[4

AXJCSE International Journal of Computer Sciences and Engineering

Research Paper

Volume-5, Issue-11

Open Access
E-ISSN: 2347-2693

A GUI Based Run-Time Analysis of Sorting Algorithms and their
Comparative Study

Sourabh Shastri®’, Vibhakar Mansotra?, Arun Singh Bhadwal®, Monika Kumari*, Avish Khajuria®,
Dalbir Singh Jasrotia®

“"Dept. of Computer Science and IT, Kathua Campus, University of Jammu, Kathua, India
“Dept. of Computer Science and IT, University of Jammu, Jammu, India
*Dept. of Computer Science and IT, Kathua Campus, University of Jammu, Kathua, India
*Dept. of Computer Science and IT, Ramnagar Campus, University of Jammu, Udhampur, India
>%Dept. of Computer Science and IT, Bhaderwah Campus, University of Jammu, Bhaderwah, India

“Corresponding Author: sourabhshastri@gmail.com, Tel.: +91-94191-71476
Available online at: www.ijcseonline.org
Received: 06/0ct/2017, Revised: 14/0ct/2017, Accepted: 12/Nov/2017, Published: 30/Nov/2017

Abstract— The analysis of algorithms is a subject that has always arouses enormous inquisitiveness. It helps us to determine
the efficient algorithm in terms of time and space consumed. There are valid methods of calculating the complexity of an
algorithm. In general, a suitable solution is to calculate the run time analysis of the algorithm. The present study documents the
comparative analysis of seven different sorting algorithms of data structures viz. Bubble sort, Selection sort, Insertion sort,
Shell sort, Heap sort, Quick sort and Merge sort. The implementation is carried out in Visual Studio C# by creating a Graphical
User Interface to calculate the running time of these seven algorithms.

Keywords—Algorithm, Complexity, Runing Time, Sorting, Data Structures

l. INTRODUCTION

The study of algorithm is at the core of all automatic
problem-solving activities [1]. Algorithm is a finite set of
instructions to accomplish a particular task. The word
algorithm comes from the name of a Persian author, Abu
Ja’far Muhammad ibn Musa Al-Khwarizmi [2]. An
algorithm must satisfy the criteria of Input, Output,
Definiteness, Finiteness and Effectiveness. A specified set of
inputs are required for an algorithm that produces set of
values as output and must terminate after finite number of
steps. These steps must be clear and unambiguous. The steps
of the algorithm should be effective so that any naive user
can perform the steps. The efficiency of an algorithm is
analyzed in terms of running time and memory also referred
to as computational complexity. Computational complexity
is a characterization of the time or space requirements for
solving a problem by a particular algorithm [3]. Thus the
analysis of an algorithm requires two main considerations i.e.
time complexity and space complexity. The time complexity
of an algorithm is the total time for its completion and space
complexity is the total memory required for completion.
Time and Space complexity is expressed in the form of a
function f(n), where n is the input size for a given instance of
the problem being solved [4].

© 2017, IJCSE All Rights Reserved

Sorting is one of the vital algorithms in computer science for
arranging large volumes of data in some logical order.
Sorting algorithms can be categorized by number of
comparisons, number of swaps, memory usage, recursion,
stability and adaptability [5]. Sorting algorithms can be
divided into two main categories i.e. internal sort and
external sort. An internal sorting algorithm uses internal
memory i.e. main memory and external sorting algorithms
use external memory i.e. disk or tape for the process. Two
fundamental properties of sorting algorithms are in-place and
stable. The algorithm is in-place if it does not need extra
memory space except for few memory units and the
algorithm is stable if it preserves the relative order of any
two equal elements.

In this paper, we have created a graphical user interface for
the implementation of various sorting algorithms viz. bubble
sort, selection sort, insertion sort, shell sort, heap sort, quick
sort and merge sort. For calculating the time complexity of
these sorting algorithms, Visual Studio C# language has been
selected. We have run the same algorithm on ten different
runs for each different input size of N = 100, 200, 300, 400
and 500 and finally calculated the average running time for
each algorithm separately. User has to input only the value of
N i.e. how many elements are required for sorting and a
random number generator generates N number of elements
randomly.

