx qx
x

L L q q L L


   
      

   

 q=4.730041. 

For clamped-simply supported beam, 

cosh cos
( ) cosh cos sinh sin

sinh sin

qx qx q q qx qx
x

L L q q L L


   
      

   

 q=3.926602. 

Now the post-bucking load-deflection relation for the 

problem can be obtained from (13) as 

   2

1 2 3 /
L S NLk k k PF a a a a u a a u a                     (55) 

Neglecting the contribution of u in (55), the buckling load 

can be determined as 

 
 1 L Sk k

C

P

a a a
F

a

  
                   (56) 

The center of the beam is subjected to the following initial 

conditions as (0) , '(0) 0u a u  where a denotes the non-

dimensional maximum amplitude of oscillation. Comparing 

(20) and (33), we get the approximate solution up to the first 

order from (27) as 

 

32 3

32 2

2 2 2

32

32

2 2

( ) cos
2 3 32

cos 2 cos3
6 32

ATHPM

A aA a A a
u t a t

A aA a
t t
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  

 
 

 
     

 

 

             (57) 

and the frequency of oscillation is obtained from (28) as 

 
2

3

1

3

4

A a
A                     (58) 

which is same as calculated by variation iteration method 

[22]. 

Case 4 

To develop the understanding of the nonlinear frequency of 

beam vibrations, this paper brings quintic nonlinearities into 

consideration. The analytical solution for geometrically 

nonlinear vibration of the Euler-Bernoulli beam including 

quintic nonlinearity is obtained using Aboodh transform and 

homotopy perturbation method [23]. The nonlinear ordinary 

differential equation of the beam vibration is extracted from 

the partial differential equation with first mode 

approximation based on the Galerkin theory. 

Consider the Euler-Bernoulli beam of length l, mass per unit 

length μ, moment of inertia I and modulus of elasticity E 

which is axially compressed by loading P as shown in figure 

8 and figure 9. 

 

Figure 8.  Schematic of uniform Euler-Bernoulli simply supported beam 

 

Figure 9.  Schematic of uniform Euler-Bernoulli clamped-clamped beam 

Denoting the transverse deflection by ( , ),w x t  the differential 

equation governing the equilibrium in the deformed situation 

is derived as 
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2
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21 ' ( , )
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    

 

            (59) 

Here, prime defines the derivative with respect to x. Using 

the approximation, we can write the exact expression for the 

curvature as 
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"( , ) 1 ' '

2 8
1 ' ( , )

w x t
w x t w w

w x t

 
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             (60) 

So, now we can rewrite (59) with the help of (60) as 
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               (61) 

This equation is subjected to the following boundary 

conditions: 

For simply supported (S-S) beam, 

(0, ) "(0, ) 0w t w t  and ( , ) "( , ) 0w l t w l t   

For clamped-clamped (C-C) beam, 

(0, ) ( , ) 0w t w l t   and '(0, ) '( , ) 0w t w l t   

Assuming ( , ) ( ) ( )w x t x u t where ( )x is the first eigen 

mode of the beam vibration, it can be expressed as 

For simply supported beam, ( ) sin
x

x
l




 
  

 
 

For clamped-clamped beam,

2 2

( ) 1
x x

x
l l


   

    
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Now, the Bubnov-Galerkin method gives 
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 (62) 

Now, introducing the non-dimensional variables
u

u
l

 and 

4/ ,t t EI L the non-dimensional nonlinear equation of 

motion about its first bucking mode can be written as 
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1 3 52
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d u
Au A u A u

dt
          (63) 

where, 

for S-S beam 

2 2 2 4 8
4 6

1 3 5

3 3 15
, ,

8 8 64

Pl Pl
A A A

EI EI

  
         

for C-C beam, 

2 2

1 3

5

12.142 0.1694
500.534 , 6.654

0.3673

Pl Pl
A A

EI EI

A

    

 

 

 In this study, we have employed to solve the governing 

equation of vibration of quintic nonlinear beams by using 

ATHPM. With the initial conditions as (0) , '(0) 0u a u   

and comparing (20) and (33), we get the approximate 

solution up to first order from (27) as 
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            (64) 

and the frequency of oscillation is obtained from (28) as 

 
2 4

3 5

1

3 5

4 8

A a A a
A      (65) 

which are same as calculated by maximum-minimum 

approach [21]. 

V. CONCLUSION 

In this paper, the ATHPM has been implemented in order to 

analyse the equation of motion associated with the nonlinear 

vibration of Euler-Bernoulli beams. All the examples show 

that the presented results are in excellent agreement with 

those obtained by the exact numerical solution. We may also 

conclude that this technique is not only simple but also 

elegant way to study a wide class of realistic non-exactly 

solvable problems. 
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