€
AX]JCSE International Journal of Computer Sciences and Engineering [pen Access

Review Paper Volume-5, Issue-10 E-ISSN: 2347-2693

Classification of Tools For Feature-Oriented Software Development: A
Comprehensive Review

Kala K. U.r", M. Nandhini?

Y"Department of Computer Science, School of Engineering and Technology, Pondicherry University, Puducherry, India
Department of Computer Science, School of Engineering and Technology, Pondicherry University, Puducherry, India

“Corresponding Author: kalaunni88@gmail.com, Tel.: +919656847815

Available online at: www.ijcseonline.org

Received: 16/Sep/2017, Revised: 29/Sep/2017, Accepted: 15/0ct/2017, Published: 30/Oct/2017)
Abstract—Software development tools are the programs or set of programs which assist the software developers in the
development of other programs and applications. This makes their work easier. Feature-Oriented Software Development
(FOSD) Paradigm is a software development paradigm especially for the development of large-scale software systems and
software product lines. Like every other software development paradigm, the complexity of the creation, debugging and
maintenance of a Feature-Oriented software development necessitate the tool support. Software product-line development
consists of multiple phases (Domain Analysis, Domain Design and Specification, Domain Implementation, and Product
Configuration and Generation), each of which shall be supported by proper tools. There are a large number of tools available
for supporting each process of FOSD, but proper classification does not exist. Tools which support one phase will not support
the processes of other phases, so it is necessary to study the tools available before using it. In this review, our aim is to collect
and classify the available tools based on the processes of each phase of FOSD. As the supporting tool field is too broad and
continuously changing, the collective information about tools is not available. This review helps the developers and researchers
to get a comprehensive idea of the existing tools and their functions, which help them to make use of this according to their
need.

Keywords—Tools, Integrated Development Environment, Feature-Oriented Software Development(FOSD), Software Product
Line, Comprehensive Review.

I. INTRODUCTION support; this especially holds for implementation of software
product lines. For this reason, many specialized tools that
solve the problems with the implementation of feature-

oriented software have been developed.

Feature-oriented software development (FOSD) is a
paradigm for the construction, customization, and synthesis
of large-scale software systems [1]. Usually, large scale
software systems are developed as a software product line. A
software product line is a set of different software systems
that share commonalities, described by means of features [2].
A feature is a user-visible aspect or characteristic of a system

The customizable software is necessary for a broad spectrum
of domains. However, just like single systems, software
product lines also need support from tools for different stages

[3]. In FOSD, a product of a software product line is
generated automatically for a selection of features. FOSD
facilitates the construction of customized software products,
while artifacts can be reused and thereby time and resources
can be saved.

The paradigm of feature-oriented software development is an
extension of existing programming paradigms and languages,
such as object-oriented programming, to create variable and
customizable software. However, with this additional
variability, there also some additional problems that must be
considered, such as feature interactions. The intricacies of
feature component composition may arise[62], Hence,
efficient software development is not possible without tool

© 2017, IJCSE All Rights Reserved

of production. Because tools from single system engineering
can only be applied to one product at once, these tools are
not sufficient for an efficient development of all. In the last
decade, several approaches have been proposed that transfer
the analysis of single systems to an efficient analysis of
product lines. With these strategies, there also came tools
that can be applied to analyze a product line. To get a
representative list of current tools, we base this survey as a
classification of tools for Feature-Oriented Software Product
Line Development.

We provide a categorization on tools for implementation in
feature-oriented software development. With this paper, we
aim to help the researchers, students, and practitioners

329

International Journal of Computer Sciences and Engineering

working in the field of FOSD by the following contributions:
A brief overview of the processes of FOSD which have been
supported by the tools, A detailed classification of the tools
according to their process support, Scrutinized information
such as programming language and implementation
strategies corresponding to each tool and a brief description
of the IDEs exists in the field of FOSD.

Additionally, this work gives an overview on tools that
support the implementation of feature-oriented software,
such as tools for product generation, refactoring, and
analysis. Finally, we identify tasks in feature-oriented
software development that are underrepresented in current
tool support. This work eases the reuse of existing tools for
researchers and students and thus simplifies research transfer
to practice.

Rest of the paper is organized as follows, Section | contains
the introduction of FOSD and the tools for it, Section 1l
contains the related work of tool support for FOSD, Section
111 contains the details of essential phases and sub-processes
of each phase of FOSD, Section IV contains the essential
tools corresponding to each process, Section V explains the
available Integrated Development Environments (IDE) for
FOSD and Section VI concludes review work with future
directions.