217

International Journal of Computer Sciences and Engineering

I1. WORKING PROCEDURE OF ALGORITHMS

In this section, we discuss the working procedure of all the
seven algorithms used for the comparative analysis in paper
viz. bubble sort, selection sort, insertion sort, shell sort, heap
sort, quick sort and merge sort.

A. Bubble Sort

The bubble sort also known as exchange sort is a comparison
based sorting algorithm that works by continually swapping
the adjacent elements if they are not in the proper order. The
largest element of the list bubble up after one pass. Similarly
on each succeeding pass the next largest elements are
positioned at appropriate places. An important property of
bubble sort is that if there is no swapping of elements in a
particular pass, there will be no further swapping of elements
in the successive passes [4]. The advantages of bubble sort
are simplicity and ease of implementation. The best case
occurs when array is already sorted then it takes minimum
time and performs n-1 comparisons. That’s why time
complexity for best case is O(n) and in contrast, the worst
case occurs when array is reverse sorted and the algorithm
performs n * (n-1) comparisons. The worst case and average
case time complexity is O(n*n). Bubble sort takes auxiliary
space of O(1).

B. Selection Sort

The selection sort is an in-place sorting algorithm [5] that
sorts an array by continually searching the smallest
element from unsorted part and inserting it at the beginning
of the array. Selection sort preserves two sub arrays in a
given array. The first sub array which is already sorted and
the remaining second sub array which is unsorted. In each
iteration of selection sort, the smallest element from the
unsorted sub array is chosen and placed to the sorted sub
array. The advantages of selection sort algorithm are
simplicity and easy to implement but it is inefficient for large
lists. Selection sort never makes more than O(n) swaps and
can be useful when memory write is a costly operation [6].
The time complexity of selection sort for worst, average and
best cases is O(n*n). Selection sort takes auxiliary space of
0O(2).

C. Insertion Sort

In insertion sort, each iteration takes away an element from
the input data and places it into the exact place in the list
being sorted. The choice of the element to take away from
the input data is random and this process is repetitive until all
input elements have been placed at the right places. Playing
cards is the best example of insertion sort. Insertion sort is
more efficient than bubble sort and selection sort, however
all of them have O(n*n) worst case complexity. The
advantages of insertion sort are simple implementation and
faster than bubble sort but it is efficient for small lists of
data. The worst case and average case time complexity is
O(n*n) and the best case time complexity is O(n) when the

© 2017, IJCSE All Rights Reserved

Vol.5(11), Nov 2017, E-ISSN: 2347-2693

list is already sorted [7]. Insertion sort takes utmost time to
sort if elements are sorted in reverse order. Insertion sort
takes auxiliary space of O(1).

D. Quick Sort

Quick sort algorithm is based on an algorithmic technique
known as divide and conquer. Divide and Conquer is a three
step process that consists of divide, conquer and combine.
Divide step partitions the array into two sub arrays. The
elements of first sub array are less than the elements of
second sub array. Conquer step sorts the two sub arrays by
recursive calls to quick sort and Combine step means to
merge the two subparts which are already sorted to make it
entire array [8]. In quick sort, a pivot element is selected then
reorganizes all elements of array in such a way that all
elements which are smaller than the pivot element goes to the
left side and all those elements which are greater than the
pivot element go to the right side. The quick sort algorithm
again applies recursively to the left and the right parts. The
advantages of quick sort are efficient and fast but it proves to
be a bit space costly when it comes to large data sets [9]. The
worst case occurs when the partition process always picks
greatest or smallest element as pivot or in other words worst
case occurs when the array is already sorted in increasing or
decreasing order and worst case running time for quick sort
is O(n*n) but for the average case it is very efficient and has
running time of O(n log n). The best case occurs when the
partition process always picks the middle element as pivot
and best case running time for quick sort is O(n log n).

E. Heap Sort

Heap sort is an in-place algorithm that is part of selection
sort family. Heap sort uses a tree data structure called heap to
manage information during the execution of the algorithm
[8]. To sort the elements using heap sort firstly create a heap
by adjusting the array elements and then continually remove
the root element of the heap by shifting it to the end of the
array and then restore the heap structure with remaining
elements [10]. Heap sort has time complexity of O(n log n)
in all the cases. Unlike quick sort, the efficiency of heap sort
is not affected by the initial order of elements [4].

