
 © 2017, IJCSE All Rights Reserved 41

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-12 E-ISSN: 2347-2693

An Evidential approach on Feature Subset Selection in Software Defect

Prediction

M. Jaikumar
1*

 and V. Kathiresan
2

1*
Department of Computer Applications, Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore, India

2
Department of Computer Applications, Dr.SNS Rajalakshmi College of Arts and Science, Coimbatore, India

*Corresponding Author: jai2911@gmail.com

Available online at: www.ijcseonline.org

Received: 09/Nov/2017, Revised: 22/Nov/2017, Accepted: 17/Dec/2017, Published: 31/Dec/2017

Abstract-In software quality research, software defect is a key topic. The characteristic of software attributes influences the

performance and effectiveness of the defect prediction model. However this issue is not well explored to the best of our

knowledge. So this paper focus on the problem of attribute selection in the context of software defect prediction, we propose a

Dempster-Shafer Theory technique with modified combination rule known as Dubois And Prade’s Disjunctive Consensus Rule

is adapted for selecting best set of attributes to improve the accuracy of the software defect prediction. Dempster-Shafer Theory

(DST) offers an alternative to traditional probabilistic theory for the mathematical representation of uncertainty. The proposed

method is evaluated using the data sets from NASA metric data repository.

Keywords- Software Defect, prediction, dempster shafer theory, probability, evidence, reliability

I. INTRODUCTION

A software defect is an error, flaw, failure, or fault in a
computer program or system that causes it to produce an
incorrect or unexpected result, or to behave in unintended
ways. Most defects arise from mistakes and errors made by
people in either a program's source code or its design, or in
frameworks and operating systems used by such programs,
and a few are caused by compilers producing incorrect code.

Software defect prediction aims to determine whether a
software module is defect-prone by constructing prediction
models. The performance of such models is susceptible to the
high dimensionality of the datasets that may include irrelevant
and redundant features. Feature selection is applied to
alleviate this issue. Because many feature selection methods
have been proposed, there is an imperative need to analyze
and compare these methods in case of uncertainty in selection
of attributes. Prior empirical studies may have potential
controversies and limitations, such as the contradictory results,
usage of private datasets and inappropriate statistical test
techniques. This observation leads us to conduct a careful
empirical study to reinforce the confidence of the
experimental.

II. RELATED WORK

A survey is conducted to help developers identify defects
based on existing software metrics using data mining
techniques especially Classification and there by improve
software quality which leads to reduction in the software
development cost in the development and maintenance phase.
Some of the existing works are explained in this section.

Yuan Chen, et.al[3] have surveyed the different data mining
classification techniques for software defect prediction. They
proposed a new model based on Bayesian network and PRM
to predict the software defect and manage. Hassan Najadat
and IzzatAlsmadi[4]Proposed a new model based on Ridor
algorithm to predict fault in modules. They also tested the
different classification techniques on the data sets provided by
NASA. The result shows that Ridor algorithm is better than
the existing technique in terms of accuracy and extraction of
number of rules. Ahmet Okutan,OlcayTanerYıldız [5],
introduced a new two metrics NOD, for the number of
developers and LOCQ for source code quality apart from the
metrics which is available in Promise data repository. Using
Bayesian network classifier experimental shows that NOC
&DIT have very limited and untrustworthy. LOCQ is more
effective like CBO & WMC. NOD metric showed that there is
a positive correlation between the no of developers and extent
of defect prunes. LOC is proved to be one of the best metric
for quick defect prediction. LCOM3 & LCOM have less
effective compared to LOC,CBO,RFC, and LOCQ&WMC.
Thair Nu Phyu [6] reviewed on various classification
techniques such as decision tree induction, Bayesian networks,
k-nearest neighbor classifier, case-based reasoning, genetic
algorithm and fuzzy logic techniques. The results found that
there is no proper info that which is the best classifier. Several
of the classification methods produce a set of interacting loci
that best predict the phenotype. However, a straightforward
application of classification methods to large numbers of
markers has a potential risk picking up randomly associated
markers.

K.Sankar et.al [7], proposed a system which overcomes the
problem of insufficiency in accuracy and use of large number
of features. This paper proposed Feature selection techniques

International Journal of Computer Sciences and Engineering Vol.5 (12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 42

to predict faults in software code and it also measure the
software code and performance of Naive based and SVM
classifier. The accuracy is measured by F-mean metric the
best defect predictor when compared to the others.