Il. RELATED WORK

In the last decade, several type of researches have been
proposed in the field of FOSD. While we are going deep into
the research area, Sven Apel and Thomas Thim are the two
prominent persons who contribute much in the research on
FOSD through their continuous focus on the innovation of
the field. Their study concerns with all major areas of this
new software development strategy. In his book, Sven Apel
et al [1] gives a clear cut idea and research areas focused in
this field. The researchers mainly concentrate on feature
modeling, variability implementation techniques (language
based and tool based), refactoring, feature interaction
problems, analysis of software product lines, etc. Tools are
necessary to support all these FOSD activities.

In this study, our focus is on the researches carried out in the
field of tool support for FOSD. Thomus Thum et al [5] give
an overview of analysis tools for software product line.
However, for brevity, the survey focused only on the tools
for software analysis of product lines, the other phases such
as analysis of software models, variability models, product
generation, etc have been excluded. Here we are trying to
include all the tools related to Feature-Oriented Software
Product Line Development.

The effort of building a research prototype or creating a
proof of concept is greatly reduced if existing tools can be

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

leveraged. It is also important to know which tools exist and
on which other tools they are built on, which can also reduce
the effort of building a new tool. With this paper, we aim to
help the researchers, students, and practitioners working in
the field of FOSD by the following contributions:

e A brief overview of the processes of FOSD which
have been supported by the tools.

e A detailed classification of the tools according to
their process support

e Scrutinized information such as programming
language and implementation strategies
corresponding to each tool.

e A brief description of the IDEs exists in the field
of FOSD.

Our goal with this classification survey is a detailed study of
the tool support to decide whether a tool for a certain
analysis strategy or generation technique exists that could be
used, or enhancing the research on the tools.

I1l. PHASES AND SUB PROCESSES OF FOSD

FOSD is the process of developing software product lines,
and generate software products automatically in terms of
features. Apel et al. [4] define FOSD as a four-phase process
as shown in figure 1.

N\
*Domain Scoping, Feature
Domain Modelling,...
Analysis y
N\
*Modelling/UML, Formal
Domain Specification...
Design and
Specificatiol J
N\
Feature modules, aspects,
Domain Annotations,Preprocessors,...
Implementati
on J
N\
Pruct «Feature selection, Optimisation,
[Composition, Type Checking, ..
and y
Generation
Figure 1. Phases of FOSD
330

International Journal of Computer Sciences and Engineering

In domain analysis, commonalities and differences of the
domain of interest are identified, resulting in a feature model.
Domain design and specification is the process in which the
architecture of the product line is designed and specified.
Domain implementation is the phase of designing,
implementing, analyzing, and refactoring the source code of
the product line. In product configuration and generation, a
product containing a desired selection of features is created.

The core processes which have tool support are Feature
Modeling, Feature-Oriented Decomposition, Variant
Preserving Refactoring, Product Configuration and Product
Generation. The processes which are used to analyse
software product line such as Sampling, Testing, Type
Checking, Static analysis, Model Checking, Theorem
Proving, Consistency Checking, Non Functional Properties
and code metrics, also avail tool support now.

Apart from the tools, Integrated Development Environment
also has major role in the Feature-Oriented Software Product
Line Development Paradigm.

A. Feature Modeling

Feature modeling is the most popular method for
representing variabilities and commonalities in
software product families. The result of a feature
modeling process is a feature model. Sven Apel et al
[55] defines “A feature model is a tree wherever the
basis could be a feature, typically referred to
because of the concept. The root feature has sub-
features, and these could, in turn, produce other
features as their sub-features, etc.” A feature model
may be a description of a system family, e.g., a
software product family; an outline of an individual
system comes by choosing a set of features. Timo
Asikainen et al[19] groups the features as *
mandatory sub features should be selected
whenever its parent is chosen; an optional feature is
also chosen whenever its parent is selected however
needs not be selected; an alternate sub feature
consists of a collection of alternatives of that
precisely one should be selected whenever the
parent feature is selected; an or-feature may be a
sub feature kind almost like an alternate feature,
with the distinction that a minimum of one amongst
the alternatives should be selected. ”

B. Feature-Oriented Decomposition
A feature may be a unit of practicality of a code that
satisfies a demand, represents a design decision and
provides a possible configuration choice. The
essential plan of FOSD is to decompose a software
system in terms of the features it provides. The goal
of the decomposition is to construct well-structured
software which will be tailored to the wants of the

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

user and also the application situation. In FOSD,
features structure the planning of the software
system. Hence, modeling and specification activities
don't aim at shaping a variable design; this is given
by the decomposition into features, however at
shaping the structure and behavior of features and
their interactions [1].

Variant Preserving Refactoring

Refactorings in FOSD product lines aim at
improving the structure while generally preserving
observable behaviour. There are three types of
refactoring are there in software product lines:
Variability preserving, Variability enhancing and
Product preserving refactoring. Variability
preserving refactoring needs more attention in
developing software product lines. It doesn't modify
the set of valid product and corresponding feature
selections and preserves the noticeable behaviour of
all products. Also, it should not take away or add a
product to a product line and should not modify the
noticeable behaviour of any potential or truly
delivered the product.

