

 © 2017, IJCSE All Rights Reserved 217

 International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-11 E-ISSN: 2347-2693

A GUI Based Run-Time Analysis of Sorting Algorithms and their

Comparative Study

Sourabh Shastri

1*
, Vibhakar Mansotra

2
, Arun Singh Bhadwal

3
, Monika Kumari

4
, Avish Khajuria

5
,

Dalbir Singh Jasrotia
6

1*

Dept. of Computer Science and IT, Kathua Campus, University of Jammu, Kathua, India
2
Dept. of Computer Science and IT, University of Jammu, Jammu, India

3
Dept. of Computer Science and IT, Kathua Campus, University of Jammu, Kathua, India

4
Dept. of Computer Science and IT, Ramnagar Campus, University of Jammu, Udhampur, India

5,6
Dept. of Computer Science and IT, Bhaderwah Campus, University of Jammu, Bhaderwah, India

*Corresponding Author: sourabhshastri@gmail.com, Tel.: +91-94191-71476

Available online at: www.ijcseonline.org

Received: 06/Oct/2017, Revised: 14/Oct/2017, Accepted: 12/Nov/2017, Published: 30/Nov/2017

Abstract— The analysis of algorithms is a subject that has always arouses enormous inquisitiveness. It helps us to determine

the efficient algorithm in terms of time and space consumed. There are valid methods of calculating the complexity of an

algorithm. In general, a suitable solution is to calculate the run time analysis of the algorithm. The present study documents the

comparative analysis of seven different sorting algorithms of data structures viz. Bubble sort, Selection sort, Insertion sort,

Shell sort, Heap sort, Quick sort and Merge sort. The implementation is carried out in Visual Studio C# by creating a Graphical

User Interface to calculate the running time of these seven algorithms.

Keywords—Algorithm, Complexity, Runing Time, Sorting, Data Structures

I. INTRODUCTION

The study of algorithm is at the core of all automatic

problem-solving activities [1]. Algorithm is a finite set of

instructions to accomplish a particular task. The word

algorithm comes from the name of a Persian author, Abu

Ja’far Muhammad ibn Musa Al-Khwarizmi [2]. An

algorithm must satisfy the criteria of Input, Output,

Definiteness, Finiteness and Effectiveness. A specified set of

inputs are required for an algorithm that produces set of

values as output and must terminate after finite number of

steps. These steps must be clear and unambiguous. The steps

of the algorithm should be effective so that any naïve user

can perform the steps. The efficiency of an algorithm is

analyzed in terms of running time and memory also referred

to as computational complexity. Computational complexity

is a characterization of the time or space requirements for

solving a problem by a particular algorithm [3]. Thus the

analysis of an algorithm requires two main considerations i.e.

time complexity and space complexity. The time complexity

of an algorithm is the total time for its completion and space

complexity is the total memory required for completion.

Time and Space complexity is expressed in the form of a

function f(n), where n is the input size for a given instance of

the problem being solved [4].

Sorting is one of the vital algorithms in computer science for

arranging large volumes of data in some logical order.

Sorting algorithms can be categorized by number of

comparisons, number of swaps, memory usage, recursion,

stability and adaptability [5]. Sorting algorithms can be

divided into two main categories i.e. internal sort and

external sort. An internal sorting algorithm uses internal

memory i.e. main memory and external sorting algorithms

use external memory i.e. disk or tape for the process. Two

fundamental properties of sorting algorithms are in-place and

stable. The algorithm is in-place if it does not need extra

memory space except for few memory units and the

algorithm is stable if it preserves the relative order of any

two equal elements.

In this paper, we have created a graphical user interface for

the implementation of various sorting algorithms viz. bubble

sort, selection sort, insertion sort, shell sort, heap sort, quick

sort and merge sort. For calculating the time complexity of

these sorting algorithms, Visual Studio C# language has been

selected. We have run the same algorithm on ten different

runs for each different input size of N = 100, 200, 300, 400

and 500 and finally calculated the average running time for

each algorithm separately. User has to input only the value of

N i.e. how many elements are required for sorting and a

random number generator generates N number of elements

randomly.

 International Journal of Computer Sciences and Engineering Vol.5(11), Nov 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 218

II. WORKING PROCEDURE OF ALGORITHMS

In this section, we discuss the working procedure of all the

seven algorithms used for the comparative analysis in paper

viz. bubble sort, selection sort, insertion sort, shell sort, heap

sort, quick sort and merge sort.

