
  © 2017, IJCSE All Rights Reserved                                                                                                                                        83 

International Journal of Computer Sciences and Engineering    Open Access 

Research Paper                                           Volume-5, Issue-11                                          E-ISSN: 2347-2693 

                 

Facility Location: A Theoretical Approach for Flood Relief 

Vairaprakash Gurusamy
1*

, K. Nandhini
2 

 
1*

Department of Computer Applications, School of IT, Madurai Kamaraj University, Madurai, India 
2
Technical Support Engineer, Concentrix India Pvt Ltd, Chennai, India 

 
*Corresponding Author: vairaprakashmca@gmail.com 

Available online at: www.ijcseonline.org  

Received: 20/Oct/2017, Revised: 29/Oct/2017, Accepted: 22/Nov/2017, Published: 30/Nov/2017 

Abstract ---We present a theoretical approach to come up with an effective mechanism for flood relief in terms of facility 

location problem with certain constraints. Facility location problem is a well studied economical decision problem to locate 

limited facility on demand points to cover maximum demand. Let consider a facility network under link failure. The problem is 

to locate emergency response facilities on a network with links that are subject to a failure model, called vulnerability − based 

dependency. We address the MAX-EXP-COVER-R problem in the facility network subjects to VB-dependency failure model. 

The MAX-EXP-COVER-R problem is known to be NP-hard. Let the distance factor R is relaxed from MAX-EXP-COVER-

R problem, then it becomes MAX-EXP-COVER problem. The MAX-EXP-COVER problem can be solved in linear time 

using greedy algorithm. The MAX-EXP-COVER problem is further reduced into an instance of full binary tree, and then run 

MAX-WT-K-LEAF-SUBTREE problem on the tree will outputs the solution for MAX-EXP-COVER problem. Let the 

distance factor R = 1, then MAX-EXP-COVER-R problem is equivalent to budgeted dominating set problem with budget k 

and the induced subgraph of the solution set is need not to be connected. 
 

Keywords---Facility location, Disaster management, Approximation algorithm, NP-Hardness, Dominating sets, Link 
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I.  INTRODUCTION 

The facility location problems capture the common features of the optimization problems. The goal of facility location is to 

serve a set of demand points, typically called as clients, by an opening a set of access points, typically called as facilities, in a 

cost effective and efficient manner. The distances between the clients and facilities are assumed to satisfy metric properties. 

There is a location dependent cost for opening a facility at each location. Typically, a solution to a facility location problem is 

specified by a set of facilities to be opened and an assignment of the clients   to the open facilities [1].  

The sum of costs of opening the facilities is called the facility cost, and the sum of distances of each client to the facility it is 

assigned to is called as the service cost of the solution. Different variants of the facility location problem are obtained by 

combining these costs in different ways. A richer set of problems emerges by considering formulations in which each facility 

can serve at most a specified number of clients or by making the cost of a facility depend on the number of clients it serves 

after the assignment. The distance metric is assumed to be   a real number represents the maximum distance that can cover by 

a open facility and a demand point, which obtain service from the corresponding open facility. 

Given an instance of (G = (V, E), k, R), where V is the vertex set or demand point and E is connectivity between demand 

points. Each edge e ∈  E is associated with a distance metric le ∈ R. Each vertex vi ∈ V is demand point with a non-negative 

demand wi ∈ R. The distance factor R is given as maximum facility coverage limit for any open facility node. We need to 

setup k open facilities on V such that the demand satisfied is maximized. The objective function is given as, 

 

Max    ∑ Pri 
                                                                                                                           F⊆V,|F|≤k  vi ∈ v 
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where Pri  is the profit function associated with each vertex. The profit function Pri  for each vertex vi ∈  V  is given as, 

 
 

d(u, v) be the shortest path distance between the vertices. 