Product Configuration

A product configuration may be a description of the
products delivered by a personal system. Timo
Asikainen et al.[l19] defines “A feature
configuration, or configuration for short, is a
description of the products delivered by a system; a
product configuration consists of a set of features
(F), the sub feature relation (s), the attribute relation
(a), the type function t, and the root feature (r) that
is a member of the set of features.”

Product Generation

Product generation is the process of generating the
complete product on selected features. This
facilitates automation in FOSD. Several steps
square measure required to get associate efficient
software system from a user’s feature selection.
Sven Apel et al.[4] classifies product derivation as a
several step process. They define the steps as “First,
to help the user in choosing a group of desired
features, tools got to present the offered features
moreover as their constraints and relationships
clearly. Succeeding step is to figure an entire, valid
feature selection on the premise of a partial feature
selection by evaluating attainable complete feature
mixtures and judgment their appropriateness. Once
we've got a correct feature selection, the specified
software system is generated.”

Sampling

In sample-based analyses, a representative subset of
all products for a given coverage criterion is
analyzed [1, 5]. With this approach, it is possible to
efficiently detect errors by applying analysis tools
from single-system engineering. Sampling is often

331

International Journal of Computer Sciences and Engineering

used in combination with testing, but can be applied
to verification and other analyses as well [5, 6, 7, 8].
Sampling strategies are sound but always
incomplete, since they can only detect errors that
are contained in the subset that is analyzed [1]
Testing

Similar to testing of single systems, software
product line testing aims to uncover defects,
however, with the additional management of
variability [9]. The main challenges of testing
software product lines are reusing test cases and
reducing redundancies in test cases and executions
Type Checking

The basis of most approaches that analyze software
product lines is type safety of all products, such that
each product can be compiled. Type checking is the
verification process that ensures type safety [10].
Efficient type checking tools for software product
lines considers the variability defined at the feature
model for family-based analyses based on a
unmodified product line. Type checker for
annotation-based product-lines consider variability
defined at annotations and at the feature model to
reason about type safety. Composition-based type-
checking considers the dependencies between
feature modules to ensure type safety after
composition.

Static Analysis

Static analysis operates on compile-time and can
predict dynamic values or behaviours that arise at
run-time [11]

Model Checking

In software model checking, the program is
translated into a graph of states and transitions [12].
The analysis of such a graph is the verification
process of model checking. Because model checkers
are able to handle different values of variables, they
can be used to simulate different feature selections.
Thus, model checkers can be efficiently used for
family-based verification of a meta-product. There
are also approaches and tools beyond variability
encoding, but they analyze models rather than
source code [13, 5] (e.g., product-lines transition
systems [14]).

Theorem Proving

The verification technique theorem proving is a
deductive approach to prove logical formulas. First,
the program and its specification (e.g., a contract
that specifies the behaviour of each method) are
translated into logical formulas (a.k.a. proof
obligations). Then the formulas are used to proof
correctness of the program. Theorem proving is
only supported by FeaturelDE, there are no other
tools for supporting it.

Consistency Checking

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

The variability used in implementation artifacts
(e.g., features in #ifdef statements) needs to be valid
according to variability defined at the feature model.
Consistency checking analyses the usage of
features; whether a feature has a corresponding
implementation and vice versa [15, 16].
Additionally, consistency checking analyzes the
feature dependencies with the usage in the source
code (e.g., dead or superfluous code in case of
incorrect combination of #ifdef statements) [17]

Non Functional Properties

A goal of software development is to optimize non-
functional properties, such as footprint,
performance, and energy consumption [18]. In
single system engineering, such properties can be
reached by a specialized implementation for the
properties defined by stakeholders. However, it is
even more challenging to automatically determine
the optimal product for a given product line related
to a given non-functional property (e.g., with the
lowest energy consumption). The goal of research
on non-functional properties is to predict such
properties for all products based on measurements
of some products.

Code Metrics

Code metrics are used to compare analyses results
and to evaluate their expressiveness. In software
product-line analyses often metrics such as lines of
code and numbers of features are used. However,
such metrics do not take feature dependencies and
variability in the source code into account. To
compare analysis results for different software
product lines, other metrics are required.

IV. TOOL SUPPORT

Proper tool support helps to achieve efficiency for each of
these phases. However, there exist tools which integrate and
support all or multiple phases of FOSD. There is a large

number

of tools and some Integrated Development

Environment (IDE) exists in practice to support FOSD. Most
product line tools are extensible and try to connect the
phases. The available tool support for various processes
defines in section Il is arranged as tables here (table 1 to
table 13). Along with implementation strategy, supporting
programming language is also mentioned on each tool.