Yan ma et.al [8] proposed a model based on random forests.
This is applied on five case studies based on NASA data sets.
The results found was better than the result obtained by
logistic regression, discriminate analysis and the algorithms in
two machine learning software packages . Instead of
generating one decision tree, this methodology generates
hundreds or even thousands of trees using subsets of the
training data. Hence classification accuracy of random forests
is more significant over other methods in larger data sets

C.Chung and S.Dhall [9] proposed a various classification
methods to predict software defect. Here Three types of
classifier such as J48, Random Forest and Naive Bayesian
Classifier is applied on various real time data sets of NASA to
evaluate the data sets based on different criteria like ROC,
Precision, MAE, RAE etc

Sonali Agarwal and DivyaTomar[10] have proposed a feature
selection based Linear Twin Support Vector Machine
(LSTSVM) model to predict defect prone software modules.
F-score technique is used for software defect prediction based
on various software metrics. This model is applied on
PROMISE data sets and compared with the other existing
models. The results say that the performance of the new model
is better than the existing machine learning models

Thair Nu Phyu [6] reviewed on various classification
techniques such as decision tree induction, Bayesian networks,
k-nearest neighbor classifier, case-based reasoning, genetic
algorithm and fuzzy logic techniques. The results found that
there is no proper info that which is the best classifier. Several
of the classification methods produce a set of interacting loci
that best predict the phenotype. However, a straightforward
application of classification methods to large numbers of
markers has a potential risk picking up randomly associated
markers. Ching-PaoChanget al.[11] proposed approach,
Action-Based Defect Prediction (ABDP),which uses the
classification with decision tree technique to build a prediction
model, and performs association rule mining on the records of
actions and defects. The association rule mining finds the
maximum rule set with specific minimum support and
confidence and thus the discovered knowledge can be utilized
to interpret the prediction models and software process
behaviors. It is used to discover defect patterns, and multi
interval discretization to handle the continuous attributes of
actions.

Ming Li, et al. proposed [12] a sample based methods for
software defect prediction. Three methods such as random
sampling with conventional machine learners, random
sampling with a semi-supervised learner and active sampling
with active semi-supervised learner. They applied a semi-
supervised learning method called AcoForest to build a
classification model based on a sample and the remaining un-
sampled modules they also proposed a novel active semi

supervised method called AcoForest which can select
unsampled modules and experimented on Promise data sets
and found to be the best method. Experimental results show
that size does not affect the defect prediction

Dhiman,et al. [13] proposed a model where in it will
categorize the software defects using some clustering
approach and then the software defects are measured in each
clustered separately. This system will analyze the software
defect and its integration with software module.

Xiao-YuanFing,et.al [14] have tried to model the effective
, efficient and low computational burden using advanced
machine learning technique such as collaborative
representative classification. The new model proposed by
them is CSDP which is used to predict defect in a very
efficient manner. KehanGao&Taghi M [15] experimented on
promise repository based on criteria 1) Feature selection based
on sampled data, and modeling based on original data, 2)
feature selection based on sampled data and modeling based
on sampled data and 3) feature selection based on sampled
data, and modeling based sample data. The experimental
results showed that the 1st criteria is the best compared to the
others in defect prediction.

III. COMPONENTS IN FEATURE SELECTION

Feature selection algorithms to investigate during the splits
of features and attempt to locate the finest in the midst of the
opposing 2N applicant subsets according to a few assessment
function. On the other hand this method is complete and it
may be too expensive yet for a intermediate sized feature
set(N). Other techniques based on heuristic or accidental
search methods effort to decrease computational difficulty by
negotiation performance [16]. There are four fundamental
steps in a characteristic feature assortment method [16,17]
such as subset generation, Feature evaluation function,
stopping criterion and a validation procedure as depicted in
Figure 1.

Figure 1: General Feature Selection process

Feature Selection Technique

Original

Feature

set

Featur

e

Subset

Gener

ation

Stoppin

g

criteria

Feature

Subset

Evaluation

Validatin

g Result

Y

e

s

N

o

International Journal of Computer Sciences and Engineering Vol.5 (12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 43

A. DEMPSTER-SHAFER THEORY

Dempster-Shafer Theory (DST) is a mathematical theory of
evidence. The seminal work on the subject is [21], which is an
expansion of [20]. In a finite discrete space, Dempster-Shafer
theory can be interpreted as a generalization of probability
theory where probabilities are assigned to sets as opposed to
mutually exclusive singletons. In traditional probability
theory, evidence is associated with only one possible event. In
DST, evidence can be associated with multiple possible
events, e.g., sets of events. As a result, evidence in DST can
be meaningful at a higher level of abstraction without having
to resort to assumptions about the events within the evidential
set. Where the evidence is sufficient enough to permit the
assignment of probabilities to single events, the Dempster-
Shafer model collapses to the traditional probabilistic
formulation. One of the most important features of Dempster-
Shafer theory is that the model is designed to cope with
varying levels of precision regarding the information and no
further assumptions are needed to represent the information. It
also allows for the direct representation of uncertainty of
system responses where an imprecise input can be
characterized by a set or an interval and the resulting output is
a set or an interval. There are three important functions in
Dempster-Shafer theory: the basic probability assignment
function (bpa or m), the Belief function (Bel), and the
Plausibility function (Pl). The basic probability assignment
(bpa) is a primitive of evidence theory. Generally speaking,
the term “basic probability assignment” does not refer to
probability in the classical sense. The bpa, represented by m,
defines a mapping of the power set to the interval between 0
and 1, where the bpa of the null set is 0 and the summation of
the bpa’s of all the subsets of the power set is 1. The value of
the bpa for a given set A (represented as m(A)), expresses the
proportion of all relevant and available evidence that supports
the claim that a particular element of X (the universal set)
belongs to the set A but to no particular subset of A [22]. The
value of m(A) pertains only to the set A and makes no
additional claims about any subsets of A. Any further
evidence on the subsets of A would be represented by another
bpa, i.e. B Ì A, m(B) would the bpa for the subset B. Formally,
this description of m can be represented with the following
three equations:

B. Proposed Supervised Mutual Information (DEMPSTER

SHAFER)with modified combination rule

In supervised MI the features gives a higher classification
performance. Individual best features unless they are
combined they will give a good classification performance.
All the features having high of relevancy with each classes. If
the value of the features are inappropriately combined then the
redundancy between the features will be inappropriate. Based
on the above observations, a new algorithm is proposed to
determine the redundancy between the selected features and
the candidate features and the relevancy of each attribute is
measure using the dempster’s belief and plausibility functions.

C. The Frame of Discernment (Θ)

The Hypothesis space is describing all the sets in the complete
(exhaustive) space. Θ symbol denotes the frame and the
elements are mutually exclusive. If the number of the
elements in the set is n, then the power set (set of all subsets of
(Θ) will have 2n elements.

D. BPA (Basic Probability Assignment)

In BPA the theory of evidence assigns a Belief mass. Each
Belief mass is assigned to a subset. All the subset is called
power set. 0and 1 are the positive no given for the sets. In this
form the probability value exists.

If Θ is the frame of discernment, then a function

m: 2Θ  [0, 1] is called a bpa, whenever (1)

 m (∅) = 0 and (2)

 Σ m (A) = 1 and (3)

 A  Θ (4)

Belief (Bel)

Given a frame of discernment Θ and a body of empirical
evidence {m(B1), m(B2), m(B3)….}, the belief committed to
A ε Θ is

 Bel (A) = Σ m(Bi) (5)

 B ⊆ A (6)

 Also, Bel (Θ) = 1 (7)

Plausibility Function (Pl)

 The plausibility is the sum of all the masses values. The
sum of all mass value is Set B.

 Set B intersect the set A

 Pl (A) = Σ m (Bi) , B | B ⋂ A ≠∅ (8)

Belief Range

 The interval [Bel (A), Pl(A)] is called belief range.

 Plausibility (Pl) and Belief (Bel) are related as follows

 Pl(A) = 1 – Bel (Ᾱ) (9)

Dempster's Combination Rule

 The combination called the joint mass (m12) is calculated
from the two sets of masses m1 and m2.

 m12 (A) =

m2(C)] m1(B) , = C [B -1

 m2(C) m1(B) A, = C B







 (10)

Dempster-Shafer Attribute selection algorithm

International Journal of Computer Sciences and Engineering Vol.5 (12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 44

The generalization Bayesian statistical theory is essential in
Dempster–Shafer algorithm. Here all the new feature allows
and supports the distributing propositions (Eg. "Determine
defect") Dempster-Shafer reasoning system is enumerated by
"frame-of-discernment" system. All the mutual exclusive
context interpretation are enumerated and denoted by symbol
Θ. E.g.: “An instance is read form the dataset” for a reality
constrains this instance may belongs to “defect” or “no
defect”. The task specifies the instance identity as one of the
four possibilities.
Described by:

 (11)

Significances are represented as 1.” defect”, 2. ”no defect”,
3.“Either defect or no defect” actually an indication of
ignorance or “neither defect nor no defect” is an indication of
exceptional situation. For Software defect prediction, the
resulting computation complexity is low, as the frame of
discernment consists of only two elements (normal and
abnormal). There are up to three focal elements of belief
functions: {normal},{abnormal}, and {normal or abnormal}
(i.e. the uncertainty),resulting in low computation complexity

The Feature subset generation algorithm Si would contribute
its observation by assigning its “belief” with the form of

discernment symbol. Here, Si denotes Mi. The Probability
mass function is called the assignment function. The
probability are indicated by “confidence interval” is
observation is calculated by Lower bound and Upper bound
method. The probability of Si observation is “the detected
attribute is the Attribute-A”. According to confidence interval
the lower bound is “Belief” and Upper bound is "plausibility"

[Beliefi(A), Plausibilityi(A)]

Beliefi(A) is quantified by all the pieces of evidence Ek that
support proposition “Attribute-A”:

Beliefi(A) =


AE

ki

k

Em)(

 (12)

