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Abstract-In software quality research, software defect is a key topic. The characteristic of software attributes influences the 

performance and effectiveness of the defect prediction model. However this issue is not well explored to the best of our 

knowledge. So this paper focus on the problem of attribute selection in the context of software defect prediction, we propose a 

Dempster-Shafer Theory technique with modified combination rule known as Dubois And Prade’s Disjunctive Consensus Rule 

is adapted for selecting best set of attributes to improve the accuracy of the software defect prediction. Dempster-Shafer Theory 

(DST) offers an alternative to traditional probabilistic theory for the mathematical representation of uncertainty. The proposed 

method is evaluated using the data sets from NASA metric data repository. 
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I. INTRODUCTION 

A software defect is an error, flaw, failure, or fault in a 
computer program or system that causes it to produce an 
incorrect or unexpected result, or to behave in unintended 
ways. Most defects arise from mistakes and errors made by 
people in either a program's source code or its design, or in 
frameworks and operating systems used by such programs, 
and a few are caused by compilers producing incorrect code.  

Software defect prediction aims to determine whether a 
software module is defect-prone by constructing prediction 
models. The performance of such models is susceptible to the 
high dimensionality of the datasets that may include irrelevant 
and redundant features. Feature selection is applied to 
alleviate this issue. Because many feature selection methods 
have been proposed, there is an imperative need to analyze 
and compare these methods in case of uncertainty in selection 
of attributes. Prior empirical studies may have potential 
controversies and limitations, such as the contradictory results, 
usage of private datasets and inappropriate statistical test 
techniques. This observation leads us to conduct a careful 
empirical study to reinforce the confidence of the 
experimental. 

II. RELATED WORK 

A survey is conducted to help developers identify defects 
based on existing software metrics using data mining 
techniques especially Classification and there by improve 
software quality which leads to reduction in the software 
development cost in the development and maintenance phase. 
Some of the existing works are explained in this section. 

Yuan Chen, et.al[3] have surveyed the different data mining 
classification techniques for software defect prediction. They 
proposed a new model based on Bayesian network and PRM 
to predict the software defect and manage. Hassan Najadat 
and IzzatAlsmadi[4]Proposed a new model based on Ridor 
algorithm to predict fault in modules. They also tested the 
different classification techniques on the data sets provided by 
NASA. The result shows that Ridor algorithm is better than 
the existing technique in terms of accuracy and extraction of 
number of rules. Ahmet Okutan,OlcayTanerYıldız [5], 
introduced a new two metrics NOD, for the number of 
developers and LOCQ for source code quality apart from the 
metrics which is available in Promise data repository. Using 
Bayesian network classifier experimental shows that NOC 
&DIT have very limited and untrustworthy. LOCQ is more 
effective like CBO & WMC. NOD metric showed that there is 
a positive correlation between the no of developers and extent 
of defect prunes. LOC is proved to be one of the best metric 
for quick defect prediction. LCOM3 & LCOM have less 
effective compared to LOC,CBO,RFC, and LOCQ&WMC. 
Thair Nu Phyu [6] reviewed on various classification 
techniques such as decision tree induction, Bayesian networks, 
k-nearest neighbor classifier, case-based reasoning, genetic 
algorithm and fuzzy logic techniques. The results found that 
there is no proper info that which is the best classifier. Several 
of the classification methods produce a set of interacting loci 
that best predict the phenotype. However, a straightforward 
application of classification methods to large numbers of 
markers has a potential risk picking up randomly associated 
markers. 

K.Sankar et.al [7], proposed a system which overcomes the 
problem of insufficiency in accuracy and use of large number 
of features. This paper proposed Feature selection techniques 
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to predict faults in software code and it also measure the 
software code and performance of Naive based and SVM 
classifier. The accuracy is measured by F-mean metric the 
best defect predictor when compared to the others. 