Let we introduce a variant of facility location problem, called facility networks with unreliable links. A network   is given with 

finite set of demand points, unreliable links (reliability of the link is given as probability value of the edge) and an integer k 

denoting the maximum number of potential facilities that can be opened at demand points.   Our goal is to locate k facilities 

such that expected demand satisfied is maximized. The facility location problem is an economical decision problem to open 

limited number of facilities on a demand node to satisfy the maximum number of demand nodes in the network. Suppose the 

amount facility that can serve by a potential demand node is limited, then it can cover or serve only limited number of demand 

nodes. Let infinite capacity be given to the potential facility nodes, then each potential facility node could serve to the demand 

nodes which are reachable [4]. In this work we studies a link failure model, called Vulnerability-Based dependency (VB-

dependency) [4]. In case of VB-dependency, failure of any link l implies the failure of all links weaker than l. A potential 

disaster may damage the network and some of the unreliable links could fail. Facility location problem can be solved by 

variants of dominating sets in different scenario. The MAX-EXP-COVER-R problem is a maximization problem. Let the 

factor R is relaxed from MAX-EXP-COVER-R problem then it became MAX-EXP-COVER problem. If a network is 

subjected to VB- dependency, then MAX-EXP-COVER problem is solvable in linear time using either dynamic programming 

or greedy method [4]. 
 

II. FACILITY LOCATION ON A NETWORK WITH UNRELIABLE LINKS 

                            In case of unreliable links, each link e j ∈ E is associated with a surviving probability p j ∈ [0, 1]. Suppose a 

potential disaster event damages G, then the links are subject to random failure. After disaster every link is in binary state that 

either working or non-working. Links are subject to failure after disaster but not nodes. After disaster each node survives and an 

emergency response facility can be located at any node. 
 

2.1 Vulnerability based dependency and realization 

                           Given two links ei and ej with survival probability pi and pj, we say ei and ej have VB dependency, if pi < pj 

then Pr[eifails | e j fails] = 1 [5]. Failure of any link implies failure of all links weaker than that one. In real time scenario it is not 

the case always, but it is useful to reduce the 2m unique realization of survival network into m + 1 realizations. Factorize the 

vulnerability of the components in a link, such that it finds all strongly connected components even if any edge failure in 

disaster. Sort the edges with respect to probabilities in decreasing order (assume probabilities are unique) indexed from 1 · · · ...m. 

1st index represents strongest and mth index represents weakest edge. Under the VB-dependency, only (m + 1)-distinct 

surviving network realization possible with positive probability. 

                             The realizations are represented as Gi, f or i = {0, . . . , m}. Each network realization G(i)  is associated with  

a probability Pi. For each realization i, G(i) can be represented by a m-bit binary vector. G(0) = {00 . . . 0} is the realization where 

every edge failed after disaster. The probability of such realization depends on the strongest link. G(i) is the survival network 

realization, in which ith  indexed edge is the minimum probability edge survived. G(i) can be represented as a binary 

vector in form of i 1s  followed by m + 1 − i 0s, that is P0   = 1 − p1. G
(m) = {11 · · · 1} is the realization where all links 

survive after disaster. Probability of the realization is depends on weakest link, that is Pm = pm. For any realization G(k) for     

k = {1, . . . , m − 1}, probability of the realization is the gap between the probabilities of strongest failure link and weakest 

survival link, that is Pk = pk − pk+1   ∀k ∈ {1, . . . , m− 1}. 
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vi 

v 

Iq 

2.2 MAX-EXP-COVER-R problem 

                                 Let G = (V, E) be the facility network, we need to open at most k potential facilities on V . Once R is fixed 

and a potential facility opened in vertex v, then v can cover demands of all the vertices connected to it with distance less than 

or equal to R. For a fixed open facility, we need to compute the maximum demand cover by total facility in each realization of 

network, where link failure subject to VB-dependency. The MAX-EXP-COVER-R problem is defined as to place at most k 

facilities on a network such that the expected total demand covered within distance R is maximized.  

                                 Let R be the maximum covering distance, and k be the budget for open facility. Choose F ⊆V, such that 

|F|≤ k.  Let lv
q
 be a binary indicator variable associated to each vertex on each realization such that it takes the value 1, if 

demand of the vertex v is covered by any facility node in F in the realization G(q), and 0, otherwise. Let Pq   be the probability 

of the realization G(q), which is described in Section 2.1. MAX-EXP-COVER-R problem is given as   follows. 
m 

max ∑ ∑ PqwiI
q 

F⊆V,|F|≤k q=0 vi∈V 

MAX-EXP-COVER-R problem is proved to be NP-Hard [2]. Maximum k-facility location is a well known NP-Hard problem 

is used to show that MAX-EXP-COVER-R is NP-Hard. 

                             MAX-EXP-COVER problem be the modified version of MAX-EXP-COVER-R problem such that, 

distance limit R is relaxed. A potential open facility can cover all the vertices connected to it, irrespective of distance factor. 