Plausibilityi(A) is quantified by all the pieces of evidence Ek
that do not rule out the proposition "Attribute-A":

Plausibilityi(A) =





AE

ki

k

Em)(1

(13)

For each proposition in Θ, e.g., "Attribute-A", Dempster-
Shafer theory gives a rule of combining Feature Subset Si’s
observation mi and Feature SubsetSj’s observation mj:




















kk

kk

EE

kjki

AEE

kjki

ji
EmEm

EmEm

Amm
)()(1

)()(

))((

(14)

This rule can be bounded directly, if it is viewed mj not as
Feature Subset Sj’s observation, instead of the previously
combined observations of Feature Subset Sk and Sl. Human

perception-Reasoning Process is captured by Dempster –
Shafer approach. Where the lower end “belief “and the upper
end “plausibility" are the two different key features captured
by Dempster – Shafer reasoning process. To compare in order
to show the difference, The Bayesian algorithm is a essential
subset of Dempster – Shafer approach. Here No mechanism is
provided for the quantitative dealings. Quantitative dealings
are the range of "belief" and "plausibility". These are humans
characteristic attach to the likelihood[20]. In some specific
problem the desired features of k varies. If DSI (fi) with DSI
(fi-1) is lower than the small value then the process will stop.
Here fi and fi-1 are the selected features. The iteration process
for the selected features is i-th and i-1th respectively. S is the
selected feature and fi fetches small information into S which
has already selected. This process leads to a slight change in
the classification where the result increases slightly [21].The
relationships between Belvalue, Pl value and uncertainty are
described in Figure 2.

Figure 2: The uncertainty interval for a hypothesis

Figure 3: Feature subset Selection in Software defect Prediction

m1(H) m2(H)

mn(H)

.

.

Software Defect Prediction

Dataset

Att1 Att2

Attn

.

.

Bpa

Assignment

Bpa

Assignment

Bpa

Assignment

.

.

DS Combination

m1,2…n(H), m1,2…n(￢H)

Instance is defect or no

defect

}},,{,,{ BABA

International Journal of Computer Sciences and Engineering Vol.5 (12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 45

The figure 3 depicts the overall flow of the proposed feature
subset selection using modified combined rule of Dempster-
shafer theory

DUBOIS AND PRADE’S DISJUNCTIVE CONSENSUS
RULE
Dubois and Prade take a set-theoretic view of a body of
evidence to form their disjunctive consensus rule in [24, 25].
They define the union of the basic probability assignments m1

È m2 (denoted by m(C)) by extending the set-theoretic
union:

m(C) = A B = C m 1 (A) m 2 (B)

For all A of the power set X. The union does not generate any
conflict and does not reject any of the information asserted by
the sources. As such, no normalization procedure is required.
The drawback of this method is that it may yield a more
imprecise result than desirable.
The union can be more easily performed via the belief
measure:

Let Bel11Bel2bethe belief measure associated with m1m2.
Then for every subset A of the universal setX,

Bel1(A)ÈBel2(A) = Bel1(A) Bel2(A)

The disjunctive pooling operation is commutative, associative,
but not idempotent.

Algorithm

1. Collect a training data set from the specific domain.

2. Shuffle the data set.

3. Break it into P partitions, (say P = 20)

4. For each partition (i = 0, 1, ..., P-1)

 a. Let OuterTrainset(i) = all partitions except i.

 b. Let OuterTestset(i) = the i’th partition

c. Let InnerTrain(i) = randomly chosen 70% of the

OuterTrainset(i).

d. Let InnerTest(i) = the remaining 30% of the

OuterTrainset(i).

e. For j = 0, 1, ..., m

 Search for the best feature set with j components,

fsij.using leave-one-out on InnerTrain(i) Let

InnerTestScoreij= RMS score of fsij on InnerTest(i).

End loop of (j).

 f. Select the fsij with the best inner test score.

 g. Let OuterScorei = RMSE score of the selected

feature set on OuterTestset(i) End of loop of (i).

5. Return the mean Outer Score

Dubois and Prade’s Disjunctive Consensus Pooling

The unions of multiple sets are summarized in Table 1.

Table 1: Results of union of multiple sets

Union Mè Linguistic Interpretation

AA 0 Failure of Component A

AB 0.0196 Failure of Component A or B

A C 0.9604 Failure of Component A or C

B B 0.0004 Failure of Component B

B C 0.0196 Failure of Component B or C

C C 0 Failure of Component C

ABC 1 Failure of Component A or B or C

Experimental Result

This paper has proposed dempster-shafer theory based
attribute selection process for software defect prediction. To
validate this process the dataset which is publicly available
from NASA MDP repository is used [1, 2]. The simulation of
this proposed work is done using matlab. This experiment
result uses 10-fold cross validation strategy for evaluating the
performance of feature subset selection algorithms namely
Greedy Search (GS), Random search (RS), Exhaustive
Research (ES) and Proposed Dempster Shafer feature
selection algorithm. To validate the each feature selection
technique rule induction classifier is used for finding the
performance of each in terms of correctly classified instances,
incorrectly classified instances, accuracy, precision and recall.
The detailed explanation of evaluation metric is shown in the
next subsection.