Yan ma et.al [8] proposed a model based on random forests. 
This is applied on five case studies based on NASA data sets. 
The results found was better than the result obtained by 
logistic regression, discriminate analysis and the algorithms in 
two machine learning software packages . Instead of 
generating one decision tree, this methodology generates 
hundreds or even thousands of trees using subsets of the 
training data. Hence classification accuracy of random forests 
is more significant over other methods in larger data sets 

C.Chung and S.Dhall [9] proposed a various classification 
methods to predict software defect. Here Three types of 
classifier such as J48, Random Forest and Naive Bayesian 
Classifier is applied on various real time data sets of NASA to 
evaluate the data sets based on different criteria like ROC, 
Precision, MAE, RAE etc 

Sonali Agarwal and DivyaTomar[10] have proposed a feature 
selection based Linear Twin Support Vector Machine 
(LSTSVM) model to predict defect prone software modules. 
F-score technique is used for software defect prediction based 
on various software metrics. This model is applied on 
PROMISE data sets and compared with the other existing 
models. The results say that the performance of the new model 
is better than the existing machine learning models 

Thair Nu Phyu [6] reviewed on various classification 
techniques such as decision tree induction, Bayesian networks, 
k-nearest neighbor classifier, case-based reasoning, genetic 
algorithm and fuzzy logic techniques. The results found that 
there is no proper info that which is the best classifier. Several 
of the classification methods produce a set of interacting loci 
that best predict the phenotype. However, a straightforward 
application of classification methods to large numbers of 
markers has a potential risk picking up randomly associated 
markers. Ching-PaoChanget al.[11] proposed approach, 
Action-Based Defect Prediction (ABDP),which uses the 
classification with decision tree technique to build a prediction 
model, and performs association rule mining on the records of 
actions and defects. The association rule mining finds the 
maximum rule set with specific minimum support and 
confidence and thus the discovered knowledge can be utilized 
to interpret the prediction models and software process 
behaviors. It is used to discover defect patterns, and multi 
interval discretization to handle the continuous attributes of 
actions. 

Ming Li, et al. proposed [12] a sample based methods for 
software defect prediction. Three methods such as random 
sampling with conventional machine learners, random 
sampling with a semi-supervised learner and active sampling 
with active semi-supervised learner. They applied a semi-
supervised learning method called AcoForest to build a 
classification model based on a sample and the remaining un-
sampled modules they also proposed a novel active semi 

supervised method called AcoForest which can select 
unsampled modules and experimented on Promise data sets 
and found to be the best method. Experimental results show 
that size does not affect the defect prediction 

Dhiman,et al. [13] proposed a model where in it will 
categorize the software defects using some clustering 
approach and then the software defects are measured in each 
clustered separately. This system will analyze the software 
defect and its integration with software module. 

Xiao-YuanFing,et.al [14] have tried to model the effective 
, efficient and low computational burden using advanced 
machine learning technique such as collaborative 
representative classification. The new model proposed by 
them is CSDP which is used to predict defect in a very 
efficient manner. KehanGao&Taghi M [15] experimented on 
promise repository based on criteria 1) Feature selection based 
on sampled data, and modeling based on original data, 2) 
feature selection based on sampled data and modeling based 
on sampled data and 3) feature selection based on sampled 
data, and modeling based sample data. The experimental 
results showed that the 1st criteria is the best compared to the 
others in defect prediction. 

III. COMPONENTS IN FEATURE SELECTION  

Feature selection algorithms to investigate during the splits 
of features and attempt to locate the finest in the midst of the 
opposing 2N applicant subsets according to a few assessment 
function. On the other hand this method is complete and it 
may be too expensive yet for a intermediate sized feature 
set(N). Other techniques based on heuristic or accidental 
search methods effort to decrease computational difficulty by 
negotiation performance [16]. There are four fundamental 
steps in a characteristic feature assortment method [16,17] 
such as subset generation, Feature evaluation function, 
stopping criterion and a validation procedure as depicted in 
Figure 1. 

 

Figure 1: General Feature Selection process 
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A. DEMPSTER-SHAFER THEORY  