F. Shell Sort

Shell sort is also called as diminishing increment sort and is
developed by Donald L. Shell. It compares the elements at a
particular distance using which the elements which are
distant can be sorted also. The size of the set to be sorted gets
smaller with each pass through the list, until sub list’s length

218

International Journal of Computer Sciences and Engineering

becomes one [11]. So the last step of shell sort is equivalent
to insertion sort. The advantage of shell sort is that it is an
efficient sort for medium size lists. The best case in shell sort
is when the data set is already sorted in the right order.
Running time of shell sort depends on the choice of
increment sequence [5].

G. Merge Sort

Merge sort like quick sort also based on the algorithmic
technique known as divide and conquer i.e. divide the list
into two halves, recursively sort both half lists, and then
merge the two sorted sublists [12]. Merge sort splits the list
into two halves, then each half is conquered separately [13].
The advantage of merge sort is that it is used for both internal
as well as external sorting and merge sort is a stable
algorithm.

I11. COMPARATIVE STUDY OF ALGORITHMS

We summarized the best case, average case and worst case
complexity of sorting algorithms in the table 1.

Table 1. Complexit

Cases [7, 9, 14, 15]

Algorithm Best Average Worst
Case Case Case
Complexity Complexity Complexity
Bubble o(n) o(n%) o(n%)
[modified]
Selection o(n?) o(n) o(n)
Insertion o(n) o) o)
Quick O(n log n) O(n log n) o)
Merge O(nlogn) O(nlogn) O(nlog n)
Shell o(n) Dependson | O(n log® n)
gap sequence
Heap O(nlogn) O(nlogn) O(nlog n)

IV. PERFORMANCE ANALYSIS USING C#

We implemented all seven algorithms to measure the
performance using C# language and calculated the running
time in milliseconds by using System.Diagnostics.Stopwatch
class. The data set for the analysis contains random numbers.
We ran ten times for each value of N (i.e. 100, 200, 300, 400
and 500) and tried to find running time of each sorting
algorithm. For taking the size of the array and selection of
the algorithm to sort random array, a graphical user interface
has been created as shown in the figure 1.

© 2017, IJCSE All Rights Reserved

Vol.5(11), Nov 2017, E-ISSN: 2347-2693

:n 7 1. &
1%) 8874 7560 2630 6358 7290 6357 5298
—_— 1634 50 8524 319 705 50 6063 700 1730 27 45T 47 7004 9831 858 352 7685 31 £1 6275 16 9428 307 202 731 1704 872
Bubble Sort 6632 6403 875 40 991 4894 4312 5I31 4739 3153 4956 4633 %642 7791 4520 7143 5211 8256 5950 265 6535 439 281 546 034 1721 458
2659 2406 4783 6521 9688 6221 6831 SO0 596 2954 4366 3302 512 2712 4300 619 5
‘Selecn'onSon
—
‘Insem'onSou
—_ QUCK SORT
Y
— 646
‘ Shell Sort 1%
28 4
56
0%
[— 87)
| Heap Sort 415 -'1524239-?.[62& 71 4304 312 4352 4395 4373 43
_ 74 783 4900 4304 4840 4361 4872 478 4879 4854 4895 450 A
1 Merge Sort ‘ Reset Exit Next

Figure 1: Graphical user interface for choosing size and algorithm

Similarly, a user can create a random array of any size taken
as input and run any sorting algorithm as shown in interface
of figure 1. Consequently a user can find the running time
and average of the sorting algorithm in milliseconds as
shown in interface of figure 2.

Time in MiliSeconds
Bubble sort Seleionsont Inserton sort. Shellsot Quick st Merge sot Heap sort
i @ W Em WIS W]
i o WA wm BITE ETT 5
wm
] W nes s w0 s
e
P e o W HAN wx
B wms
wm T ET) w0 BT
HiR 05]
s i ww ui
wm wE FE
S R B e
FT]
03 0138 o @3
® W w2 E] e T
wa .
0 uaw s B s fan
B wa B
] BT s nH
Average
Wz o 0 3 i A% foF]
B et &

Figure 2: Graphical view of generating time and average in milliseconds

Table 2-6 displays the running time for ten runs and their
average in milliseconds for all the seven algorithms. The
running time is calculated for the input length of N i.e. 100,
200, 300, 400 and 500 elements.