In this case, I
q 

is 1, if v has a potential facility node connected to it in the same component. MAX-EXP-COVER problem 

is solved using MAX-WT-K-LEAF-SUBTREE problem. Given an instance of facility network with unreliable links can be 

reformulated into a rooted tree, called component tree. Then component tree is solved using MAX-WT-K-LEAF- 

SUBTREE by either dynamic programming or a greedy algorithm. 

III. COMPONENT TREE CONSTRUCTION AND MAX-WT-K-LEAF-SUBTREE 

                             Consider G is connected. Under VB-Dependancy of link Max-WT-K-Subtree, there are G(k), k = 0, 1, . . . , 

m unique realizations are possible. G(m) corresponds to G, and G(0) corresponds to completely disconnected graph (without 

edges). Sort the edges in descending order of the probability. When we remove an edge one by one from weakest link, we 

get the realization from G(m−1) to G(0). When an edge disconnected from G, the number of connected components in G is 

remain same or increment by 1. Suppose removal of an edge e ∈ E makes G into disconnected, then e is a disconnecter. 

Suppose ei be the first link disconnects G into two component then mark ei as e
[1].

 Continue the procedure till G is 

completely disconnected, that is G(0) obtained. Given m edges and n vertices, removal of n – 1 edges make the graph to 

be disconnected. From the weakest probability edge to strongest one, the corresponding disconnecting edge is marked from 

0, . . . , m− 1. 

                      Component-Tree is a full binary tree, has two type of nodes (edge type and vertex type). Root node and 

intermediate nodes are edge type (disconnecter (e
[ j] = ei)) and leaf nodes are vertex type. Every disconnecter has two 

children represents two connected components. A component tree is a binary tree, because removal of an edge splits the graph 

into at most 2 components. Recursively these connected components are disconnected by consequent dis-connectors until the 

component become a single vertex. 

                       Let say e
[1] is the first disconnecter, then Nodee[1] is root node of Component-Tree. Nodee[1] has two children. 

Since the tree is full binary tree with n leaf nodes then, there are n-1 non leaf nodes exist. Associate two quantities with each 

node of the Component-Tree: a weight W and a probability P. At any leaf node corresponds to an original   node vi of G, the 

weight W (i) = wi, and the probability P(i) = P0, the probability of the realization where all vertices are in separate component 

(it can cover it self by placing a open facility). For non-leaf nodes, weight of the node e
[i] (ej) is the sum of weight of its left 

subtree and right subtree (sum of weights of all leaf nodes under it). 

 
 
      wi if i is a leaf node represents vi 

W (i) = 

W (L)+ W (R)   if i is a non leaf node represents a disconnector e[i] = e j 

 



   International Journal of Computer Sciences and Engineering                                   Vol.5(11), Nov 2017, E-ISSN: 2347-2693 

  © 2017, IJCSE All Rights Reserved                                                                                                                                        86 

 

where L and R are the corresponding left and right  subtree. 

                     Probability P(e
[i] = ej ) is set to sum of the probability of all the realization in which leaves of subtree L and 

R exactly the nodes of a single connected component. Let say the failure of e j splits the component into two parts (L and R). 

But component is formed when e
[i−1] = el  fails, that is G

(l+1)
   is the first realization that el  fails for the first time. We know 

that   l > j, because sorted in descending order (pl < pj ). Hence  P(e
[i] = ej ) is the sum of probability of realizations from     

G( j+1)  to G(l+1).  

 

 

                               Once weight and probability is calculated for each node, the we can compute expected weight (EW (i)), 

which is expressed as EW (e
[i]

) = W (e
[i]

)P(e
[i]

) for non-leaf nodes and EW (i) = wi(1 − P1) for leaf nodes. Given a single rooted 

binary tree, where each node is associated with a nonnegative expected weight (EW), find the maximum cost induced rooted 

tree with k-Leaves. 

                               Dynamic programming algorithm for MAX-WT-K-LEAF-SUBTREE problem is formulated as follows. 

Let define the function MaxW (v, t) for each node v ∈ T , and for every positive integer t ≤ k, such that MaxW (v, t) denotes 

the maximum expected weight obtained by choosing exactly t leaves of the subtree rooted at v. For some v ∈ V , t = 0 means 

that there is no leaf chosen in the the subtree rooted at  v. 