A. Bubble Sort

The bubble sort also known as exchange sort is a comparison

based sorting algorithm that works by continually swapping

the adjacent elements if they are not in the proper order. The

largest element of the list bubble up after one pass. Similarly

on each succeeding pass the next largest elements are

positioned at appropriate places. An important property of

bubble sort is that if there is no swapping of elements in a

particular pass, there will be no further swapping of elements

in the successive passes [4]. The advantages of bubble sort

are simplicity and ease of implementation. The best case

occurs when array is already sorted then it takes minimum

time and performs n-1 comparisons. That’s why time

complexity for best case is O(n) and in contrast, the worst

case occurs when array is reverse sorted and the algorithm

performs n * (n-1) comparisons. The worst case and average

case time complexity is O(n*n). Bubble sort takes auxiliary

space of O(1).

B. Selection Sort

The selection sort is an in-place sorting algorithm [5] that

sorts an array by continually searching the smallest

element from unsorted part and inserting it at the beginning

of the array. Selection sort preserves two sub arrays in a

given array. The first sub array which is already sorted and

the remaining second sub array which is unsorted. In each

iteration of selection sort, the smallest element from the

unsorted sub array is chosen and placed to the sorted sub

array. The advantages of selection sort algorithm are

simplicity and easy to implement but it is inefficient for large

lists. Selection sort never makes more than O(n) swaps and

can be useful when memory write is a costly operation [6].

The time complexity of selection sort for worst, average and

best cases is O(n*n). Selection sort takes auxiliary space of

O(1).

C. Insertion Sort

In insertion sort, each iteration takes away an element from

the input data and places it into the exact place in the list

being sorted. The choice of the element to take away from

the input data is random and this process is repetitive until all

input elements have been placed at the right places. Playing

cards is the best example of insertion sort. Insertion sort is

more efficient than bubble sort and selection sort, however

all of them have O(n*n) worst case complexity. The

advantages of insertion sort are simple implementation and

faster than bubble sort but it is efficient for small lists of

data. The worst case and average case time complexity is

O(n*n) and the best case time complexity is O(n) when the

list is already sorted [7]. Insertion sort takes utmost time to

sort if elements are sorted in reverse order. Insertion sort

takes auxiliary space of O(1).

D. Quick Sort

Quick sort algorithm is based on an algorithmic technique

known as divide and conquer. Divide and Conquer is a three

step process that consists of divide, conquer and combine.

Divide step partitions the array into two sub arrays. The

elements of first sub array are less than the elements of

second sub array. Conquer step sorts the two sub arrays by

recursive calls to quick sort and Combine step means to

merge the two subparts which are already sorted to make it

entire array [8]. In quick sort, a pivot element is selected then

reorganizes all elements of array in such a way that all

elements which are smaller than the pivot element goes to the

left side and all those elements which are greater than the

pivot element go to the right side. The quick sort algorithm

again applies recursively to the left and the right parts. The

advantages of quick sort are efficient and fast but it proves to

be a bit space costly when it comes to large data sets [9]. The

worst case occurs when the partition process always picks

greatest or smallest element as pivot or in other words worst

case occurs when the array is already sorted in increasing or

decreasing order and worst case running time for quick sort

is O(n*n) but for the average case it is very efficient and has

running time of O(n log n). The best case occurs when the

partition process always picks the middle element as pivot

and best case running time for quick sort is O(n log n).

E. Heap Sort

Heap sort is an in-place algorithm that is part of selection

sort family. Heap sort uses a tree data structure called heap to

manage information during the execution of the algorithm

[8]. To sort the elements using heap sort firstly create a heap

by adjusting the array elements and then continually remove

the root element of the heap by shifting it to the end of the

array and then restore the heap structure with remaining

elements [10]. Heap sort has time complexity of O(n log n)

in all the cases. Unlike quick sort, the efficiency of heap sort

is not affected by the initial order of elements [4].

F. Shell Sort

Shell sort is also called as diminishing increment sort and is

developed by Donald L. Shell. It compares the elements at a

particular distance using which the elements which are

distant can be sorted also. The size of the set to be sorted gets

smaller with each pass through the list, until sub list’s length

 International Journal of Computer Sciences and Engineering Vol.5(11), Nov 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 219

becomes one [11]. So the last step of shell sort is equivalent

to insertion sort. The advantage of shell sort is that it is an

efficient sort for medium size lists. The best case in shell sort

is when the data set is already sorted in the right order.