Dempster-Shafer Theory (DST) is a mathematical theory of 
evidence. The seminal work on the subject is [21], which is an 
expansion of [20]. In a finite discrete space, Dempster-Shafer 
theory can be interpreted as a generalization of probability 
theory where probabilities are assigned to sets as opposed to 
mutually exclusive singletons. In traditional probability 
theory, evidence is associated with only one possible event. In 
DST, evidence can be associated with multiple possible 
events, e.g., sets of events. As a result, evidence in DST can 
be meaningful at a higher level of abstraction without having 
to resort to assumptions about the events within the evidential 
set. Where the evidence is sufficient enough to permit the 
assignment of probabilities to single events, the Dempster-
Shafer model collapses to the traditional probabilistic 
formulation. One of the most important features of Dempster-
Shafer theory is that the model is designed to cope with 
varying levels of precision regarding the information and no 
further assumptions are needed to represent the information. It 
also allows for the direct representation of uncertainty of 
system responses where an imprecise input can be 
characterized by a set or an interval and the resulting output is 
a set or an interval. There are three important functions in 
Dempster-Shafer theory: the basic probability assignment 
function (bpa or m), the Belief function (Bel), and the 
Plausibility function (Pl). The basic probability assignment 
(bpa) is a primitive of evidence theory. Generally speaking, 
the term “basic probability assignment” does not refer to 
probability in the classical sense. The bpa, represented by m, 
defines a mapping of the power set to the interval between 0 
and 1, where the bpa of the null set is 0 and the summation of 
the bpa’s of all the subsets of the power set is 1. The value of 
the bpa for a given set A (represented as m(A)), expresses the 
proportion of all relevant and available evidence that supports 
the claim that a particular element of X (the universal set) 
belongs to the set A but to no particular subset of A [22]. The 
value of m(A) pertains only to the set A and makes no 
additional claims about any subsets of A. Any further 
evidence on the subsets of A would be represented by another 
bpa, i.e. B Ì A, m(B) would the bpa for the subset B. Formally, 
this description of m can be represented with the following 
three equations: 

 

B. Proposed Supervised Mutual Information (DEMPSTER 

SHAFER)with modified combination rule 

In supervised MI the features gives a higher classification 
performance. Individual best features unless they are 
combined they will give a good classification performance. 
All the features having high of relevancy with each classes. If 
the value of the features are inappropriately combined then the 
redundancy between the features will be inappropriate. Based 
on the above observations, a new algorithm is proposed to 
determine the redundancy between the selected features and 
the candidate features and the relevancy of each attribute is 
measure using the dempster’s belief and plausibility functions. 

C. The Frame of Discernment (Θ) 

The Hypothesis space is describing all the sets in the complete 
(exhaustive) space. Θ symbol denotes the frame and the 
elements are mutually exclusive. If the number of the 
elements in the set is n, then the power set (set of all subsets of 
(Θ) will have 2n elements. 

D. BPA (Basic Probability Assignment) 

In BPA the theory of evidence assigns a Belief mass. Each 
Belief mass is assigned to a subset. All the subset is called 
power set. 0and 1 are the positive no given for the sets. In this 
form the probability value exists.  

If Θ is the frame of discernment, then a function 

m: 2Θ  [0, 1] is called a bpa, whenever          (1) 

  m (∅) = 0 and                                            (2) 

  Σ m (A) = 1 and    (3) 

  A  Θ                      (4) 

Belief (Bel) 

Given a frame of discernment Θ and a body of empirical 
evidence {m(B1), m(B2), m(B3)….}, the belief committed to 
A ε Θ is 

   Bel (A) = Σ m(Bi)                  (5) 

   B ⊆ A              (6) 

 Also, Bel (Θ) = 1                                 (7) 

Plausibility Function (Pl) 

 The plausibility is the sum of all the masses values. The 
sum of all mass value is Set B. 

     Set B intersect the set A 

 Pl (A) = Σ m (Bi) ,  B | B ⋂ A ≠∅               (8) 

Belief Range 

 The interval [ Bel (A), Pl(A) ] is called belief range. 

 Plausibility (Pl) and Belief (Bel) are related as follows 

  Pl(A) = 1 – Bel (Ᾱ)                            (9) 

Dempster's Combination Rule 

 The combination called the joint mass (m12) is calculated 
from the two sets of masses m1 and m2. 

  m12 (A) =    

m2(C)] m1(B)  , = C  [B -1

 m2(C) m1(B)  A, = C  B







               

                  (10)   

Dempster-Shafer Attribute selection algorithm 
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The generalization Bayesian statistical theory is essential in 
Dempster–Shafer algorithm. Here all the new feature allows 
and supports the distributing propositions (Eg. "Determine 
defect") Dempster-Shafer reasoning system is enumerated by 
"frame-of-discernment" system. All the mutual exclusive 
context interpretation are enumerated and denoted by symbol 
Θ. E.g.: “An instance is read form the dataset” for a reality 
constrains this instance may belongs to “defect” or “no 
defect”. The task specifies the instance identity as one of the 
four possibilities. 
Described by: 