Evaluation Metrics

This work used four different NASA dataset namely CM1,
JM1, KC1, PC1. In order to select potential attributes from the
whole attributes given by these datasets, four feature selection
techniques are implied and their performance is compared
using the following metrics.

Table 2: The confusion matrix for the software defect
prediction is depicted in the following table 2.

Table 2: software defect prediction

Module actually has
defects

No (P) Yes(N)

Classifier predicts no
defects

No(P) a(TP) b(FP)

Classifier predicts some
defects

Yes(N) c (FN) d(TN)

TP = true positives: number of examples predicted positive
that are actually positive

 FP = false positives: number of examples predicted positive
that are actually negative

TN = true negatives: number of examples predicted negative
that are actually negative

International Journal of Computer Sciences and Engineering Vol.5 (12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 46

FN = false negatives: number of examples predicted negative
that are actually positive

Accuracy = dcba

da





= fnfptntp

tntp





 (15)

Probability of Detection =PD = Recall = db

d

 = fntp

tp


(16)

Probability of False Alarm = PF = ca

c

 = fptp

fp


(17)

Precision = dc

d

 = fptp

tp

 (18)

F –Measure= 2 * recallecision

recallecision

Pr

.Pr

(19)

Relative Absolute Error =
||...||

||...||

1

11

n

nn

aaaa

apap





(20)

Root relative squared error =

22

1

22

11

)(...)(

)(...)(

n

nn

aaaa

apap





(21)

Where,

Actual target values: a1 a2 … an

Predicted target values: p1 p2 … pn

Mean value of actual target values: a

Dataset Description

This subsection describes the datasets used in this work. Four
public data sets CM1, JM1, PC1 and KC1obtained from
NASA MDP [1, 2] Repository made available by PROMISE
[3]are used for evaluation of the proposed work. Each of these
dataset consists of a set of features characterized by static code
metrics, such as LOC counts, Halstead and McCabe
complexity metrics. These features are characterizing
objectively the software quality. The In McCabe metrics are a
collection of four software metrics: Essential complexity,
cyclomatic complexity, design complexity and Lines of
Code.CM1 dataset consists of 498 instances, JM1 consists of
10885, KC1 dataset consists of 2109 instances and PC1
contains 1109 instances. All the 4 dataset consists of 22
attributes. In the dataset 5 of the attributes are used for
representing different lines of code measure, 3 attributes
represents the McCabe metrics, 4 attributes refers to Halstead
measures, 8 attributes refers derived Halstead measures, a

branch-count attribute, and 1 goal field attribute which is
called as class which classifies the instance as presence or
absence of defect.

Table 3 shows the description of each attributes used in the
four dataset of this research work.

Table 3: Attribute Description of the four Dataset

S.No Variables Description

1 Loc McCabe's line count of code

2 v(g) McCabe "cyclomatic complexity"

3 ev(g) McCabe "essential complexity"

4 iv(g) McCabe "design complexity"

5 N Halstead total operators + operands

6 V Halstead "volume"

7 L Halstead "program length"

8 D Halstead "difficulty"

9 I Halstead "intelligence"

10 E Halstead "effort"

11 B Halstead

12 T Halstead's time estimator

13 LOCode Halstead's line count

14 LOComment Halstead's count of lines of comments

15 LOBlank Halstead's count of blank lines

16 lOCodeAndComme
nt

17 uniq_Op unique operators

18 uniq_Opnd unique operands

19 total_Op total operators

20 total_Opnd total operands

21 branchCount % of the flow graph

22 Defects Yes/No module has/has not one or

more

Table 4: Comparison Feature Subset Selection of CM1 Dataset with DST,

GS,ES,RS

Dataset: CM1

Algorithm No of features selected attributes

DST 7 1,4,9,14,15,17,18

GS 6 1,4,14,15,17,18

ES 7 1,4,9,11,14,15,17

RS 6 1,4,9,11,14,17

International Journal of Computer Sciences and Engineering Vol.5 (12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 47

The above table 4 shows the comparison of 4 different
features subset selection for CM1 dataset. In this even though
the DST and ES selects 7 attributes out of 22 but they differ in
selection of attributes that is DST selects 18th attribute
whereas Es selects 11th attribute. While GS and RS selects 6
attributes from whole features they also differ in selection of
attributes in this GS it selects 15th and 18th attribute and RS
selects 9th and 11th attribute.