Running time of shell sort depends on the choice of

increment sequence [5].

G. Merge Sort

Merge sort like quick sort also based on the algorithmic

technique known as divide and conquer i.e. divide the list

into two halves, recursively sort both half lists, and then

merge the two sorted sublists [12]. Merge sort splits the list

into two halves, then each half is conquered separately [13].

The advantage of merge sort is that it is used for both internal

as well as external sorting and merge sort is a stable

algorithm.

III. COMPARATIVE STUDY OF ALGORITHMS

We summarized the best case, average case and worst case

complexity of sorting algorithms in the table 1.

Table 1. Complexity Cases [7, 9, 14, 15]

Algorithm Best

Case

Complexity

Average

Case

Complexity

Worst

 Case

Complexity

Bubble O(n)

[modified]

O(n
2
) O(n

2
)

Selection O(n
2
) O(n

2
) O(n

2
)

Insertion O(n) O(n
2
) O(n

2
)

Quick O(n log n) O(n log n) O(n
2
)

Merge O(n log n) O(n log n) O(n log n)

Shell O(n) Depends on

gap sequence

O(n log
2
 n)

Heap O(n log n) O(n log n) O(n log n)

IV. PERFORMANCE ANALYSIS USING C#

We implemented all seven algorithms to measure the

performance using C# language and calculated the running

time in milliseconds by using System.Diagnostics.Stopwatch

class. The data set for the analysis contains random numbers.

We ran ten times for each value of N (i.e. 100, 200, 300, 400

and 500) and tried to find running time of each sorting

algorithm. For taking the size of the array and selection of

the algorithm to sort random array, a graphical user interface

has been created as shown in the figure 1.

Figure 1: Graphical user interface for choosing size and algorithm

Similarly, a user can create a random array of any size taken

as input and run any sorting algorithm as shown in interface

of figure 1. Consequently a user can find the running time

and average of the sorting algorithm in milliseconds as

shown in interface of figure 2.

 Figure 2: Graphical view of generating time and average in milliseconds

Table 2-6 displays the running time for ten runs and their

average in milliseconds for all the seven algorithms. The

running time is calculated for the input length of N i.e. 100,

200, 300, 400 and 500 elements.

TABLE 2
RUNNING TIME AND AVERAGE FOR 100 ELEMENTS

Run Bubble Selection Insertion Shell Quick Merge Heap

 International Journal of Computer Sciences and Engineering Vol.5(11), Nov 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 220