Table 1. Tools Supporting Feature modeling

Tool Implementation Programming
Strategy Language

AHEADIJ21] FOP Java
Captain Feature * *
DeltaJ[22] DOP Java
DOPLER * Java
EASyProducer Preprocessor *

332

International Journal of Computer Sciences and Engineering

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

FaMa * Java | XFeature | * | Java
FeatureMapper * Java
EMT * * Table 5. Tools Supporting Product Generation
Hydra * Java Tool Implementation Programming
Kumbang * Java Strategy Language
Metadoc FM * * AHEADJ21] FOP Java
S2T2 * Java Antenna Preprocessor Java
SPLCongqueror * * aspectc AOP C
SPLOT * Java ASpECtC'H' AOP C++
VariaMos * Aspect] AOP Java
VARMOD * AspectSharp AOP NET
WeCoTin * CaesarJ AOP Java
XFeature * Java CPP Preprocessor C,C++
DeltaJ[22] DOP Java
Table 2. Tools Supporting Feature-Oriented Decomposition EASyProducer Preprocessor *
Tool Implementation Programming ELIDE Preprocessor Java
Strategy Language FeatureBite FOP Java
AOP- AOP Java FeatureC++ FOP, AOP C++
Migrator[60] FeatureHouse[39] | FOP Java, C, C#, JML,
Ext.ractorPL FOP * Haskell, XML,
FLIPEX AOP Java Python, Alloy,
LEADT[l] VSoC Java Featherweight
)))) Java, JML, JCop,
Table 3. Tools Supporting Varla.nt Preserving Refactoring i Stratego, SDF,
Tool Implementation Programming JavaCC
: Strategy Language FeatureJS FOP, Preprocessor | JavaScript,
cnife Preprocessor C, C++ HTML
ext-refactoring DOP Java Fuji[37] FOP Java
Morpheus Preprocessor ¢ javapp Preprocessor Java
VAMPIRE FOP Java Munge Preprocessor Java
rbFeatures FOP Ruby
Table 4. Tools Supporting Product Configuration Spoon Preprocessor Java
Tool Implementation | Programming XFeature * Java
Strategy Language XVCL Preprocessor
AHEADJ[21] FOP Java
Captain Feature * * Table 6. Tools Supporting Sampling
DeltaJ[22] bopP Java Tool Implementati | Programmi
DOPLER * Java on Strategy ng
EASyProducer Preprocessor * Language
FaMa * Java GeneticTestCaseGeneration * *
FeatureMapper[55] * Java [27]
FMT * * MoSo-PoLiTe FOP *
Hephaestus * * Pacogen[23] *
Hydra * Java PLEDGE[26] *
Invar * > SPLCATool[24] *
Kumbang * Java Undertaker[25] Preprocessor *
Metadoc FM * *
S2T2 * Java Table 7. Tools Supporting Testing
SPLConfig * Tool Implementatio | Programming
SPLConqueror * n Strategy Language
SPLOT * Java Asadal[30] * *
VariaMos * CPA/Tiger Preprocessor C
WeCoTin * FTS-Testing Preprocessor Featured

© 2017, NCSE Al

| Rights Reserved

333

International Journal of Computer Sciences and Engineering

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

Transition System Captain Feature * *
GATE[28] AOP * DOPLER * Java
IMOTEP DOP * FaMa * Java
Kesit[29] FOP Java FeatureMapper * Java
MATE[31] * * FMT *
Otter * C Hephaestus *
ParTeG[32] * Java Hydra * Java
shared-execution * Java Invar * *
SharQ framework FOP * Kumbang * Java
Splmonitor FOP Java Linux Feature | Preprocessor *
SPL Tester[33] * * Explorer
SPLyverifier[43] FOP Java, C Metadoc FM * *
Varex[34] PHP S2T2 Java
VarexJ Java SPLOT Java
Variability-Aware WHILE Undertaker[25] Preprocessor *
Interpreter[35] ariaMos * *
VARMOD * *
Table 8. Tools Supporting Type checking WeCoTin * Java
Tool Implementation | Programming XFeature * *
Strategy Language
Deltal[22] DOP Java Table 12. Tools Supporting Non Functional Properties
FeatureTweezer[38] | FOP Java, C Tool Implementation Programming
Fuji[37] FOP Java Strategy Language
Software Variant * * ClaferMOQ[45] * *
Generation System FeatureHouse[39] | FOP Java, C, C#, JML,
Haskell, XML,
Table 9. Tools Supporting Static Analysis Python, A||0y,
Tool Implementation Programming Featherweight
Strategy Language Java, JML, JCop,
ACV tool[41] AOP * Stratego, SDF,
CPAchecker[44] | Preprocessor C JavaCC
CPArec Preprocessor C SPLConqueror * *
Golem Preprocessor C
SPLLIFT[40] VSoC Java Table 13. Tools Supporting Code Metric
vampyr Preprocessor C Tool Implementation Programming
Strategy Language
Table 10. Tools Supporting Model Checking Ajdtstats[48] AOP Java
Tool Implementation | Programming AJStats[48] AOP Java
Strategy Language Cppstats[46] Preprocessor CPP
FTS * * FeatureJS FOP, Preprocessor JavaScript, HTML
JPF-BDD * Java
ProVeLines[61] Preprocessor, Featured Transition
FOP System V. IDE SUPPORT _
Software Variant * * An Integrated Development Environment (IDE) is software
Generation consisting of a range of development tools (e.g. a source code
System editor, a debugger) _presented in a graph_ical user interfgce
SPLverifier[43] FOP Java, C (GQI), thus forming a comprehensive _programming
VarexJ[43] FOP Java environment packaged as a software appllc_atlon. It is
VMC Preprocessor Modal _ Transition necessary to have_IDE for FOSD too because it deals with
System software product line and large-scale software systems. IDE