                               Let v ∈ T  be a node. Right child and left child of v is represented as vr and vl respectively. The subtree 

rooted at vl and vr are represented as L and R respectively. If t = 0 for any v ∈ T, means that MaxW (v, 0) = 0. If a subtree Tv 

rooted at v has lesser or equal number of leaves than t, then MaxW (v, t) = ∑u∈Tv EW (u). 

 

 

                                Given a limit t for a vertex v ∈ V , at most t leaf vertex can be chosen from the subtree rooted at v. We 

know that   T is a complete binary tree. Given a vertex v and an integer t, DP will find a tr ≤ t, such that tr leaf nodes are 

chosen from L and t −tr leaf nodes are chosen from R. To find a better tr, We need to iterate the value from 0 to t, such that 

the maximum weight is obtained. Recursive procedure is solved from leaf to root. The running time of the algorithm is 

O(k.n2). 

                             MAX-WT-K-LEAF-SUBTREE can be solvable in linear time using The greedy algorithm. Given a 

problem instance of (T, k), greedy algorithm compute a new tree with additional quantity (an integer) C(v) associated with 

each node   v ∈ T . The sum of weights of nodes from root to the node v is stored in C(v). The cost C(v) is given  as, 

 
      W E(v),         v is root node 

C(v) = 

C(vp) + WE(v), Otherwise 

where vp is the parent node to v. The cost for each node is computed in top-down approach by traversing the tree. Once C(v) 

is computed for all the nodes then, choose the leaf that contains the maximum C(v) as greedy choice. Let lOTP be the leaf node 
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with maximum C(lOTP). For every nodes v in the path from lOTP to root, set EW (v) = 0. This updated tree is represented as T r. 

The optimal substructure for this problem is given as (T r, k − 1). 

                          Correctness of the greedy algorithm is to show that greedy choice and optimal substructure is correct. Let 

lOTP be the leaf node having maximum value C(lOTP). We need to show that for any k ≥ 1 in the problem instance of (T, k), the 

lOTP is contained in optimal solution (OPT). For the contradiction, consider lOTP is not in OPT. Choose a leaf node l in OPT, 

such that the least common ancestor of l∗ and lOTP has minimum height. We know that C(l∗ ) ≤ C(lOTP) (lOTP is the leaf 

having maximum C(lOTP)). Let vr be the least common ancestor for l∗ and lOTP. Choose a leaf node l1 in OPT, such that the 

least common ancestor of l∗ and l1 has minimum height, represent the least common ancestor as l
 r 

. Suppose l
 r 

is an 

ancestor of vr, then consider the new solution by excluding l∗ from OPT and add lOPT . The weight of the new solution S∗ 

containing lOPT   is 

EW (T (S∗ )) =EW (T (OPT )) −C(l∗ )+ C(vr)+ C(lOPT ) −C(vr) 

=EW (T (OPT )) −C(l∗ )+ C(lOPT ) 

>EW (T (OPT )) 

the above equation contradict the case that lOPT is excluded from OPT. Suppose vr is an ancestor of v1
r, then consider the 

solution by excluding l∗ from OPT and add lOPT . The weight of the new solution S∗ containing lOPT is given below. 

 

 

EW (T (S∗ )) =EW (T (OPT )) −C(l∗ )+ C(v1
r)+ C(lOPT ) −C(vr) 

>EW (T (OPT )) −C(l∗ )+ C(lOPT ) 

>EW (T (OPT )) 

expected weight of S∗ is more than OPT is a contradiction. 

                            Greedy choice is proved to be correct. The optimal substructure of tree T is to reduce the weight of the 

nodes in the path from lOPT to root node, to zero. This procedure is repeated for k times. The running time of the greedy 

algorithm is O(kn). 

IV. PRELIMINARY INVESTIGATION AND FUTURE DIRECTION 

                              In this section, we present our preliminary investigation and direction for future work. The facility location 

problem is generally posted on a single facility type. There are some variants which are provided with multiple facility types. 

In this case, each facility has separate underlying networks. We have argued some preliminary works related to multiple 

facility types and other ways to compute facility location. 