TABLE 2
RUNNING TIME AND AVERAGE FOR 100 ELEMENTS

[Run | Bubble | Selection [Insertion [Shell | Quick | Merge [Heap |

219

International Journal of Computer Sciences and Engineering

Vol.5(11), Nov 2017, E-ISSN: 2347-2693

1 | 6974 | 76.98 7473 | 10576 | 68.05 | 69.92 | 72.75 TABLE 6
2 69.74 76.98 74.73 105.76 | 68.05 69.92 | 72.75 RUNNING TIME AND AVERAGE FOR 500 ELEMENTS
3 68.75 68.01 66.64 66.64 | 67.38 | 6887 | 67.12 Run | Bubble | Selection | Insertion | Shell | Quick | Merge | Heap
4 | 6907 | 6711 6772 | 66.74 | 6741 | 6805 | 66.72 1 | 83196 | 83038 | 81249 | 850.04 | 81651 | 828.01 | 829.25
5 | 6870 | 6802 6744 | 6726 | 6695 | 69.83 | 66.30 2 | 83196 | 830.38 | 81249 | 850.04 | 816.51 | 828.01 | 829.25
6 | 6763 | 6848 6667 | 6757 | 6721 | 67.59 | 66.55 3 | 82467 | 81661 | 81337 | 81229 | 810.61 | 809.06 | 811.28
7| 6799 | 67.08 6669 | 66.77 | 66.76 | 69.53 | 67.40 4 | 82790 | 809.16 | 81211 | 81327 | 810.86 | 808.29 | 809.24
8 | 6832 | 67468 | 6664 | 6766 | 67.04 | 6719 | 66.64 5 | 82048 | 81090 | 814.03 | 812.94 | 812.20 | 811.19 | 811.41
9 | 6828 | 6740 6743 | 6778 | 67.05 | 6690 | 67.54 6 | 827.74 | 81594 | 81240 | 809.56 | 808.19 | 810.35 | 811.68
10 | 6840 | 67.06 6770 | 6682 | 6854 | 66.95 | 66.66 7 | 82353 | 81250 | 81412 | 81023 | 807.66 | 815.63 | 809.72
Av. | 6866 | 6946 6864 | 7488 | 6745 | 6847 | 68.04 8 | 82412 | 81190 | 81554 | 811.92 | 810.30 | 81151 | 810.09
9 | 82609 | 81372 | 81230 | 81046 | 81111 | 81154 | 811.06
10 | 826.09 | 813.18 | 809.77 | 81134 | 810.74 | 811.30 | 807.77
TABLE 3 Av. | 82742 | 81647 | 812.86 | 819.21 | 81147 | 814.49 | 814.08
RUNNING TIME AND AVERAGE FOR 200 ELEMENTS
Run | Bubble | Selection | Insertion | Shell Quick | Merge | Heap
1 | 22624 | 19722 | 20532 | 21263 | 19521 | 231.19 | 201.90 V. RESULTSAND DISCUSSIONS
2 | 22624 | 19722 | 20532 | 212.63 | 19521 | 231.19 | 201.90 . . : A
3 T20176 | 19373 19370 | 19316 | 19951 | 1925 | 18477 The seven sorting algorithms used for the mvestlgatlpn were
2 20132 | 19420 19111 | 19453 | 19323 | 19433 | 19238 run ten times for the same length of random array N i.e. 100,
5 | 199.66 | 194.09 19520 | 19340 | 193.65 | 194.65 | 19413 200, 300, 400 and 500 elements and their average was also
6 | 20013 | 19370 | 19480 | 191.70 | 19363 | 19254 | 194.66 | calculated. Figure 3 displays the average running time in
; igg-gi gg-;g gggi g;-gg igg-;‘g igg-gg 133-8519 milliseconds of all the seven sorting algorithms taken into