Table 11. Tools Supporting Consistency Checking

Tool

Implementation
Strategy

Programming
Language

© 2017, JCSE All

Rights Reserved

assists the developers by providing a complete solution of the
development process. Tighter integration of all development
tasks has the potential to improve overall productivity beyond
just helping with setup tasks.

334

International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

The IDEs supporting FOSD paradigm is listed in Table 14. Implementation ~ Strategy and supporting language.

Each IDE is associated with supporting activities,
Table 14. Integrated Development Environments for FOSD
Tool Supporting processes Implementation Programming languages
Strategy
ABSJ[58] Product Generation DOP ABS
AJDT[59] AOP Java
CIDE[36] Feature Modeling, Configuration, | VSoC Featherweight Java, Java, C, C#,
Product Generation, Feature- JavaScript, Haskell, Bali, ANTLR, JavaCC,
Oriented Decomposition, Type Properties, HTML, XML, XHTML, XML-
Checking, Code Metrics People, Python, OSGi Manifest
Colligens[47] Feature Modeling, Configuration, | Preprocessor C
Code Metrics
DeltaEcore[53] Product Generation, Feature | DOP Ecore, Java, UML, Yakindu
Modeling, Configuration
Emergo[54] Static Analysis Preprocessor *
Feature Preprocessor
Commander[56]
FeaturelDE[42] Feature Modeling, Configuration, | Preprocessor, FOP, | Java, C, C++, C#, JML, Haskell, XML,
Consistency Checking, Theorem | DOP, AOP Python, Alloy, Featherweight Java, JML,
Proving, Code Metrics, Multi JCop, Stratego, SDF, JavaCC
Product Line, Testing
FeatureVisu[57] Preprocessor *
Gears[52] Feature Modeling, Consistency * *
Checking, Configuration, Product
Generation
pure::variants[51] | Feature = Modeling, Consistency | Preprocessor *
Checking, Configuration, Product
Generation

*We couldn’t able to collect the respective information from the journals and websites in our survey. All tools that we
mentioned in this paper are collected from the published papers and from the websites related to FOSD. Websites are
not cited because it will violate journal reference policy of IJCSE mentioned in the template.

VI. CONCLUSION AND FUTURE WORK

In Feature-Oriented Software-Product-Line Engineering,
similar software products are built in an efficient and
coordinated manner based on features. While there are
efficient techniques and tools to implement FOSD, the
current research seeks to scale software analyses, such as
type checking, static analyses, model checking, or theorem
proving, from single software products to entire software
product lines. Based on our insights with classifying and
comparing a corpus of 61 research articles specifying the
development of software product lines, tools that implement
software analyses, design, and development, maintenance,
etc are necessary. An overview of such tools helps
researchers, lecturers, students, and practitioners to decide
whether a tool for a certain analysis strategy or generation
technique exists that could be used (e.g., for development of
commercial-quality tools, or proof of concepts).

© 2017, IJCSE All Rights Reserved

Furthermore, the effort for the development of new tools can
be reduced through knowledge about existing tools. We
provide additional information about the tools, such as the
supported generation mechanism (e.g., Preprocessors), the
supported programming languages (e.g., Java). We hope this
article can raise awareness of the importance and challenges
of tools for FOSD and thus motivate the researchers and
practitioners to explore existing tools for the extension or
development of new tools/IDE for supporting FOSD
paradigm.

References

[1]. Sven Apel, Don Batory, Christian K[hstner, and Gunter Saake,
“Feature-Oriented Software Product Lines: Concepts and
Implementation”, Springer, 2013.

[2]. Paul Clements, Linda Northrop. “Software Product Lines:
Practices and Patterns”, Addison-Wesley, 2001

335

International Journal of Computer Sciences and Engineering

[3]. Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E.
Novak, A. Spencer Peterson, “Feature-Oriented Domain Analysis
(FODA) Feasibility Study”, Technical Report CMU/SEI-90-TR-
21,Software Engineering Institute, 1990.