Table 5: Comparison Feature Subset Selection of JM1 Dataset with DST,

GS,ES,RS

Dataset: JM1

Algorithm No of features selected attributes

DST 7 3,7,8,9,18,20,21

GS 7 2,3,5,7,8,9,18

ES 7 3,7,8,9,18,20,21

S 6 2,3,7,8,9,18

The above table 5 shows the comparison of 4 different
features subset selection for JM1 dataset. In this even though
the DST, GS and ES selects 7 SS attributes out of 22 and the
DST and ES selects same set of attributes while GS differs
by selecting attributes 2,3,5,7,8,9 and 18. While RS selects 6
attributes from whole features.

Table 6: Comparison Feature Subset Selection of KC1 Dataset with DST,

GS,ES,RS

Dataset: KC1

Algorithm No of features selected attributes

DST 8 6,8,9,13,14,15,18,21

GS 9 2,6,8,9,13,14,15,18,21

ES 8 6,8,9,13,14,15,18,21

RS 8 6,8,9,13,14,15,18,20

The above table 6 shows the comparison of 4 different
features subset selection for KC1 dataset. In this DST, ES and
RS selects 8 attributes out of 22 and the DST and ES selects
same set of attributes while RS differs by selecting attributes
21st attribute instead of 20th. GS selects 9 attributes from
whole features.

Table 7: Comparison Feature Subset Selection of PC1 Dataset with DST,

GS,ES,RS

Dataset: PC1

Algorithm No of features selected attributes

DST 4 11,14,15,16

GS 4 11,14,15,16

ES 4 11,14,15,16

RS 4 11,14,15,16

The above table 7 shows the comparison of 4 different
features subset selection for PC1 dataset. In this DST, GS, ES

and RS selects 4 attributes out of 22 and it is observed that all
the four selects same set of subsets namely 11,14,15 and 16
which mainly influences the detection of software defect in
PC dataset

Validation using Rule Induction Classifier

In this feature subset selection after selecting each feature
subset from the four different datasets by four different feature
subset selection algorithms and their performance for
classifying the given instance as defect or no defect is
determined using the rule induction classifier which acts as the
validator for each feature subset algorithm. The detailed
explanation is given in the following.

Table 8: Performance comparison of subset selection techniques for CM1

dataset using Rule induction classifier

In this it is observed from the table 8 that the proposed DST
classifies correct instances of classes with the highest
percentage of 90.1%, the second ranks ES and RS with value
89.36% and GS holds 3rd rank with 88.96%.

The reason for better performance of DST is even though its
selects 7 attributes they are the most promising attributes sub
set than the remaining three because the ability to handle
uncertainty and confliction in selecting attributes is overcome
by the evidence of the rule adopted in DST. So it concludes
that the subsets 1,4,9,14,15,17 and 18 are the potential
attributes for predicting presence of defect in CM1 dataset.
Another interesting observation is that even though ES and RS
differs in number of attributes selected while former selects 7
attributes and latter 6 attributes they differ in inclusion of only
one extra feature that is 15th attribute which is not presented
in RS.

The GS holds last position because it fails to pick the 9th
attribute of the feature set. The attributes Halstead intelligence

CM1 Performance

 DST GS ES RS

Correctly classified 90.106 88.96 89.36 89.36

Incorrectly classified 9.8394 11.04 10.64 10.64

Mean absolute error 0.1174 0.1774 0.1781 0.18

Root mean squared error 0.2979 0.3076 0.3026 0.3066

Relative absolute error 99.1988 99.1569 99.5603 100

Root relative squared
error 99.9982 103.27 101.6 103

TPR 0.902 0.89 0.991 0.894

FP rate 0.902 0.9 0.902 0.902

Precision 0.813 0.812 0.812 0.812

Recall 0.902 0.89 0.894 0.894

F measure 0.855 0.849 0.851 0.851

International Journal of Computer Sciences and Engineering Vol.5 (12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 48

and unique operands influences in prediction of software
defects.

The error rates (MSE, RMSE,RAE,RRSE) produced by DST
is considerably less while considering the remaining three
algorithms. And the accuracy measures of better performance
based on (TPR,FPR, Precision, Recall and F-measure) are
increased from other remaining feature subset selection
techniques.

Table 9: Performance comparison of subset selection techniques for JM1

dataset using Rule induction classifier

In this it is observed that the proposed DST and RS feature set
based classification classifies correct instances of classes with
the highest percentage of 80.86% with 19.14% as incorrectly
classified, the second ranks RS with value 80.72% correctly
classified that is 8786 instances are correctly predicted with
19.28%is incorrectly classified that is 2099 and GS holds 3rd
rank with very slight difference with the performance o RS by
wrongly predicting two more instances are incorrectly
predicted and produces 80.70% as correctly classified and
19.30% as incorrectly classified of in 88.96%.