 (11) 

Significances are represented as 1.” defect”, 2. ”no defect”, 
3.“Either defect or no defect” actually an indication of 
ignorance or “neither defect nor no defect” is an indication of 
exceptional situation. For Software defect prediction, the 
resulting computation complexity is low, as the frame of 
discernment consists of only two elements (normal and 
abnormal). There are up to three focal elements of belief 
functions: {normal},{abnormal}, and {normal or abnormal} 
(i.e. the uncertainty),resulting in low computation complexity 

The Feature subset generation algorithm Si would contribute 
its observation by assigning its “belief” with the form of 

discernment symbol. Here, Si denotes Mi. The Probability 
mass function is called the assignment function. The 
probability are indicated by “confidence interval” is 
observation is calculated by Lower bound and Upper bound 
method. The probability of Si observation is “the detected 
attribute is the Attribute-A”. According to confidence interval 
the lower bound is “Belief” and Upper bound is "plausibility" 

[Beliefi(A), Plausibilityi(A)] 

Beliefi(A) is quantified by all the pieces of evidence Ek that 
support proposition “Attribute-A”: 

Beliefi(A) = 


AE

ki

k

Em )(

 (12) 

Plausibilityi(A) is quantified by all the pieces of evidence Ek 
that do not rule out the proposition "Attribute-A": 

Plausibilityi(A) = 





AE

ki

k

Em )(1

(13) 

For each proposition in Θ, e.g., "Attribute-A", Dempster-
Shafer theory gives a rule of combining Feature Subset Si’s 
observation mi and Feature SubsetSj’s observation mj: 




















kk

kk

EE

kjki

AEE

kjki

ji
EmEm

EmEm

Amm
)()(1

)()(

))((

(14) 

This rule can be bounded directly, if it is viewed mj not as 
Feature Subset Sj’s observation, instead of the previously 
combined observations of Feature Subset Sk and Sl. Human 

perception-Reasoning Process is captured by Dempster –
Shafer approach. Where the lower end “belief “and the upper 
end “plausibility" are the two different key features captured 
by Dempster – Shafer reasoning process. To compare in order 
to show the difference, The Bayesian algorithm is a essential 
subset of Dempster – Shafer approach. Here No mechanism is 
provided for the quantitative dealings. Quantitative dealings 
are the range of "belief" and "plausibility". These are humans 
characteristic attach to the likelihood[20]. In some specific 
problem the desired features of k varies. If DSI (fi) with DSI 
(fi-1) is lower than the small value then the process will stop. 
Here fi and fi-1 are the selected features. The iteration process 
for the selected features is i-th and i-1th respectively. S is the 
selected feature and fi fetches small information into S which 
has already selected. This process leads to a slight change in 
the classification where the result increases slightly [21].The 
relationships between Belvalue, Pl value and uncertainty are 
described in Figure 2. 

 
 

Figure 2: The uncertainty interval for a hypothesis 

 

Figure 3: Feature subset Selection in Software defect Prediction 
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The figure 3 depicts the overall flow of the proposed feature 
subset selection using modified combined rule of Dempster-
shafer theory 

 

DUBOIS AND PRADE’S DISJUNCTIVE CONSENSUS 
RULE 
Dubois and Prade take a set-theoretic view of a body of 
evidence to form their disjunctive consensus rule in [24, 25]. 
They define the union of the basic probability assignments m1 

È m2 (denoted by m(C)) by extending the set-theoretic 
union: 

m( C ) = A B = C m 1 ( A ) m 2 ( B )           
 
For all A of the power set X. The union does not generate any 
conflict and does not reject any of the information asserted by 
the sources. As such, no normalization procedure is required. 
The drawback of this method is that it may yield a more 
imprecise result than desirable. 
The union can be more easily performed via the belief 
measure:  
 

Let Bel11Bel2bethe belief measure associated with m1m2. 
Then for every subset A of the universal setX, 

Bel1(A)ÈBel2(A) = Bel1(A) Bel2(A)           
 
The disjunctive pooling operation is commutative, associative, 
but not idempotent. 