[4]. Sven Apel, Christian K astner , “An Overview of Feature-Oriented
Software development”, Journal of Object Technology, Vol. 8,
No. 5, 2009

[5]. Thomas Thum, Sven Apel, Christian Kastner, Ina Schaefer,
Gunter Saake, “ A Classification and Survey of Analysis Strategies
for Software Product Lines”, CSUR, 2014

[6]. Sven Apel, Alexander von Rhein, Philipp Wendler, Armin
GrioBlinger, Dirk Beyer, ¢ Strategies for Product-Line
Verification: Case Studies and Experiments”, ICSE, pp. 482491,
IEEE, 2013.

[7]. Praveen Jayaraman, Jon Whittle, Ahmed M. Elkhodary, Hassan
Gomaa, “Model Composition in Product Lines and Feature
Interaction Detection Using Critical Pair Analysis”. MODELS,
pp. 151-165. Springer, 2007.

[8]. Malte Plath , Mark Ryan, “Feature Integration Using a Feature
Construct”, SCP, 41(1):53-84, 2001.

[9]. Leonardo Passos, Jianmei Guo, Leopoldo Teixeira, Krzysztof
Czarnecki, Andrzej Wasowski, Paulo Borba, “Coevolution of
Variability Models and Related Artifacts: A Case Study from the
Linux Kernel”, SPLC, pp. 91-100, ACM, 2013.

[10]. Benjamin C. Pierce, “Types and Programming Languages”. MIT
Press, Cambridge, Massachusetts, USA, 2002

[11]. Flemming Nielson, Hanne R. Nielson, Chris Hankin., “ Principles
of Program Analysis™, Springer, 2010.

[12]. Edmund M. Clarke, Orna Grumberg, Doron A Peled. “Model
Checking”, MIT Press, 1999.

[13]. Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel
Legay, Jean-Fran,cois Raskin, “ Model Checking Lots of Systems:
Efficient Verification of Temporal Properties in Software Product
Lines”, ICSE, pp. 335-344, ACM, 2010.

[14]. Alexander Gruler, Martin Leucker, Kathrin Scheidemann,
“Modeling and Model Checking Software Product Lines.”,
FMOODS, pp. 113-131, Springer, 2008.

[15]. Thomas Thum, Christian Kastner, Sebastian Erdweg, Norbert
Siegmund., “Abstract Features in Feature Modeling”, SPLC, pp.
191-200. IEEE, 2011

[16]. Reinhard Tartler, Julio Sincero, Wolfgang Schr”oder-Preikschat,
Daniel Lohmann, “Dead or Alive: Finding Zombie Features in the
Linux Kernel”, FOSD, pp. 81-86. ACM, 2009

[17]. Reinhard Tartler, Daniel Lohmann, Julio Sincero, Wolfgang
Schr oder-Preikschat, “ Feature Consistency in Compile-Time-
Configurable System Software: Facing the Linux 10,000 Feature
Problem”, In Proceedings of the sixth conference on Computer
systems, pp. 47-60. ACM, 2011.

[18]. Suzanne Robertson, James Robertson, “ Mastering the
Requirements Process: Getting Requirements Right”, Pearson
Education, 2012.

[19]. Timo Asikainen, Tomi Mannisto, Timo Soininen, “A Unified
Conceptual Foundation for Feature Modeling”, SPLC , IEEE
2006

[20]. C. K astner, S. Apel, S. Trujillo, M. Kuhlemann, D. Batory,
“Language-Independent Safe Decomposition of Legacy
Applications into Features”, Technical Report 02/2008, School of
Computer Science, University of Magdeburg, 2008.

[21]. Don Batory, “A Tutorial on Feature-Oriented Programming and
the AHEAD Tool Suite”, GTTSE, pp. 3-35, Springer, 2006.

[22]. Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani,
Nico Tanzarella, “Delta-Oriented Programming of Software
Product Lines”, SPLC, pp. 77-91. Springer, 2010.

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

[23]. Aymeric Hervieu, Benoit Baudry, Arnaud Gotlieb. “Pacogen:
Automatic Generation of Pairwise Test Configurations From
Feature Models”, ISSRE, pages 120-129, IEEE, 2011.

[24]. Martin Fagereng Johansen, ystein Haugen, Franck Fleurey, “An
Algorithm for Generating T-Wise Covering Arrays from Large
Feature Models”, SPLC, pp. 46-55. ACM, 2012.

[25]. Reinhard Tartler, Daniel Lohmann, Julio Sincero, Wolfgang
SchrCoder-Preikschat, “Feature Consistency in Compile-Time-
Con_gurable System Software: Facing the Linux 10,000 Feature
Problem”. In Proceedings of the sixth conference on Computer
systems, pp. 47-60. ACM, 2011.