Still DST performs because its error rates (MSE,
RMSE,RAE,RRSE) are lesser than GS, ES and RS. It is
observed that DTS, GS and ES selected same number of
attributes 7 but vary in attribute selection. DTS and ES takes
into a account total operands and percentage of flow graph
while GS selects Mc Cabes cyclomatic complexity and
Halstead total operators and operands which leads to worst
performance compared to other methods. The RS produces 6
attributes as subsets for predicting software defect by not
concentrating on total operands and percentage of flow graph.
So it is concluded that in JM1 dataset the software defect
prediction is mainly influenced by 7 potential attributed
namely McCabe "essential complexity", Halstead "program
length", Halstead "difficulty", Halstead "intelligence", unique
operands, total operands and % of the flow graph.

Table 10: Performance comparison of subset selection techniques for KC1

dataset using Rule induction Classifier

From the table 10 an interesting pattern is observed that
DST,ES and RS produces same result in classification of
instances as presence or absence of defect with correctly
classified instances as 1777 with 84.26% and 332 are wrongly
classified with 15.74%. These three feature selection selects
same number of attributes namely Halstead "volume",
Halstead "difficulty", Halstead "intelligence", Halstead's line
count, Halstead's count of lines of comments, Halstead's count
of blank lines, unique operands and % of the flow graph. The
GS feature subset selection produces very slight variation in
its performance with wrongly predicting two more instances
compared to other three methods and yields 84.16% as
correctly classified and 15.84% as incorrectly classified. The
error percentage of GS is more similar to DTS, ES and RST
with precision, recall and F-measure with values 0.80, 0.84
and 0.81 respectively.

Table 11:Performance comparison of subset selection techniques for PC1
dataset using Rule induction Classifier

JM1 Performance

 DST, ES GS RS

Correctly classified 80.86 80.7 80.72

Incorrectly classified 19.14 19.3 19.28

Mean absolute error 0.2887 0.3001 0.2996

Root mean squared error 0.3815 0.3887 0.3884

Relative absolute error 92.48 96.14 95.99

Root relative squared error 96.57 98.4 98.31

TPR 0.81 0.81 0.81

FP rate 0.7 0.77 0.76

Precision 0.77 0.76 0.76

Recall 0.81 0.81 0.81

F measure 0.76 0.74 0.74

KC1 Performance

 DST ,ES,RS GS

Correctly classified 84.26 84.16

Incorrectly classified 15.74 15.84

Mean absolute error 0.219 0.2214

Root mean squared error 0.3495 0.3512

Relative absolute error 83.71 84.64

Root relative squared
error 96.68 97.14

TPR 0.84 0.84

FP rate 0.69 0.70

Precision 0.81 0.80

Recall 0.84 0.84

F measure 0.81 0.81

PC1 Performance

 DST, ES, GS,RS

Correctly classified 92.97

Incorrectly classified 7.03

Mean absolute error 0.1248

Root mean squared error 0.2548

Relative absolute error 96

Root relative squared error 99.86

TPR 0.93

FP rate 0.90

Precision 0.90

Recall 0.93

F measure 0.90

International Journal of Computer Sciences and Engineering Vol.5 (12), Dec 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 49

The result of the table 11 shows that the PC1 dataset is
influenced by only four attributes namely, 11,14,15 and 16. It
is a more interesting result produced by all the four feature
subset algorithms produces same result of correctly classified
instances as1031 with 92.97% and 78 instances as incorrectly
classified is represented with 7.03%. The mean absolute error
is 0.1248 and root mean square error is 0.2358. The
percentage of relative absolute error and relative route square
error is 96% and 99. 86% respectively. The values of true
positive rate and recall 0.93. the value of false positive rate,
precision and f measure is 0.90. Among 22 attributes with
1109 instances of PC1 dataset only 4 attributes are more
promising they are Halstead, Halstead's count of lines of
comments, Halstead's count of blank lines, IOCode and
Comment and all the 4 features subset methods selects same
set of features contributes higher classification of accuracy.

IV. CONCLUSION

An attribute selection process for software defect prediction is
illustrated in this research work using the proposed Dempster
Shafer theory with modified combination rule known as
Dubois and Prade’s Disjunctive Consensus Rule. The results
indicated that the proposed approach produce significantly
better results for finding important attributes which can be
used for defect prediction. It is observed that the DST based
Feature subset selection produces consistent performance of
holding first rank in all the four selected dataset while the
others are fail to do so. This is because the DST holds itself
the justification of feature selection based on the rule of
evidence, handling the presence of uncertainty in selection of
attributes based on mass value of each selected attribute and
their combination rule, while other are intended only on
observation of searching the attributes based on heuristic
approach. The PC1 dataset has more accuracy result in
prediction of software defects while comparing the other
datasets. And the number of attributes chosen for this process
is also comparatively very less. All the four feature subset
methods are producing their utmost performance on this
dataset more effectively.