4.1 MAX-WT-K-LEAF-SUBTREE PROBLEM ON 2-ROOTED TREE 

                              Suppose the network has different kinds of facilities that want to serve to a demand point. The MAX-

EXP-COVER- R problem can be formulated as Max-Exp-Cover-R problem with l-type facility. For each facility type, a 

separate underlying network with same vertex set will be given. The demand on vertices and the probability of link failure is 

different for each underlying networks. The MAX-EXP-COVER problem is linear time solvable for l = 1 is given in this 

survey, Section 3.The complexity status for l ≥ 2 is unknown. 

                               A 2-rooted tree is tree in which two special nodes are singled out, called roots. The tree has disjoint node 

set except at leaves. Once we removed leaves from 2-rooted tree, the tree become two disjoint binary tree with single root 

each. Tree is rooted by two nodes, v1 and u1, and except leaf level, both the induces trees are disjoint. 

                              We presented a dynamic programming and greedy algorithm for MAX-WT-K-LEAF-SUBTREE problem 

on rooted tree. We have constructed a counter example which shows that greedy algorithm fails to solve the MAX-WT-K-
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LEAF- SUBTREE problem on 2-trees. 

 
4.2 LP for MAX-WT-K-LEAF-SUBTREE problem 

                              Another natural way to solve the optimization problems is linear programming. We present an LP 

formulation for the MAX-WT-K-LEAF-SUBTREE problem. The input is a rooted complete binary tree T, consists of node 

set V = {v1, v2, . . . , vn}. Each node vi is associated with a weight wi ≥ 0. Let L ⊂ V be the set of leaf nodes. Given a tree T with 

node set V and leaves L, and an integer k (k ≤ |L|), find subset of leaves Lr ⊆ L with |Lr|≤ k, such that the total weight of the 

rooted induced subtree of Lr is maximized. 

                             Let xi be the decision variable associated with each vertex vi ∈ V. The xi decides that whether vi is included 

in the solution or not. 

 

                              The objective function is to maximize the total weight of nodes included in the induced subtree such that at 

most k leaves are picked in the subtree. So objective function is given as, 

 
 

Maximize ∑ xi.wi    

vi∈V 

s.t,   ∑ xi ≤ k (4.1) 

vi∈L 
 

xl(i) + xr(i) ≥ xi ∀i ∈ V | L (4.2) 

xp(i) ≥ xi ∀i ∈ V | {r} (4.3) 

xi = {0, 1} ∀i ∈ V | {r} (4.4) 

xr  = 1 r is the root (4.5) 

                               p(i), l(i) and r(i) represent the parent node, left child and right child of node i respectively. The equation 

(4.1) enforce the constrain that for any feasible solution consists of at most k leaves. The equation (4.3) stands for any node i 

is presented in solution then it enforce that all its predecessors must be presented in the solution. The equation 4.2 stands for 

the constraint that, if none of the children has not been selected to the solution, then parent node will not be selected. 

 

4.3 Role of PCDS and BCDS in MAX-EXP-COVER-R problem 

                              Recall that the distance factor R is used in facility location under link failure problem. A demand node can 

be served by a potential facility node if the distance between them is less than or equal to R. In case of networks with un 

weighted edges, the distance is measured as edge count along the path between the nodes. The MAX-EXP-COVER-R 

problem   is known to be NP-hard [1]. Let the distance factor R is relaxed from it, then the problem becomes MAX-EXP- 

COVER problem. Suppose the distance factor R = 1, then each potential facility node can cover at most the distance of one 

hop. The MAX-EXP-COVER-R problem can be modeled as a BCDS problem such that each potential node can have profit 

of its immediate neighborhood demand and the budget is same as k. The solution of the BCDS problem [5] is a connected 

minimum dominating set that dominates maximum number of vertices, but the solution of MAX-EXP-COVER-R problem 

is not necessarily connected. For arbitrary R value, the instance of Max-Exp-Cover-R can be modeled as a R-dominating set 

(a dominating set D ⊆ V such that the each dominants can dominate up to the Rth neighbor) [3]. 
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V. CONCLUSION 

                                   The dominating sets and its variants are used in facility location problem with link failure model. The 

VB-dependency is a well studied link failure model used in facility location problem. The MAX-EXP-COVER-R problem is 

addressed in facility location under VB-dependency. The dominating sets and its variants can be used in the MAX-EXP-

COVER- R problem. The facility location problem can be formulated to multiple kind of facilities where each can have a 

different network structure. This problem is addressed in MAX-EXP-COVER-R problem with l-type facilities. 
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