[26]. Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques
Klein, Yves Le Traon, “PLEDGE: A Product Line Editor and Test
Generation Tool”, SPLC, pp. 126-129, ACM, 2013

[27]. Faezeh Ensan, Ebrahim Bagheri, Dragan Ga_sevi_c.
“Evolutionary Search-Based Test Generation for Software
Product Line Feature Models”, CAISE, volume 7328 of Lecture
Notes in Computer Science, pp. 613-628, Springer, 2012.

[28]. Yankui Feng, Xiaodong Liu, Jon Kerridge, “A Product Line
Based Aspect-Oriented Generative Unit Testing Approach to
Building Quality Components”, COMPSAC, volume 2, pp. 403-
408, IEEE, 2007.

[29]. Thomas Thum, Ina Schaefer, Martin Kuhlemann, Sven Apel,
“Proof Composition for Deductive Veri_cation of Software
Product Lines”, VAST, pp. 270-277, IEEE, 2011.

[30]. Kyungseok Kim, Hyejng Kim, Miyoung Ahn, Minseok Seo, Yeop
Chang, Kyo C Kang, “ ASADAL: a Tool System for Co-
Development of Software and Test Environment Based on Product
Line Engineering”, ICSE, pp. 783-786, ACM, 2006.

[31]. Georg Puschel, Ronny Seiger, Thomas Schlegel, “Test Modeling
for Context-aware Ubiquitous Applications with Feature Petri
Nets”, In MODIQUITOUS, 2012.

[32]. Stephan Wei_leder, Dehla Sokenou, Bernd-Holger Schlinglo,
“Reusing State Machines for Automatic Test Generation in
Product Lines”, MoTiP, pp. 19-28, 2008.

[33]. Chang Hwan Peter Kim, Don Batory, Sarfraz Khurshid,
“Reducing Combinatorics in Testing Product Lines”, AOSD, pp.
57-68,ACM, 2011.

[34]. Hung Viet Nguyen, Christian K[stner, Tien N. Nguyen,
“Exploring Variability-Aware Execution for Testing Plugin-Based
Web Applications”, ICSE, ACM, 2014.

[35]. Christian K[hstner, Alexander von Rhein, Sebastian Erdweg,
Jonas Pusch, Sven Apel, Tillmann Rendel, Klaus Ostermann,
“Toward Variability-Aware Testing.”, FOSD, pp.1-8, ACM, 2012.

[36]. Christian Khstner, Sven Apel, “Virtual Separation of Concerns-
a Second Chance for Preprocessors”, Journal of Object
Technology, pp.59-78, 2009

[37]. Sven Apel, Sergiy Kolesnikov, JCbrg Liebig, Christian K[hastner,
Martin Kuhlemann, Thomas Leich, “Access Control in Feature-
Oriented Programming”, SCP, pp.174-187, 2012.

[38]. Sven Apel, Wolfgang Scholz, Christian Lengauer, Christian
K[hstner, “Language-Independent Reference Checking in
Software Product Lines”, FOSD, pp.65-71, ACM, 2010.

[39]. Sven Apel, Christian K[hstner, Christian Lengauer, “Language-
Independent and Automated Software Composition: The
FeatureHouse Experience”, TSE, pp.63-79, 2013.

[40]. Eric Bodden, Tarsis Toledo, Marcio Ribeiro, Claus Brabrand,
Paulo Borba, Mira Mezini, “SPLLIFT: Statically Analyzing
Software Product Lines in Minutes Instead of Years”, PLDI,
pp.355-364, ACM, 2013.

[41]. Herbert Klaeren, Elke Pulvermueller, Awais Rashid, Andreas
Speck, ” Aspect Composition Applying the Design by Contract
Principle”, GCSE, pp. 57-69, Springer, 2001.

[42]. Thomas ThCum, Christian K[Chstner, Fabian Benduhn, Jens
Meinicke, Gunter Saake, Thomas Leich, “FeaturelDE: An

336

International Journal of Computer Sciences and Engineering

Extensible Framework for Feature-Oriented Software
Development”, SCP, pp.70-85, 2014.

[43]. Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von
Rhein, Dirk Beyer, “Detection of Feature Interactions Using
Feature-Aware Verification”, ASE, pp. 372-375, IEEE, 2011.

[44]. Dirk Beyer , M. Erkan Keremoglu, “ CPAchecker: A Tool for
Con_gurable Software Verifcation”, CAV, pp. 184-190, Springer,
2011.

[45]. Micha | Antkiewicz, Kacper B , ak, Alexandr Murashkin, Rafael
Olaechea, Jia Hui Jimmy Liang, Krzysztof Czarnecki, “Clafer
Tools for Product Line Engineering”, SPLC, pp.130-135, ACM,
2013.