1 69.74 76.98 74.73 105.76 68.05 69.92 72.75

2 69.74 76.98 74.73 105.76 68.05 69.92 72.75

3 68.75 68.01 66.64 66.64 67.38 68.87 67.12

4 69.07 67.11 67.72 66.74 67.41 68.05 66.72

5 68.70 68.02 67.44 67.26 66.95 69.83 66.30

6 67.63 68.48 66.67 67.57 67.21 67.59 66.55

7 67.99 67.08 66.69 66.77 66.76 69.53 67.40

8 68.32 67.468 66.64 67.66 67.04 67.19 66.64

9 68.28 67.40 67.43 67.78 67.05 66.90 67.54

10 68.40 67.06 67.70 66.82 68.54 66.95 66.66

Av. 68.66 69.46 68.64 74.88 67.45 68.47 68.04

TABLE 3

RUNNING TIME AND AVERAGE FOR 200 ELEMENTS

Run Bubble Selection Insertion Shell Quick Merge Heap

1 226.24 197.22 205.32 212.63 195.21 231.19 201.90

2 226.24 197.22 205.32 212.63 195.21 231.19 201.90

3 201.76 193.73 193.70 193.16 192.51 192.56 194.77

4 201.32 194.20 191.11 194.53 193.23 194.33 192.38

5 199.66 194.09 195.20 193.40 193.65 194.65 194.13

6 200.13 193.70 194.80 191.70 193.63 192.54 194.66

7 200.93 194.10 193.31 191.95 193.42 192.60 192.09

8 199.51 193.94 195.21 192.32 193.78 190.32 192.91

9 201.63 193.00 193.40 194.12 193.00 193.20 193.73

10 198.90 193.07 192.56 193.75 192.31 194.85 193.65

Av. 205.63 194.43 195.99 197.02 193.60 200.74 195.21

TABLE 4

RUNNING TIME AND AVERAGE FOR 300 ELEMENTS

Run Bubble Selection Insertion Shell Quick Merge Heap

1 412.11 422.54 381.90 405.31 385.77 386.04 419.58

2 412.11 422.54 381.90 405.31 385.77 386.04 419.58

3 396.17 383.18 381.08 380.82 380.72 380.42 381.02

4 392.32 384.59 384.03 383.87 380.19 381.75 380.25

5 393.67 383.14 382.01 380.83 379.89 382.64 379.99

6 393.10 380.57 381.14 382.55 380.26 381.74 380.70

7 393.28 383.36 384.50 381.53 380.96 381.93 381.87

8 394.96 382.40 381.94 381.21 381.32 382.93 382.57

9 392.93 383.14 382.42 379.65 381.05 380.50 382.24

10 392.18 382.97 380.98 381.81 381.22 380.77 381.36

Av. 397.28 390.84 382.19 386.29 381.71 382.48 388.92

TABLE 5

RUNNING TIME AND AVERAGE FOR 400 ELEMENTS

Run Bubble Selection Insertion Shell Quick Merge Heap

1 637.16 596.74 621.23 611.49 598.13 612.57 623.54

2 637.16 596.74 621.23 611.49 598.13 612.57 623.54

3 610.55 596.67 596.34 593.75 598.26 599.39 598.73

4 611.70 596.98 595.35 595.66 595.41 596.14 598.59

5 613.59 596.64 598.04 593.55 596.90 600.86 598.52

6 608.25 596.84 597.01 600.14 595.25 594.95 598.97

7 609.14 596.91 595.29 594.62 597.70 598.77 599.13

8 607.42 597.32 597.19 595.66 595.34 598.11 596.77

9 608.09 599.67 597.15 598.51 598.41 598.80 598.28

10 608.82 598.20 596.32 597.38 596.01 602.41 599.99

Av. 615.19 597.27 601.52 599.22 596.95 601.46 603.61

TABLE 6

RUNNING TIME AND AVERAGE FOR 500 ELEMENTS

Run Bubble Selection Insertion Shell Quick Merge Heap

1 831.96 830.38 812.49 850.04 816.51 828.01 829.25

2 831.96 830.38 812.49 850.04 816.51 828.01 829.25

3 824.67 816.61 813.37 812.29 810.61 809.06 811.28

4 827.90 809.16 812.11 813.27 810.86 808.29 809.24

5 829.48 810.90 814.03 812.94 812.20 811.19 811.41

6 827.74 815.94 812.40 809.56 808.19 810.35 811.68

7 823.53 812.50 814.12 810.23 807.66 815.63 809.72

8 824.12 811.90 815.54 811.92 810.30 811.51 810.09

9 826.09 813.72 812.30 810.46 811.11 811.54 811.06

10 826.09 813.18 809.77 811.34 810.74 811.30 807.77

Av. 827.42 816.47 812.86 819.21 811.47 814.49 814.08

V. RESULTS AND DISCUSSIONS

The seven sorting algorithms used for the investigation were

run ten times for the same length of random array N i.e. 100,

200, 300, 400 and 500 elements and their average was also

calculated. Figure 3 displays the average running time in

milliseconds of all the seven sorting algorithms taken into

consideration during the present study. Out of all results, the

quick sort algorithm takes less time as compared to other

sorting algorithms and therefore is the most efficient among

other discussed algorithms.

Figure 3: Comparison of seven sorting algorithms having elements (N= 100,
200, 300, 400 and 500).

VI. CONCLUSION AND FUTURE WORK

In this study, we have discussed seven sorting algorithms and

their comparison. To find out the running time of all the

seven sorting algorithms, we have developed a graphical user

interface through C# language in which the user has to input

the size of the array elements and to select the algorithm to

find the running time and their average. In this piece of

 International Journal of Computer Sciences and Engineering Vol.5(11), Nov 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 221

investigation, the data elements of the array are randomly

chosen for different data sets of N = 100, 200, 300, 400 and

500. We have calculated the average running time for each

algorithm and then showed the result with the help of a graph

in figure 3. From the tables 2-6 and figure 3 comparison it is

clear that Quick sort is the best and efficient algorithm

among all the other algorithms discussed in the study. In the

future, we compare the sorting algorithms in different

languages to check the running time and memory utilization.