s 20163 | 15300 T340 10412 [19300 | 15320 19373 cop5|derat|on du_rmg the present s;udy. Out of all results, the
10 | 19890 | 19307 10256 | 19375 | 19231 | 19485 | 19365 quick sort algorithm takes less time as compared to other
Av. | 20563 | 194.43 19599 | 197.02 | 193.60 | 200.74 | 19521 sorting algorithms and therefore is the most efficient among
other discussed algorithms.
TABLE 4 4 N\
RUNNING TIME AND AVERAGE FOR 300 ELEMENTS Chart Title
Run | Bubble | Selection | Insertion | Shell Quick | Merge | Heap
1 | 41211 | 42254 | 38190 | 40531 | 385.77 | 386.04 | 419.58
2 | 41211 | 42254 | 381.90 | 40531 | 385.77 | 386.04 | 419.58
3 | 39617 | 383.18 | 38108 | 380.82 | 380.72 | 380.42 | 381.02
4 | 39232 | 38459 | 38403 | 38387 | 380.19 | 38175 | 380.25 M Bubble
5 | 39367 | 38314 | 38201 | 380.83 | 379.80 | 382.64 | 379.99 m Selection
6 | 39310 | 38057 | 38114 | 38255 | 380.26 | 381.74 | 380.70
7 | 39328 | 383.36 | 38450 | 38153 | 380.96 | 381.93 | 381.87 Insertion
8 | 39496 | 38240 | 38194 | 38121 | 38132 | 382.93 | 382.57
9 | 39293 | 383.14 | 38242 | 379.65 | 381.05 | 380.50 | 382.24 = Shell
10 | 39218 | 38297 | 380.98 | 38181 | 381.22 | 380.77 | 381.36
Av. | 39728 | 390.84 | 38219 | 386.29 | 38L1.71 | 382.48 | 388.92 m Quick
Merge
TABLE 5 Heap
RUNNING TIME AND AVERAGE FOR 400 ELEMENTS
Run | Bubble | Selection | Insertion | Shell Quick | Merge | Heap
1 637.16 596.74 621.23 611.49 | 598.13 | 612.57 | 623.54 100 200 300 400 500
2 | 63716 | 596.74 | 62123 | 61149 | 598.13 | 61257 | 62354 _ J
3 610.55 596.67 596.34 | 593.75 | 598.26 | 599.39 | 598.73 Figure 3: Comparison of seven sorting algorithms having elements (N= 100,
4 | 61170 | 596.98 | 59535 | 595.66 | 595.41 | 596.14 | 598.59 200, 300, 400 and 500).
5 | 61359 | 59664 | 598.04 | 59355 | 596.90 | 600.86 | 598.52
6 | 60825 | 596.84 | 59701 | 600.14 | 595.25 | 594.95 | 598.97
7 | 609.14 | 59691 | 59529 | 594.62 | 597.70 | 598.77 | 599.13 VI. CONCLUSION AND FUTURE WORK
8 | 60742 | 597.32 | 59719 | 595.66 | 595.34 | 598.11 | 596.77 : ; : :
5 T 50800 | 599 67 o7 1= | 5ol | E98.41 | o880 | 59828 In t_hls study, we have dl_scussed seven sor_tlng glgorlthms and
10 | 60882 | 59820 50632 | 597.38 | 596.01 | 602.41 | 599.99 their comparison. To find out the running time of all the
Av. | 61510 | 597.27 | 60152 | 599.22 | 596.95 | 601.46 | 60361 | Seven sorting algorithms, we have developed a graphical user