[46]. Jorg Liebig, Christian Kastner, Sven Apel, “Analyzing the
Discipline of Preprocessor Annotations in 30 Million Lines of ¢
Code”, AOSD, pp. 191-202, ACM, 2011.

[47]. Flavio Medeiros, Thiago Lima, Francisco Dalton, M_arcio
Ribeiro, Rohit Gheyi, Baldoino Fonseca, “Colligens: A tool to
support the development of preprocessor-based software product
lines in ¢, CBSoft, 2013.

[48]. Sven Apel ,Don Batory, “ How AspectJ is Used: An Analysis of
Eleven Aspectd Programs” JOT, pp.117-142, 2010.

[50]. Oster, S., Zorcic, I., Markert, F., Lochau, “MoSo-PoLiTe: tool
support for pairwise and model-based software product line
testing”,In: Proceedings of VAMOS 2011.

[51]. Danilo Beuche, “Systems and software variability management”,
Springer, pp. 173-182, 2013.

[52]. Charles Krueger, Paul Clements, “Systems and Software Product
Line Engineering with Gears from BigLever Software”, SPLC-14,
pp.121-125, ACM, 2014.

[53]. Seidl, Christoph & Schaefer, Ina Assmann, “DeltaEcore-A
Model-Based Delta Language Generation Framework™, Lecture
Notes in Informatics (LNI), Proceedings - Series of the
Gesellschaft fur Informatik (Gl), 2014.

[54]. Ribeiro, Méarcio & Tolédo, Tarsis & Winther, Johnni & Brabrand,
Claus & Borba, Paulo, “ Emergo: A Tool for Improving
Maintainability of Preprocessor-based Product Lines”, 2012

[55]. Florian Heidenreich, Jan Kopcsek, Christian Wende,
“FeatureMapper: Mapping Features to Models”, ICSE
Companion’08 Companion of the 30th international conference
on Software engineering, pp.943-944, 2008.

[56]. Janet Feigenspan, Maria Papendieck, Christian Késtner, Mathias
Frisch, Raimund Dachselt, “FeatureCommander: colorful #ifdef
world”, SPLC '11 Proceedings of the 15th International Software
Product Line Conference, Volume 2,48, 2011.

[57]. Sven Apel, Dirk Beyer, “Feature Cohesion in Software Product
Lines: An Exploratory Study”, ICSE 2011.

[58]. Y. Wong, E. Albert, R. Muschevici, J. Proenga, J. Schéfer, R.
Schlatte, "The abs tool suite: modeling executing and analysing
distributed adaptable object-oriented systems", International
Journal on Software Tools for Technology Transfer, vol. 14, no.
5, pp. 567-588, 2012.

[59]. K. Gybels , J. Brichau, “Arranging Language Features for more
Robust Pattern-Based Crosscuts”, In Proc. Int’l Conf. Aspect-
Oriented Software Development. 2003.

[60]. M. P. Monteiro , J. M. Fernandes, “ Towards a catalog of aspect-
oriented refactorings”,. In Proc. of the 4th International
Conference on Aspect-Oriented Software Development (AOSD),
pages 111-122. ACM Press, March 2005.

[61]. Maxime Cordy, Andreas Classen, Patrick Heymans, Pierre-Yves
Schobbens, Axel Legay, “ProVeLines: A Product Line of Verifiers
for Software Product Lines”, SPLC 2014

[62]. Maushumi Lahon and Uzzal Sharma, "The Intricacies of Software
Component Composition"”, International Journal of Computer
Sciences and Engineering, Vol.03, Issue.01, pp.111-117, 2015.

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

Authors Profile

Mrs Kala K. U. pursed Bachelor of Science in
from University of calicut, Kerala, India in
2008 and Master of Computer Applications
from University of Calicut in year 2012. She
has qualified UGC NET in computer science n..
and applications in July 2016 and currently i {8
pursuing Ph.D in Software Engineering, i
Department of Computer Science, [& I f
Pondicherry University , India since 2016. Her main research
work focuses on Feature Oriented Software Development, Data
Mining and Recommendation Systems. She has 3 years of teaching
experience.

Dr M. Nandhini pursed Bachelor of Science in
year 1994 and Master of Science in year 1997
from Bharathidasan University, Tamilnadu,
India. She has qualified UGC NET in 1998 and
pursued M.Phil from Alagappa University and
Ph.D from Bharathiar University, and currently
working as Assistant Professor in Department
of Computer Science, Pondicherry University,
India since 2012.She has published more than
80 research papers in reputed international journals and
conferences including IEEE and it’s also available online.And also
she has published 3 books and one book chapter. His main research
work focuses on Soft Computing, Combinatorial Problem
Optimization, Artificial Intelligence, Software Engineering, Data
Mining and Recommendation Systems. She has 20 years of
teaching experience and 4 years of Research Experience.

337