In addition to this, we shall try to compare the sorting

algorithms in different operating systems.

REFERENCES

[1] S. K. Basu, “Design Methods and Analysis of Algorithms”, PHI

Publication, India, 2005.

[2] Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, “Fundamentals
of Computer Algorithms”, Universities Press Publication, India, 2009.

[3] ISRD Group, “Data Structures using C”, Tata McGraw-Hill Publication,
India, 2006.

[4] R. S. Salaria, “Data Structures & Algorithms Using C”, Khanna Book
Publication, India, 2012.

[5] Narasimha Karumanchi, “Data Structures and Algorithms Made Easy in
Java”, CareerMonk Publication, India, 2015.

[6] The GeeksQuiz website. [Online].

Available: http://quiz.geeksforgeeks.org

[7] Sonal Beniwal and Deepti Grover, “Comparison of Various Sorting

Algorithms: A review”, International Journal of Emerging Research in

Management & Technology, Vol.2, Issue.5, pp.83-86, 2013.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford
Stein, “Introduction to Algorithms”, Prentice-Hall Publisher, India, 2001.

[9] Miraj Gul, Noorul Amin and M. Suliman, “An Analytical Comparison of

Different Sorting Algorithms in Data Structure”, International Journal of

Advanced Research in Computer Science and Software Engineering,

Vol.5, Issue.5, pp.1289-1298, 2015.

[10] Yashavant Kanetkar, “Data Structures through C”, BPB Publication,
India, 2010.

[11] Bremananth R, Radhika. V and Thenmozhi. S, “Visualization of Searching

and Sorting Algorithms”, International Journal of Computer, Electrical,

Automation, Control and Information Engineering, Vol.3, No.3, pp.633-

641, 2009.

[12] Sanjoy Dasgupta, Christos Papadimitriou and Umesh Vazirani,
“Algorithms”, Tata McGraw-Hill Publication, India, 2009.

[13] Narasimha Karumanchi, “Data Structures and Algorithms Made Easy”,
CareerMonk Publication. India, 2011.

[14] Sourabh Shastri, “Studies on the Comparative Analysis and Performance
Prediction of Sorting Algorithms in Data Structures”, International Journal
of Advanced Research in Computer Science and Software Engineering,
Vol. 4, No. 5, pp. 1187-1190, 2014.

[15] Sourabh Shastri, Prof. Vibhakar Mansotra and Anand Sharma, “Sorting

Algorithms and their Run-Time Analysis with C#”, International Journal of

Computer Science and Information Technology & Security, Vol. 5, No.5,

pp. 388-395, 2015.

Authors Profile

Sourabh Shastri is pursuing Ph.D. and currently working as
Assistant Professor in Department of Computer Science and IT,
Kathua Campus, University of Jammu, Kathua. He is a life member
of Computer Society of India. He has 5 years of teaching experience
at University level. His main research work focuses on Analysis and
Design of Algorithms, Data Mining and Big Data Analytics.

Prof. Vibhakar Mansotra, Senior Professor in Department of
Computer Science and IT, University of Jammu. He is also Director
IT, University of Jammu. He has been conferred with the Best
Teacher award in Information Technology by the Amar Ujala B-
School Excellence Awards. His research interests are Data Mining,
Information Retrieval and Computer Graphics. He is a life member
of Computer Society of India.

Arun Singh Bhadwal has completed his Masters in Computer
Applications from Bhaderwah Campus, University of Jammu. He
has 2 years of teaching experience at University level. His main
research interests are Analysis and Design of Algorithms, Compiler
Design and Artificial Intelligence.

Monika Kumari has completed her Masters in Computer
Applications from Bhaderwah Campus, University of Jammu. She
is currently working as Teaching Assistant at Ramnagar Campus,
University of Jammu. Her main research interests are Data Mining,
Internet of Things and Analysis and Design of Algorithms.

Avish Khajura has completed his Masters in Computer Applications
from Bhaderwah Campus, University of Jammu. His main research
interests are Analysis and Design of Algorithms, Machine Learning
and Data Mining.

Dalbir Singh Jasrotia has completed his Masters in Computer
Applications from Bhaderwah Campus, University of Jammu. His
main research interests are Data Mining, Machine Learning and
Image Processing.

http://quiz.geeksforgeeks.org/