© 2017, IJCSE All Rights Reserved

interface through C# language in which the user has to input
the size of the array elements and to select the algorithm to
find the running time and their average. In this piece of

220

International Journal of Computer Sciences and Engineering

investigation, the data elements of the array are randomly
chosen for different data sets of N = 100, 200, 300, 400 and
500. We have calculated the average running time for each
algorithm and then showed the result with the help of a graph
in figure 3. From the tables 2-6 and figure 3 comparison it is
clear that Quick sort is the best and efficient algorithm
among all the other algorithms discussed in the study. In the
future, we compare the sorting algorithms in different
languages to check the running time and memory utilization.
In addition to this, we shall try to compare the sorting
algorithms in different operating systems.

REFERENCES

[1] S. K. Basu, “Design Methods and Analysis of Algorithms”, PHI
Publication, India, 2005.

[2] Ellis Horowitz, Sartaj Sahni and Sanguthevar Rajasekaran, “Fundamentals
of Computer Algorithms”, Universities Press Publication, India, 2009.

[8]1 ISRD Group, “Data Structures using C”, Tata McGraw-Hill Publication,
India, 2006.

[4] R. S. Salaria, “Data Structures & Algorithms Using C”, Khanna Book
Publication, India, 2012.

[6] Narasimha Karumanchi, “Data Structures and Algorithms Made Easy in
Java”’, CareerMonk Publication, India, 2015.

[6] The GeeksQuiz website. [Onling].
Available: http://quiz.geeksforgeeks.org

[71 Sonal Beniwal and Deepti Grover, “Comparison of Various Sorting
Algorithms: A review”, International Journal of Emerging Research in
Management & Technology, Vol.2, Issue.5, pp.83-86, 2013.

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford
Stein, “Introduction to Algorithms ", Prentice-Hall Publisher, India, 2001.

[9] Miraj Gul, Noorul Amin and M. Suliman, “An Analytical Comparison of
Different Sorting Algorithms in Data Structure”, International Journal of
Advanced Research in Computer Science and Software Engineering,
Vol .5, Issue.5, pp.1289-1298, 2015.

[10] Yashavant Kanetkar, “Data Structures through C”, BPB Publication,
India, 2010.

[11] Bremananth R, Radhika. VV and Thenmozhi. S, “Visualization of Searching
and Sorting Algorithms”, International Journal of Computer, Electrical,
Automation, Control and Information Engineering, Vol.3, No.3, pp.633-
641, 2009.

[12] Sanjoy Dasgupta, Christos Papadimitriou and Umesh Vazirani,
“Algorithms”, Tata McGraw-Hill Publication, India, 2009.

[13] Narasimha Karumanchi, “Data Structures and Algorithms Made Easy”,
CareerMonk Publication. India, 2011.

[14] Sourabh Shastri, “Studies on the Comparative Analysis and Performance
Prediction of Sorting Algorithms in Data Structures”, International Journal
of Advanced Research in Computer Science and Software Engineering,
Vol. 4, No. 5, pp. 1187-1190, 2014.

[15] Sourabh Shastri, Prof. Vibhakar Mansotra and Anand Sharma, “Sorting
Algorithms and their Run-Time Analysis with C#”, International Journal of
Computer Science and Information Technology & Security, Vol. 5, No.5,
pp. 388-395, 2015.

© 2017, IJCSE All Rights Reserved

Vol.5(11), Nov 2017, E-ISSN: 2347-2693

Authors Profile

Sourabh Shastri is pursuing Ph.D. and currently working as
Assistant Professor in Department of Computer Science and IT,
Kathua Campus, University of Jammu, Kathua. He is a life member
of Computer Society of India. He has 5 years of teaching experience
at University level. His main research work focuses on Analysis and
Design of Algorithms, Data Mining and Big Data Analytics.

Prof. Vibhakar Mansotra, Senior Professor in Department of
Computer Science and IT, University of Jammu. He is also Director
IT, University of Jammu. He has been conferred with the Best
Teacher award in Information Technology by the Amar Ujala B-
School Excellence Awards. His research interests are Data Mining,
Information Retrieval and Computer Graphics. He is a life member
of Computer Society of India.

Arun Singh Bhadwal has completed his Masters in Computer
Applications from Bhaderwah Campus, University of Jammu. He
has 2 years of teaching experience at University level. His main
research interests are Analysis and Design of Algorithms, Compiler
Design and Artificial Intelligence.

Monika Kumari has completed her Masters in Computer
Applications from Bhaderwah Campus, University of Jammu. She
is currently working as Teaching Assistant at Ramnagar Campus,
University of Jammu. Her main research interests are Data Mining,
Internet of Things and Analysis and Design of Algorithms.

Avish Khajura has completed his Masters in Computer Applications
from Bhaderwah Campus, University of Jammu. His main research
interests are Analysis and Design of Algorithms, Machine Learning
and Data Mining.

Dalbir Singh Jasrotia has completed his Masters in Computer
Applications from Bhaderwah Campus, University of Jammu. His
main research interests are Data Mining, Machine Learning and
Image Processing.

221

http://quiz.geeksforgeeks.org/