Algorithm 

1. Collect a training data set from the specific domain.  

2. Shuffle the data set. 

3. Break it into P partitions, (say P = 20)  

4. For each partition ( i = 0, 1, ..., P-1 ) 

 a. Let OuterTrainset(i) = all partitions except i. 

 b. Let OuterTestset(i) = the i’th partition  

c. Let InnerTrain(i) = randomly chosen 70% of the 

OuterTrainset(i).  

d. Let InnerTest(i) = the remaining 30% of the 

OuterTrainset(i).  

e. For j = 0, 1, ..., m 

 Search for the best feature set with j components, 

fsij.using leave-one-out on InnerTrain(i) Let 

InnerTestScoreij= RMS score of fsij on InnerTest(i).  

End loop of (j). 

 f. Select the fsij with the best inner test score. 

 g. Let OuterScorei = RMSE score of the selected 

feature set on OuterTestset(i) End of loop of (i).  

5. Return the mean Outer Score 

 

Dubois and Prade’s Disjunctive Consensus Pooling 

The unions of multiple sets are summarized in Table 1. 
 

Table 1: Results of union of multiple sets 

Union Mè Linguistic Interpretation 

AA 0 Failure of Component A 

AB 0.0196 Failure of Component A or B 

A C 0.9604 Failure of Component A or C 

B B 0.0004 Failure of Component B 

B C 0.0196 Failure of Component B or C 

C C 0 Failure of Component C 

ABC 1 Failure of Component A or B or C 

 

Experimental Result  

This paper has proposed dempster-shafer theory based 
attribute selection process for software defect prediction. To 
validate this process the dataset which is publicly available 
from NASA MDP repository is used [1, 2]. The simulation of 
this proposed work is done using matlab. This experiment 
result uses 10-fold cross validation strategy for evaluating the 
performance of feature subset selection algorithms namely 
Greedy Search (GS), Random search (RS), Exhaustive 
Research (ES) and Proposed Dempster Shafer feature 
selection algorithm. To validate the each feature selection 
technique rule induction classifier is used for finding the 
performance of each in terms of correctly classified instances, 
incorrectly classified instances, accuracy, precision and recall. 
The detailed explanation of evaluation metric is shown in the 
next subsection. 

Evaluation Metrics 

This work used four different NASA dataset namely CM1, 
JM1, KC1, PC1. In order to select potential attributes from the 
whole attributes given by these datasets, four feature selection 
techniques are implied and their performance is compared 
using the following metrics. 

Table 2: The confusion matrix for the software defect 
prediction is depicted in the following table 2. 

Table 2: software defect prediction 
 

Module actually has 
defects 

No (P) Yes(N) 

Classifier predicts no 
defects 

No(P)  a(TP) b(FP) 

Classifier predicts some 
defects 

Yes(N) c (FN) d(TN) 

 

TP = true positives: number of examples predicted positive 
that are actually positive 

 FP = false positives: number of examples predicted positive 
that are actually negative  

TN = true negatives: number of examples predicted negative 
that are actually negative  
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FN = false negatives: number of examples predicted negative 
that are actually positive 

Accuracy = dcba

da





= fnfptntp

tntp





         (15) 

Probability of Detection  =PD  = Recall = db

d

 = fntp

tp

  
(16) 

Probability of False Alarm = PF = ca

c

       = fptp

fp

  
(17) 

Precision = dc

d

 = fptp

tp

 (18) 

F –Measure= 2 * recallecision

recallecision

Pr

.Pr

(19) 
 

Relative Absolute Error = 
||...||

||...||

1

11

n

nn

aaaa

apap





(20) 

 

Root relative squared error = 

22

1

22

11

)(...)(

)(...)(

n

nn

aaaa

apap





(21) 

Where, 

Actual target values: a1 a2 … an 

Predicted target values: p1 p2 … pn 

Mean value of actual target values: a  

Dataset Description 

This subsection describes the datasets used in this work. Four 
public data sets CM1, JM1, PC1 and KC1obtained from 
NASA MDP [1, 2] Repository made available by PROMISE 
[3]are used for evaluation of the proposed work. Each of these 
dataset consists of a set of features characterized by static code 
metrics, such as LOC counts, Halstead and McCabe 
complexity metrics. These features are characterizing 
objectively the software quality. The In McCabe metrics are a 
collection of four software metrics: Essential complexity, 
cyclomatic complexity, design complexity and Lines of 
Code.CM1 dataset consists of 498 instances, JM1 consists of 
10885, KC1 dataset consists of 2109 instances and PC1 
contains 1109 instances. All the 4 dataset consists of 22 
attributes. In the dataset 5 of the attributes are used for 
representing different lines of code measure, 3 attributes 
represents the McCabe metrics, 4 attributes refers to  Halstead 
measures, 8 attributes refers derived Halstead measures, a 

branch-count attribute, and 1 goal field attribute which is 
called as class which classifies the instance as presence or 
absence of defect. 

Table 3 shows the description of each attributes used in the 
four dataset of this research work.  

Table 3: Attribute Description of the four Dataset 

S.No Variables Description 

1 Loc McCabe's line count of code 

2 v(g) McCabe "cyclomatic complexity" 

3 ev(g) McCabe "essential complexity" 

4 iv(g) McCabe "design complexity" 

5 N Halstead total operators + operands 

6 V Halstead "volume" 

7 L Halstead "program length" 

8 D Halstead "difficulty" 

9 I Halstead "intelligence" 

10 E Halstead "effort" 

11 B Halstead  

12 T Halstead's time estimator 

13 LOCode Halstead's line count 

14 LOComment Halstead's count of lines of comments 

15 LOBlank Halstead's count of blank lines 

16 lOCodeAndComme
nt 

 

17 uniq_Op unique operators 

18 uniq_Opnd unique operands 

19 total_Op total operators 

20 total_Opnd total operands 

21 branchCount % of the flow graph 

 
22 Defects Yes/No module has/has not one or 

more                           

 

Table 4: Comparison Feature Subset Selection of CM1 Dataset with DST, 

GS,ES,RS 

Dataset: CM1 

Algorithm No of features selected attributes 

DST 7 1,4,9,14,15,17,18 

GS 6 1,4,14,15,17,18 

ES 7 1,4,9,11,14,15,17 

RS 6 1,4,9,11,14,17 
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The above table 4 shows the comparison of 4 different 
features subset selection for CM1 dataset. In this even though 
the DST and ES selects 7 attributes out of 22 but they differ in 
selection of attributes that is DST selects 18th attribute 
whereas Es selects 11th attribute. While GS and RS selects 6 
attributes from whole features they also differ in selection of 
attributes in this GS it selects 15th and 18th attribute and RS 
selects 9th and 11th attribute. 

Table 5: Comparison Feature Subset Selection of JM1 Dataset with DST, 

GS,ES,RS 

Dataset: JM1 

Algorithm No of features selected attributes 

DST 7 3,7,8,9,18,20,21 

GS 7 2,3,5,7,8,9,18 

ES 7 3,7,8,9,18,20,21 

S 6 2,3,7,8,9,18 

 

The above table 5 shows the comparison of 4 different 
features subset selection for JM1 dataset. In this even though 
the DST, GS and ES selects 7 SS attributes out of 22 and the 
DST and ES selects same set of attributes while GS differs 
by selecting attributes 2,3,5,7,8,9 and 18. While RS selects 6 
attributes from whole features. 

Table 6: Comparison Feature Subset Selection of KC1 Dataset with DST, 

GS,ES,RS 

Dataset: KC1 

Algorithm No of features selected attributes 

DST 8 6,8,9,13,14,15,18,21 

GS 9 2,6,8,9,13,14,15,18,21 

ES 8 6,8,9,13,14,15,18,21 

RS 8 6,8,9,13,14,15,18,20 

 

The above table 6 shows the comparison of 4 different 
features subset selection for KC1 dataset. In this DST, ES and 
RS selects 8 attributes out of 22 and the DST and ES selects 
same set of attributes while RS differs by selecting attributes 
21st attribute instead of 20th. GS selects 9 attributes from 
whole features. 

Table 7: Comparison Feature Subset Selection of PC1 Dataset with DST, 

GS,ES,RS 

Dataset: PC1 

Algorithm No of features selected attributes 

DST 4 11,14,15,16 

GS 4 11,14,15,16 

ES 4 11,14,15,16 

RS 4 11,14,15,16 

 

The above table 7 shows the comparison of 4 different 
features subset selection for PC1 dataset. In this DST, GS, ES 

and RS selects 4 attributes out of 22 and it is observed that all 
the four selects same set of subsets namely 11,14,15 and 16 
which mainly influences the detection of software defect in 
PC dataset 

Validation using Rule Induction Classifier 

In this feature subset selection after selecting each feature 
subset from the four different datasets by four different feature 
subset selection algorithms and their performance for 
classifying the given instance as defect or no defect is 
determined using the rule induction classifier which acts as the 
validator for each feature subset algorithm. The detailed 
explanation is given in the following. 

 
Table 8: Performance comparison of subset selection techniques for CM1 

dataset using Rule induction classifier 

 

In this it is observed from the table 8 that the proposed DST 
classifies correct instances of classes with the highest 
percentage of 90.1%, the second ranks ES and RS with value 
89.36% and GS holds 3rd rank with 88.96%. 

The reason for better performance of DST is even though its 
selects 7 attributes they are the most promising attributes sub 
set than the remaining three because the ability to handle 
uncertainty and confliction in selecting attributes is overcome 
by the evidence of the rule adopted in DST. So it concludes 
that the subsets 1,4,9,14,15,17 and 18 are the potential 
attributes for predicting presence of defect in CM1 dataset. 
Another interesting observation is that even though ES and RS 
differs in number of attributes selected while former selects 7 
attributes and latter 6 attributes they differ in inclusion of only 
one extra feature that is 15th attribute which is not presented 
in RS.   

The GS holds last position because it fails to pick the 9th 
attribute of the feature set. The attributes Halstead intelligence 

CM1 Performance 

  DST GS ES RS 

Correctly classified 90.106 88.96 89.36 89.36 

Incorrectly classified 9.8394 11.04 10.64 10.64 

Mean absolute error 0.1174 0.1774 0.1781 0.18 

Root mean squared error 0.2979 0.3076 0.3026 0.3066 

Relative absolute error  99.1988 99.1569 99.5603 100 

Root relative squared 
error 99.9982 103.27 101.6 103 

TPR 0.902 0.89 0.991 0.894 

FP rate 0.902 0.9 0.902 0.902 

Precision 0.813 0.812 0.812 0.812 

Recall 0.902 0.89 0.894 0.894 

F measure 0.855 0.849 0.851 0.851 
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and unique operands influences in prediction of software 
defects. 

The error rates (MSE, RMSE,RAE,RRSE) produced by DST 
is considerably less while considering the remaining three 
algorithms. And the accuracy measures of better performance 
based on (TPR,FPR, Precision, Recall and F-measure) are 
increased from other remaining feature subset selection 
techniques. 

 

Table 9: Performance comparison of subset selection techniques for JM1 

dataset using Rule induction classifier 

 

In this it is observed that the proposed DST and RS feature set 
based classification  classifies correct instances of classes with 
the highest percentage of 80.86% with 19.14% as incorrectly 
classified, the second ranks RS with value 80.72% correctly 
classified that is 8786 instances are correctly predicted with 
19.28%is incorrectly classified that is 2099  and GS holds 3rd 
rank with very slight difference with the performance o RS by 
wrongly predicting two more instances are incorrectly 
predicted and produces 80.70% as correctly classified and 
19.30% as incorrectly classified of in 88.96%. 

Still DST performs because its error rates (MSE, 
RMSE,RAE,RRSE) are lesser than GS, ES and RS. It is 
observed that DTS, GS and ES selected same number of 
attributes 7 but vary in attribute selection. DTS and ES takes 
into a account total operands and percentage of flow graph 
while GS selects Mc Cabes cyclomatic complexity and 
Halstead total operators  and operands which leads to worst 
performance compared to other methods. The RS produces 6 
attributes as subsets for predicting software defect by not 
concentrating on total operands and percentage of flow graph. 
So it is concluded that in  JM1 dataset the software defect 
prediction is mainly influenced by 7 potential attributed 
namely McCabe "essential complexity", Halstead "program 
length", Halstead "difficulty", Halstead "intelligence", unique 
operands, total operands and % of the flow graph. 

Table 10: Performance comparison of subset selection techniques for KC1 

dataset using Rule induction Classifier 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the table 10 an interesting pattern is observed that 
DST,ES and RS produces same result in classification of 
instances as presence or absence of defect with correctly 
classified instances as 1777 with 84.26%  and 332 are wrongly 
classified with 15.74%. These three feature selection selects 
same number of attributes namely Halstead "volume", 
Halstead "difficulty", Halstead "intelligence", Halstead's line 
count, Halstead's count of lines of comments, Halstead's count 
of blank lines, unique operands and % of the flow graph. The 
GS feature subset selection produces very slight variation in 
its performance with wrongly predicting two more instances 
compared to other three methods and yields 84.16% as 
correctly classified and 15.84% as incorrectly classified. The 
error percentage of GS is more similar to DTS, ES and RST 
with precision, recall and F-measure with values 0.80, 0.84 
and 0.81 respectively. 

Table 11:Performance comparison of subset selection techniques for PC1 
dataset using Rule induction Classifier 

JM1 Performance 

  DST, ES GS RS 

Correctly classified 80.86 80.7 80.72 

Incorrectly classified 19.14 19.3 19.28 

Mean absolute error 0.2887 0.3001 0.2996 

Root mean squared error 0.3815 0.3887 0.3884 

Relative absolute error  92.48 96.14 95.99 

Root relative squared error 96.57 98.4 98.31 

TPR 0.81 0.81 0.81 

FP rate 0.7 0.77 0.76 

Precision 0.77 0.76 0.76 

Recall 0.81 0.81 0.81 

F measure 0.76 0.74 0.74 

KC1 Performance 

  DST ,ES,RS GS 

Correctly classified 84.26 84.16 

Incorrectly classified 15.74 15.84 

Mean absolute error 0.219 0.2214 

Root mean squared error 0.3495 0.3512 

Relative absolute error  83.71 84.64 

Root relative squared 
error 96.68 97.14 

TPR 0.84 0.84 

FP rate 0.69 0.70 

Precision 0.81 0.80 

Recall 0.84 0.84 

F measure 0.81 0.81 

PC1 Performance 

  DST, ES, GS,RS 

Correctly classified 92.97 

Incorrectly classified 7.03 

Mean absolute error 0.1248 

Root mean squared error 0.2548 

Relative absolute error  96 

Root relative squared error 99.86 

TPR 0.93 

FP rate 0.90 

Precision 0.90 

Recall 0.93 

F measure 0.90 
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The result of the table 11 shows that the PC1 dataset is 
influenced by only four attributes namely, 11,14,15 and 16. It 
is a more interesting result produced by all the four feature 
subset algorithms produces same result of correctly classified 
instances as1031 with 92.97% and 78 instances as incorrectly 
classified is represented with 7.03%. The mean absolute error 
is 0.1248 and root mean square error is 0.2358. The 
percentage of relative absolute error and relative route square 
error is 96% and 99. 86% respectively. The values of true 
positive rate and recall 0.93. the value of false positive rate, 
precision and f measure is 0.90. Among 22 attributes with 
1109 instances of PC1 dataset only 4 attributes are more 
promising they are Halstead, Halstead's count of lines of 
comments, Halstead's count of blank lines, IOCode and 
Comment and all the 4 features subset methods selects same 
set  of features contributes higher classification of accuracy. 

IV. CONCLUSION 

An attribute selection process for software defect prediction is 
illustrated in this research work using the proposed Dempster 
Shafer theory with modified combination rule known as 
Dubois and Prade’s Disjunctive Consensus Rule. The results 
indicated that the proposed approach produce significantly 
better results for finding important attributes which can be 
used for defect prediction. It is observed that the DST based 
Feature subset selection produces consistent performance of 
holding first rank in all the four selected dataset while the 
others are fail to do so. This is because the DST holds itself 
the justification of feature selection based on the rule of 
evidence, handling the presence of uncertainty in selection of 
attributes based on mass value of each selected attribute and 
their combination rule, while other are intended only on 
observation of searching the attributes based on heuristic 
approach. The PC1 dataset has more accuracy result in 
prediction of software defects while comparing the other 
datasets. And the number of attributes chosen for this process 
is also comparatively very less. All the four feature subset 
methods are producing their utmost performance on this 
dataset more effectively. 
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