REFERENCES

[1]. http://promise.site.uottawa.ca/SERepository

[2]. http://mdp.ivv.nasa.gov.

[3]. http://promise.site.uottawa.ca/SERepository/datasets-page.html

[4]. Y. Chen, P. Du,Xi , X.-H. Shen, “Research on Software Defect

Prediction Based on Data Mining”, Computer and Automation

Engineering(ICCAE), 2nd International Conference, (2010), vol.

1, pp. 563-567.

[5]. H.Najadat and I.Alsmadi, “Enhance Rule Based Detection for

Software Fault Prone Modules”, International Journal of Software

Engineering and Its Applications, vol. 6, no. 1, (2012).

[6]. A.Okutan, O. T.Yildiz, “Software defect prediction using

Bayesian networks”, Empirical Software Engineering, (2014),

vol. 19, no. 1, pp. 154-181.

[7]. T. Nu Phyu, “Survey of Classification Techniques in

DataMining”, International MultiConference of Engineers and

Computer Scientists, (2009); Hong Kong.

[8]. K. Sankar, S. Kannan and P.Jennifer, “Prediction of Code Fault

Using Naive Bayes and SVM Classifiers Middle-East Journal of

Scientific Research”, vol. 20, no. 1, (2014), pp.108-113.

[9]. Y. Ma,C. Bojan,“Singh:Robust prediction of fault-proneness by

random forests ,Software Reliability Engineering”, ISSRE 2004.

15th International Symposium,(2004),pp. 417-428.

[10]. A. Chug1 and S. Dhall1, “Software Defect Prediction Using

Supervised Learning Algorithm and Unsupervised Learning

Algorithm”, The Next Generation Information Technology

Summit (4th International Conference),(2013),pp.1-6.

[11]. S. Agarwal and D.Tomar, “A Feature Selection Based Model for

Software Defect Prediction”, International Journal of Advanced

Science and Technology, vol.65,(2014), pp. 39-58.

[12]. C.-P.Chang a,*, C.-P.Chu a, Y.-F.Yehb, “Integrating in-process

software defect prediction with association mining to discover

defect pattern”, Information and Software Technology ,vol. 51,

no. 2, (2009), pp. 375-384.

[13]. M. L., H. Zhang, R. Wu, Z.-H. Zhou, “Sample-based software

defect prediction with active and semi-supervised learning”,

Automated Software Engineering , (2012), vol. 19, no. 2, pp. 201-

230

[14]. P.Dhiman, M.C. Manish,“A Clustered Approach to Analyze the

Software Quality Using Software Defects, Advanced Computing

& Communication Technologies (ACCT)”, 2012 Second

International Conference,(2012).

[15]. X. Yuan, H.W. Zhang, S. Ying,F. Wang, “Software defect

prediction based on collaborative representation classification”,

Proceedings in ICSE Companion 2014, 36th International

Conference on Software Engineering, pp. 632-633.

[16]. K. Gao, T..M.Khoshgoftarr, “Software Defect Prediction for high-

dimensional and class-imbalanced data”, 23rd International

Conference on Software Engineering & Knowledge Engineering

(SEKE'2011), Eden Roc Renaissance, (2011)Miami Beach, USA.

[17]. The Global Conference for Wikimedia,(2014); London.

[18]. M. Surendra Naidu, “Classification of Defects in Software Using

Decision Tree Algorithm”, International Journal of Engineering

Science and Technology (IJEST), (2013).

[19]. Black, Paul E. (2 February 2005). "greedy algorithm". Dictionary

of Algorithms and Data Structures. U.S. National Institute of

Standards and Technology (NIST). Retrieved 17 August 2012.

[20]. Dempster, A. P. (1967). “Upper and Lower Probabilities Induced

by a MultivaluedMapping.” The Annals of Statistics 28: 325-339.

[21]. Shafer, G. (1976). A Mathematical Theory of Evidence.

Princeton, NJ, PrincetonUniversity Press

[22]. Klir, G. J. and M. J. Wierman (1998). Uncertainty-Based

Information: Elements ofGeneralized Information Theory.

Heidelberg, Physica-Verlag.

[23]. Zadeh, L. A. (1986). A Simple View of the Dempster-Shafer

Theory of Evidence and itsImplication for the Rule of

Combination. The AI Magazine. 7: 85-90.

[24]. Dubois, D. and H. Prade (1986). "A Set-Theoretic View on Belief

Functions: LogicalOperations and Approximations by Fuzzy

Sets." International Journal of GeneralSystems 12: 193-226.

[25]. Dubois, D. and H. Prade (1992). "On the combination of evidence

in variousmathematical frameworks." Reliability Data Collection

and Analysis. J. Flammand T. Luisi. Brussels, ECSC, EEC,

EAFC: 213-241.

http://mdp.ivv.nasa.gov/
http://xlinux.nist.gov/dads/HTML/greedyalgo.html
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology

