

 © 2017, IJCSE All Rights Reserved 329

International Journal of Computer Sciences and Engineering Open Access

Review Paper Volume-5, Issue-10 E-ISSN: 2347-2693

Classification of Tools For Feature-Oriented Software Development: A

Comprehensive Review

Kala K. U.

1*
, M. Nandhini

2

1*

Department of Computer Science, School of Engineering and Technology, Pondicherry University, Puducherry, India
2
Department of Computer Science, School of Engineering and Technology, Pondicherry University, Puducherry, India

*Corresponding Author: kalaunni88@gmail.com, Tel.: +919656847815

Available online at: www.ijcseonline.org

Received: 16/Sep/2017, Revised: 29/Sep/2017, Accepted: 15/Oct/2017, Published: 30/Oct/2017

Abstract—Software development tools are the programs or set of programs which assist the software developers in the

development of other programs and applications. This makes their work easier. Feature-Oriented Software Development

(FOSD) Paradigm is a software development paradigm especially for the development of large-scale software systems and

software product lines. Like every other software development paradigm, the complexity of the creation, debugging and

maintenance of a Feature-Oriented software development necessitate the tool support. Software product-line development

consists of multiple phases (Domain Analysis, Domain Design and Specification, Domain Implementation, and Product

Configuration and Generation), each of which shall be supported by proper tools. There are a large number of tools available

for supporting each process of FOSD, but proper classification does not exist. Tools which support one phase will not support

the processes of other phases, so it is necessary to study the tools available before using it. In this review, our aim is to collect

and classify the available tools based on the processes of each phase of FOSD. As the supporting tool field is too broad and

continuously changing, the collective information about tools is not available. This review helps the developers and researchers

to get a comprehensive idea of the existing tools and their functions, which help them to make use of this according to their

need.

Keywords—Tools, Integrated Development Environment, Feature-Oriented Software Development(FOSD), Software Product

Line, Comprehensive Review.

I. INTRODUCTION

Feature-oriented software development (FOSD) is a

paradigm for the construction, customization, and synthesis

of large-scale software systems [1]. Usually, large scale

software systems are developed as a software product line. A

software product line is a set of different software systems

that share commonalities, described by means of features [2].

A feature is a user-visible aspect or characteristic of a system

[3]. In FOSD, a product of a software product line is

generated automatically for a selection of features. FOSD

facilitates the construction of customized software products,

while artifacts can be reused and thereby time and resources

can be saved.

The paradigm of feature-oriented software development is an

extension of existing programming paradigms and languages,

such as object-oriented programming, to create variable and

customizable software. However, with this additional

variability, there also some additional problems that must be

considered, such as feature interactions. The intricacies of

feature component composition may arise[62], Hence,

efficient software development is not possible without tool

support; this especially holds for implementation of software

product lines. For this reason, many specialized tools that

solve the problems with the implementation of feature-

oriented software have been developed.

The customizable software is necessary for a broad spectrum

of domains. However, just like single systems, software

product lines also need support from tools for different stages

of production. Because tools from single system engineering

can only be applied to one product at once, these tools are

not sufficient for an efficient development of all. In the last

decade, several approaches have been proposed that transfer

the analysis of single systems to an efficient analysis of

product lines. With these strategies, there also came tools

that can be applied to analyze a product line. To get a

representative list of current tools, we base this survey as a

classification of tools for Feature-Oriented Software Product

Line Development.

We provide a categorization on tools for implementation in

feature-oriented software development. With this paper, we

aim to help the researchers, students, and practitioners

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 330

working in the field of FOSD by the following contributions:

A brief overview of the processes of FOSD which have been

supported by the tools, A detailed classification of the tools

according to their process support, Scrutinized information

such as programming language and implementation

strategies corresponding to each tool and a brief description

of the IDEs exists in the field of FOSD.

Additionally, this work gives an overview on tools that

support the implementation of feature-oriented software,

such as tools for product generation, refactoring, and

analysis. Finally, we identify tasks in feature-oriented

software development that are underrepresented in current

tool support. This work eases the reuse of existing tools for

researchers and students and thus simplifies research transfer

to practice.

Rest of the paper is organized as follows, Section I contains

the introduction of FOSD and the tools for it, Section II

contains the related work of tool support for FOSD, Section

III contains the details of essential phases and sub-processes

of each phase of FOSD, Section IV contains the essential

tools corresponding to each process, Section V explains the

available Integrated Development Environments (IDE) for

FOSD and Section VI concludes review work with future

directions.

II. RELATED WORK

In the last decade, several type of researches have been

proposed in the field of FOSD. While we are going deep into

the research area, Sven Apel and Thomas Thüm are the two

prominent persons who contribute much in the research on

FOSD through their continuous focus on the innovation of

the field. Their study concerns with all major areas of this

new software development strategy. In his book, Sven Apel

et al [1] gives a clear cut idea and research areas focused in

this field. The researchers mainly concentrate on feature

modeling, variability implementation techniques (language

based and tool based), refactoring, feature interaction

problems, analysis of software product lines, etc. Tools are

necessary to support all these FOSD activities.

In this study, our focus is on the researches carried out in the

field of tool support for FOSD. Thomus Thum et al [5] give

an overview of analysis tools for software product line.

However, for brevity, the survey focused only on the tools

for software analysis of product lines, the other phases such

as analysis of software models, variability models, product

generation, etc have been excluded. Here we are trying to

include all the tools related to Feature-Oriented Software

Product Line Development.

The effort of building a research prototype or creating a

proof of concept is greatly reduced if existing tools can be

leveraged. It is also important to know which tools exist and

on which other tools they are built on, which can also reduce

the effort of building a new tool. With this paper, we aim to

help the researchers, students, and practitioners working in

the field of FOSD by the following contributions:

 A brief overview of the processes of FOSD which

have been supported by the tools.

 A detailed classification of the tools according to

their process support

 Scrutinized information such as programming

language and implementation strategies

corresponding to each tool.

 A brief description of the IDEs exists in the field

of FOSD.

Our goal with this classification survey is a detailed study of

the tool support to decide whether a tool for a certain

analysis strategy or generation technique exists that could be

used, or enhancing the research on the tools.

III. PHASES AND SUB PROCESSES OF FOSD

FOSD is the process of developing software product lines,

and generate software products automatically in terms of

features. Apel et al. [4] define FOSD as a four-phase process

as shown in figure 1.

Figure 1. Phases of FOSD

Domain

Analysis

•Domain Scoping, Feature
Modelling,...

Domain

Design and

Specification

•Modelling/UML, Formal
Specification...

Domain

Implementati

on

•Feature modules, aspects,
Annotations,Preprocessors,...

Product

Configuration

and

Generation

•Feature selection, Optimisation,
Composition, Type Checking, ...

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 331

In domain analysis, commonalities and differences of the

domain of interest are identified, resulting in a feature model.

Domain design and specification is the process in which the

architecture of the product line is designed and specified.

Domain implementation is the phase of designing,

implementing, analyzing, and refactoring the source code of

the product line. In product configuration and generation, a

product containing a desired selection of features is created.

The core processes which have tool support are Feature

Modeling, Feature-Oriented Decomposition, Variant

Preserving Refactoring, Product Configuration and Product

Generation. The processes which are used to analyse

software product line such as Sampling, Testing, Type

Checking, Static analysis, Model Checking, Theorem

Proving, Consistency Checking, Non Functional Properties

and code metrics, also avail tool support now.

Apart from the tools, Integrated Development Environment

also has major role in the Feature-Oriented Software Product

Line Development Paradigm.

A. Feature Modeling

Feature modeling is the most popular method for

representing variabilities and commonalities in

software product families. The result of a feature

modeling process is a feature model. Sven Apel et al

[55] defines “A feature model is a tree wherever the

basis could be a feature, typically referred to

because of the concept. The root feature has sub-

features, and these could, in turn, produce other

features as their sub-features, etc.” A feature model

may be a description of a system family, e.g., a

software product family; an outline of an individual

system comes by choosing a set of features. Timo

Asikainen et al[19] groups the features as “

mandatory sub features should be selected

whenever its parent is chosen; an optional feature is

also chosen whenever its parent is selected however

needs not be selected; an alternate sub feature

consists of a collection of alternatives of that

precisely one should be selected whenever the

parent feature is selected; an or-feature may be a

sub feature kind almost like an alternate feature,

with the distinction that a minimum of one amongst

the alternatives should be selected.”

B. Feature-Oriented Decomposition

A feature may be a unit of practicality of a code that

satisfies a demand, represents a design decision and

provides a possible configuration choice. The

essential plan of FOSD is to decompose a software

system in terms of the features it provides. The goal

of the decomposition is to construct well-structured

software which will be tailored to the wants of the

user and also the application situation. In FOSD,

features structure the planning of the software

system. Hence, modeling and specification activities

don't aim at shaping a variable design; this is given

by the decomposition into features, however at

shaping the structure and behavior of features and

their interactions [1].

C. Variant Preserving Refactoring

Refactorings in FOSD product lines aim at

improving the structure while generally preserving

observable behaviour. There are three types of

refactoring are there in software product lines:

Variability preserving, Variability enhancing and

Product preserving refactoring. Variability

preserving refactoring needs more attention in

developing software product lines. It doesn't modify

the set of valid product and corresponding feature

selections and preserves the noticeable behaviour of

all products. Also, it should not take away or add a

product to a product line and should not modify the

noticeable behaviour of any potential or truly

delivered the product.

D. Product Configuration

A product configuration may be a description of the

products delivered by a personal system. Timo

Asikainen et al.[19] defines “A feature

configuration, or configuration for short, is a

description of the products delivered by a system; a

product configuration consists of a set of features

(F), the sub feature relation (s), the attribute relation

(a), the type function t, and the root feature (r) that

is a member of the set of features.”

E. Product Generation

Product generation is the process of generating the

complete product on selected features. This

facilitates automation in FOSD. Several steps

square measure required to get associate efficient

software system from a user’s feature selection.

Sven Apel et al.[4] classifies product derivation as a

several step process. They define the steps as “First,

to help the user in choosing a group of desired

features, tools got to present the offered features

moreover as their constraints and relationships

clearly. Succeeding step is to figure an entire, valid

feature selection on the premise of a partial feature

selection by evaluating attainable complete feature

mixtures and judgment their appropriateness. Once

we've got a correct feature selection, the specified

software system is generated.”

F. Sampling

In sample-based analyses, a representative subset of

all products for a given coverage criterion is

analyzed [1, 5]. With this approach, it is possible to

efficiently detect errors by applying analysis tools

from single-system engineering. Sampling is often

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 332

used in combination with testing, but can be applied

to verification and other analyses as well [5, 6, 7, 8].

Sampling strategies are sound but always

incomplete, since they can only detect errors that

are contained in the subset that is analyzed [1]

G. Testing

Similar to testing of single systems, software

product line testing aims to uncover defects,

however, with the additional management of

variability [9]. The main challenges of testing

software product lines are reusing test cases and

reducing redundancies in test cases and executions

H. Type Checking

The basis of most approaches that analyze software

product lines is type safety of all products, such that

each product can be compiled. Type checking is the

verification process that ensures type safety [10].

Efficient type checking tools for software product

lines considers the variability defined at the feature

model for family-based analyses based on a

unmodified product line. Type checker for

annotation-based product-lines consider variability

defined at annotations and at the feature model to

reason about type safety. Composition-based type-

checking considers the dependencies between

feature modules to ensure type safety after

composition.

I. Static Analysis

Static analysis operates on compile-time and can

predict dynamic values or behaviours that arise at

run-time [11]

J. Model Checking

 In software model checking, the program is

translated into a graph of states and transitions [12].

The analysis of such a graph is the verification

process of model checking. Because model checkers

are able to handle different values of variables, they

can be used to simulate different feature selections.

Thus, model checkers can be efficiently used for

family-based verification of a meta-product. There

are also approaches and tools beyond variability

encoding, but they analyze models rather than

source code [13, 5] (e.g., product-lines transition

systems [14]).

K. Theorem Proving

The verification technique theorem proving is a

deductive approach to prove logical formulas. First,

the program and its specification (e.g., a contract

that specifies the behaviour of each method) are

translated into logical formulas (a.k.a. proof

obligations). Then the formulas are used to proof

correctness of the program. Theorem proving is

only supported by FeatureIDE, there are no other

tools for supporting it.

L. Consistency Checking

The variability used in implementation artifacts

(e.g., features in #ifdef statements) needs to be valid

according to variability defined at the feature model.

Consistency checking analyses the usage of

features; whether a feature has a corresponding

implementation and vice versa [15, 16].

Additionally, consistency checking analyzes the

feature dependencies with the usage in the source

code (e.g., dead or superfluous code in case of

incorrect combination of #ifdef statements) [17]

M. Non Functional Properties

A goal of software development is to optimize non-

functional properties, such as footprint,

performance, and energy consumption [18]. In

single system engineering, such properties can be

reached by a specialized implementation for the

properties defined by stakeholders. However, it is

even more challenging to automatically determine

the optimal product for a given product line related

to a given non-functional property (e.g., with the

lowest energy consumption). The goal of research

on non-functional properties is to predict such

properties for all products based on measurements

of some products.

N. Code Metrics

Code metrics are used to compare analyses results

and to evaluate their expressiveness. In software

product-line analyses often metrics such as lines of

code and numbers of features are used. However,

such metrics do not take feature dependencies and

variability in the source code into account. To

compare analysis results for different software

product lines, other metrics are required.

IV. TOOL SUPPORT

Proper tool support helps to achieve efficiency for each of

these phases. However, there exist tools which integrate and

support all or multiple phases of FOSD. There is a large

number of tools and some Integrated Development

Environment (IDE) exists in practice to support FOSD. Most

product line tools are extensible and try to connect the

phases. The available tool support for various processes

defines in section III is arranged as tables here (table 1 to

table 13). Along with implementation strategy, supporting

programming language is also mentioned on each tool.

Table 1. Tools Supporting Feature modeling

Tool Implementation

Strategy

Programming

Language

AHEAD[21] FOP Java

Captain Feature * *

DeltaJ[22] DOP Java

DOPLER * Java

EASyProducer Preprocessor *

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 333

FaMa * Java

FeatureMapper * Java

FMT * *

Hydra * Java

Kumbang * Java

Metadoc FM * *

S2T2 * Java

SPLConqueror * *

SPLOT * Java

VariaMos * *

VARMOD * *

WeCoTin * *

XFeature * Java

Table 2. Tools Supporting Feature-Oriented Decomposition

Tool Implementation

Strategy

Programming

Language

AOP-

Migrator[60]

AOP Java

ExtractorPL FOP *

FLiPEx AOP Java

LEADT[1] VSoC Java

Table 3. Tools Supporting Variant Preserving Refactoring

Tool Implementation

Strategy

Programming

Language

cnife Preprocessor C, C++

ext-refactoring DOP Java

Morpheus Preprocessor C

VAmPiRE FOP Java

Table 4. Tools Supporting Product Configuration

Tool Implementation

Strategy

Programming

Language

AHEAD[21] FOP Java

Captain Feature * *

DeltaJ[22] DOP Java

DOPLER * Java

EASyProducer Preprocessor *

FaMa * Java

FeatureMapper[55] * Java

FMT * *

Hephaestus * *

Hydra * Java

Invar * *

Kumbang * Java

Metadoc FM * *

S2T2 * Java

SPLConfig * *

SPLConqueror * *

SPLOT * Java

VariaMos * *

WeCoTin * *

XFeature * Java

Table 5. Tools Supporting Product Generation

Tool Implementation

Strategy

Programming

Language

AHEAD[21] FOP Java

Antenna Preprocessor Java

aspectc AOP C

AspectC++ AOP C++

AspectJ AOP Java

AspectSharp AOP .NET

CaesarJ AOP Java

CPP Preprocessor C,C++

DeltaJ[22] DOP Java

EASyProducer Preprocessor *

ELIDE Preprocessor Java

FeatureBite FOP Java

FeatureC++ FOP, AOP C++

FeatureHouse[39] FOP Java, C, C#, JML,

Haskell, XML,

Python, Alloy,

Featherweight

Java, JML, JCop,

Stratego, SDF,

JavaCC

FeatureJS FOP, Preprocessor JavaScript,

HTML

Fuji[37] FOP Java

javapp Preprocessor Java

Munge Preprocessor Java

rbFeatures FOP Ruby

Spoon Preprocessor Java

XFeature * Java

XVCL Preprocessor

Table 6. Tools Supporting Sampling

Tool Implementati

on Strategy

Programmi

ng

Language

GeneticTestCaseGeneration

[27]

* *

MoSo-PoLiTe FOP *

Pacogen[23] * *

PLEDGE[26] * *

SPLCATool[24] * *

Undertaker[25] Preprocessor *

Table 7. Tools Supporting Testing

Tool Implementatio

n Strategy

Programming

Language

Asadal[30] * *

CPA/Tiger Preprocessor C

FTS-Testing Preprocessor Featured

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 334

Transition System

GATE[28] AOP *

IMoTEP DOP *

Kesit[29] FOP Java

MATE[31] * *

Otter * C

ParTeG[32] * Java

shared-execution * Java

SharQ framework FOP *

Splmonitor FOP Java

SPLTester[33] * *

SPLverifier[43] FOP Java, C

Varex[34] * PHP

VarexJ * Java

Variability-Aware

Interpreter[35]

* WHILE

Table 8. Tools Supporting Type checking

Tool Implementation

Strategy

Programming

Language

DeltaJ[22] DOP Java

FeatureTweezer[38] FOP Java, C

Fuji[37] FOP Java

Software Variant

Generation System

* *

Table 9. Tools Supporting Static Analysis

Tool Implementation

Strategy

Programming

Language

ACV tool[41] AOP *

CPAchecker[44] Preprocessor C

CPArec Preprocessor C

Golem Preprocessor C

SPLLIFT[40] VSoC Java

vampyr Preprocessor C

Table 10. Tools Supporting Model Checking

Tool Implementation

Strategy

Programming

Language

FTS * *

JPF-BDD * Java

ProVeLines[61] Preprocessor,

FOP

Featured Transition

System

Software Variant

Generation

System

* *

SPLverifier[43] FOP Java, C

VarexJ[43] FOP Java

VMC

Preprocessor

Modal Transition

System

Table 11. Tools Supporting Consistency Checking

Tool Implementation

Strategy

Programming

Language

Captain Feature * *

DOPLER * Java

FaMa * Java

FeatureMapper * Java

FMT * *

Hephaestus * *

Hydra * Java

Invar * *

Kumbang * Java

Linux Feature

Explorer

Preprocessor *

Metadoc FM * *

S2T2 * Java

SPLOT * Java

Undertaker[25] Preprocessor *

ariaMos * *

VARMOD * *

WeCoTin * Java

XFeature * *

Table 12. Tools Supporting Non Functional Properties

Tool Implementation

Strategy

Programming

Language

ClaferMOO[45] * *

FeatureHouse[39] FOP Java, C, C#, JML,

Haskell, XML,

Python, Alloy,

Featherweight

Java, JML, JCop,

Stratego, SDF,

JavaCC

SPLConqueror * *

Table 13. Tools Supporting Code Metric

Tool Implementation

Strategy

Programming

Language

Ajdtstats[48] AOP Java

AJStats[48] AOP Java

Cppstats[46] Preprocessor CPP

FeatureJS FOP, Preprocessor JavaScript, HTML

V. IDE SUPPORT
An Integrated Development Environment (IDE) is software

consisting of a range of development tools (e.g. a source code

editor, a debugger) presented in a graphical user interface

(GUI), thus forming a comprehensive programming

environment packaged as a software application. It is

necessary to have IDE for FOSD too because it deals with

software product line and large-scale software systems. IDE

assists the developers by providing a complete solution of the

development process. Tighter integration of all development

tasks has the potential to improve overall productivity beyond

just helping with setup tasks.

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 335

The IDEs supporting FOSD paradigm is listed in Table 14.

Each IDE is associated with supporting activities,

Implementation Strategy and supporting language.

Table 14. Integrated Development Environments for FOSD

Tool Supporting processes Implementation

Strategy

Programming languages

ABS[58] Product Generation DOP ABS

AJDT[59] AOP Java

CIDE[36] Feature Modeling, Configuration,

Product Generation, Feature-

Oriented Decomposition, Type

Checking, Code Metrics

VSoC Featherweight Java, Java, C, C#,

JavaScript, Haskell, Bali, ANTLR, JavaCC,

Properties, HTML, XML, XHTML, XML-

People, Python, OSGi Manifest

Colligens[47] Feature Modeling, Configuration,

Code Metrics

Preprocessor C

DeltaEcore[53] Product Generation, Feature

Modeling, Configuration

DOP Ecore, Java, UML, Yakindu

Emergo[54] Static Analysis Preprocessor *

Feature

Commander[56]

 Preprocessor C

FeatureIDE[42] Feature Modeling, Configuration,

Consistency Checking, Theorem

Proving, Code Metrics, Multi

Product Line, Testing

Preprocessor, FOP,

DOP, AOP

Java, C, C++, C#, JML, Haskell, XML,

Python, Alloy, Featherweight Java, JML,

JCop, Stratego, SDF, JavaCC

FeatureVisu[57] Preprocessor *

Gears[52] Feature Modeling, Consistency

Checking, Configuration, Product

Generation

* *

pure::variants[51] Feature Modeling, Consistency

Checking, Configuration, Product

Generation

Preprocessor *

*We couldn’t able to collect the respective information from the journals and websites in our survey. All tools that we

mentioned in this paper are collected from the published papers and from the websites related to FOSD. Websites are

not cited because it will violate journal reference policy of IJCSE mentioned in the template.

VI. CONCLUSION AND FUTURE WORK

In Feature-Oriented Software-Product-Line Engineering,

similar software products are built in an efficient and

coordinated manner based on features. While there are

efficient techniques and tools to implement FOSD, the

current research seeks to scale software analyses, such as

type checking, static analyses, model checking, or theorem

proving, from single software products to entire software

product lines. Based on our insights with classifying and

comparing a corpus of 61 research articles specifying the

development of software product lines, tools that implement

software analyses, design, and development, maintenance,

etc are necessary. An overview of such tools helps

researchers, lecturers, students, and practitioners to decide

whether a tool for a certain analysis strategy or generation

technique exists that could be used (e.g., for development of

commercial-quality tools, or proof of concepts).

Furthermore, the effort for the development of new tools can

be reduced through knowledge about existing tools. We

provide additional information about the tools, such as the

supported generation mechanism (e.g., Preprocessors), the

supported programming languages (e.g., Java). We hope this

article can raise awareness of the importance and challenges

of tools for FOSD and thus motivate the researchers and

practitioners to explore existing tools for the extension or

development of new tools/IDE for supporting FOSD

paradigm.

References
[1]. Sven Apel, Don Batory, Christian K• astner, and Gunter Saake,

“Feature-Oriented Software Product Lines: Concepts and

Implementation”, Springer, 2013.

[2]. Paul Clements, Linda Northrop. “Software Product Lines:

Practices and Patterns”, Addison-Wesley, 2001

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 336

[3]. Kyo C. Kang, Sholom G. Cohen, James A. Hess, William E.

Novak, A. Spencer Peterson, “Feature-Oriented Domain Analysis

(FODA) Feasibility Study”, Technical Report CMU/SEI-90-TR-

21,Software Engineering Institute, 1990.

[4]. Sven Apel, Christian K¨astner , “An Overview of Feature-Oriented

Software development”, Journal of Object Technology, Vol. 8,

No. 5, 2009

[5]. Thomas Thum, Sven Apel, Christian Kastner, Ina Schaefer,

Gunter Saake, “ A Classification and Survey of Analysis Strategies

for Software Product Lines”, CSUR, 2014

[6]. Sven Apel, Alexander von Rhein, Philipp Wendler, Armin

Gr¨oßlinger, Dirk Beyer, “ Strategies for Product-Line

Verification: Case Studies and Experiments”, ICSE, pp. 482–491,

IEEE, 2013.

[7]. Praveen Jayaraman, Jon Whittle, Ahmed M. Elkhodary, Hassan

Gomaa, “Model Composition in Product Lines and Feature

Interaction Detection Using Critical Pair Analysis”. MODELS,

pp. 151–165. Springer, 2007.

[8]. Malte Plath , Mark Ryan, “Feature Integration Using a Feature

Construct”, SCP, 41(1):53–84, 2001.

[9]. Leonardo Passos, Jianmei Guo, Leopoldo Teixeira, Krzysztof

Czarnecki, Andrzej Wasowski, Paulo Borba, “Coevolution of

Variability Models and Related Artifacts: A Case Study from the

Linux Kernel”, SPLC, pp. 91–100, ACM, 2013.

[10]. Benjamin C. Pierce, “Types and Programming Languages”. MIT

Press, Cambridge, Massachusetts, USA, 2002

[11]. Flemming Nielson, Hanne R. Nielson, Chris Hankin., “ Principles

of Program Analysis”, Springer, 2010.

[12]. Edmund M. Clarke, Orna Grumberg, Doron A Peled. “Model

Checking”, MIT Press, 1999.

[13]. Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel

Legay, Jean-Fran¸cois Raskin, “ Model Checking Lots of Systems:

Efficient Verification of Temporal Properties in Software Product

Lines”, ICSE, pp. 335–344, ACM, 2010.

[14]. Alexander Gruler, Martin Leucker, Kathrin Scheidemann,

“Modeling and Model Checking Software Product Lines.”,

FMOODS, pp. 113–131, Springer, 2008.

[15]. Thomas Thum, Christian Kastner, Sebastian Erdweg, Norbert

Siegmund., “Abstract Features in Feature Modeling”, SPLC, pp.

191–200. IEEE, 2011

[16]. Reinhard Tartler, Julio Sincero, Wolfgang Schr¨oder-Preikschat,

Daniel Lohmann, “Dead or Alive: Finding Zombie Features in the

Linux Kernel”, FOSD, pp. 81–86. ACM, 2009

[17]. Reinhard Tartler, Daniel Lohmann, Julio Sincero, Wolfgang

Schr¨oder-Preikschat, “ Feature Consistency in Compile-Time-

Configurable System Software: Facing the Linux 10,000 Feature

Problem”, In Proceedings of the sixth conference on Computer

systems, pp. 47–60. ACM, 2011.

[18]. Suzanne Robertson, James Robertson, “ Mastering the

Requirements Process: Getting Requirements Right”, Pearson

Education, 2012.

[19]. Timo Asikainen, Tomi Männistö, Timo Soininen, “A Unified

Conceptual Foundation for Feature Modeling”, SPLC , IEEE

2006

[20]. C. K¨astner, S. Apel, S. Trujillo, M. Kuhlemann, D. Batory,

“Language-Independent Safe Decomposition of Legacy

Applications into Features”, Technical Report 02/2008, School of

Computer Science, University of Magdeburg, 2008.

[21]. Don Batory, “A Tutorial on Feature-Oriented Programming and

the AHEAD Tool Suite”, GTTSE, pp. 3-35, Springer, 2006.

[22]. Ina Schaefer, Lorenzo Bettini, Viviana Bono, Ferruccio Damiani,

Nico Tanzarella, “Delta-Oriented Programming of Software

Product Lines”, SPLC, pp. 77-91. Springer, 2010.

[23]. Aymeric Hervieu, Benoit Baudry, Arnaud Gotlieb. “Pacogen:

Automatic Generation of Pairwise Test Configurations From

Feature Models”, ISSRE, pages 120-129, IEEE, 2011.

[24]. Martin Fagereng Johansen, ystein Haugen, Franck Fleurey, “An

Algorithm for Generating T-Wise Covering Arrays from Large

Feature Models”, SPLC, pp. 46-55. ACM, 2012.

[25]. Reinhard Tartler, Daniel Lohmann, Julio Sincero, Wolfgang

Schr• oder-Preikschat, “Feature Consistency in Compile-Time-

Con_gurable System Software: Facing the Linux 10,000 Feature

Problem”. In Proceedings of the sixth conference on Computer

systems, pp. 47-60. ACM, 2011.

[26]. Christopher Henard, Mike Papadakis, Gilles Perrouin, Jacques

Klein, Yves Le Traon, “PLEDGE: A Product Line Editor and Test

Generation Tool”, SPLC, pp. 126-129, ACM, 2013

[27]. Faezeh Ensan, Ebrahim Bagheri, Dragan Ga_sevi_c.

“Evolutionary Search-Based Test Generation for Software

Product Line Feature Models”, CAiSE, volume 7328 of Lecture

Notes in Computer Science, pp. 613-628, Springer, 2012.

[28]. Yankui Feng, Xiaodong Liu, Jon Kerridge, “A Product Line

Based Aspect-Oriented Generative Unit Testing Approach to

Building Quality Components”, COMPSAC, volume 2, pp. 403-

408, IEEE, 2007.

[29]. Thomas Thum, Ina Schaefer, Martin Kuhlemann, Sven Apel,

“Proof Composition for Deductive Veri_cation of Software

Product Lines”, VAST, pp. 270-277, IEEE, 2011.

[30]. Kyungseok Kim, Hyejng Kim, Miyoung Ahn, Minseok Seo, Yeop

Chang, Kyo C Kang, “ ASADAL: a Tool System for Co-

Development of Software and Test Environment Based on Product

Line Engineering”, ICSE, pp. 783-786, ACM, 2006.

[31]. Georg Puschel, Ronny Seiger, Thomas Schlegel, “Test Modeling

for Context-aware Ubiquitous Applications with Feature Petri

Nets”, In MODIQUITOUS, 2012.

[32]. Stephan Wei_leder, Dehla Sokenou, Bernd-Holger Schlinglo,

“Reusing State Machines for Automatic Test Generation in

Product Lines”, MoTiP, pp. 19-28, 2008.

[33]. Chang Hwan Peter Kim, Don Batory, Sarfraz Khurshid,

“Reducing Combinatorics in Testing Product Lines”, AOSD, pp.

57-68,ACM, 2011.

[34]. Hung Viet Nguyen, Christian K• astner, Tien N. Nguyen,

“Exploring Variability-Aware Execution for Testing Plugin-Based

Web Applications”, ICSE, ACM, 2014.

[35]. Christian K• astner, Alexander von Rhein, Sebastian Erdweg,

Jonas Pusch, Sven Apel, Tillmann Rendel, Klaus Ostermann,

“Toward Variability-Aware Testing.”, FOSD, pp.1-8, ACM, 2012.

[36]. Christian K• astner, Sven Apel, “Virtual Separation of Concerns-

a Second Chance for Preprocessors”, Journal of Object

Technology, pp.59-78, 2009

[37]. Sven Apel, Sergiy Kolesnikov, J• org Liebig, Christian K• astner,

Martin Kuhlemann, Thomas Leich, “Access Control in Feature-

Oriented Programming”, SCP, pp.174-187, 2012.

[38]. Sven Apel, Wolfgang Scholz, Christian Lengauer, Christian

K• astner, “Language-Independent Reference Checking in

Software Product Lines”, FOSD, pp.65-71, ACM, 2010.

[39]. Sven Apel, Christian K• astner, Christian Lengauer, “Language-

Independent and Automated Software Composition: The

FeatureHouse Experience”, TSE, pp.63-79, 2013.

[40]. Eric Bodden, Tarsis Toledo, Marcio Ribeiro, Claus Brabrand,

Paulo Borba, Mira Mezini, “SPLLIFT: Statically Analyzing

Software Product Lines in Minutes Instead of Years”, PLDI,

pp.355-364, ACM, 2013.

[41]. Herbert Klaeren, Elke Pulvermueller, Awais Rashid, Andreas

Speck,” Aspect Composition Applying the Design by Contract

Principle”, GCSE, pp. 57-69, Springer, 2001.

[42]. Thomas Th• um, Christian K• astner, Fabian Benduhn, Jens

Meinicke, Gunter Saake, Thomas Leich, “FeatureIDE: An

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 337

Extensible Framework for Feature-Oriented Software

Development”, SCP, pp.70-85, 2014.

[43]. Sven Apel, Hendrik Speidel, Philipp Wendler, Alexander von

Rhein, Dirk Beyer, “Detection of Feature Interactions Using

Feature-Aware Verification”, ASE, pp. 372-375, IEEE, 2011.

[44]. Dirk Beyer , M. Erkan Keremoglu, “ CPAchecker: A Tool for

Con_gurable Software Verifcation”, CAV, pp. 184-190, Springer,

2011.

[45]. Micha l Antkiewicz, Kacper B , ak, Alexandr Murashkin, Rafael

Olaechea, Jia Hui Jimmy Liang, Krzysztof Czarnecki, “Clafer

Tools for Product Line Engineering”, SPLC, pp.130-135, ACM,

2013.

[46]. Jorg Liebig, Christian Kastner, Sven Apel, “Analyzing the

Discipline of Preprocessor Annotations in 30 Million Lines of c

Code”, AOSD, pp. 191-202, ACM, 2011.

[47]. Flavio Medeiros, Thiago Lima, Francisco Dalton, M_arcio

Ribeiro, Rohit Gheyi, Baldoino Fonseca, “Colligens: A tool to

support the development of preprocessor-based software product

lines in c”, CBSoft, 2013.

[48]. Sven Apel ,Don Batory, “ How AspectJ is Used: An Analysis of

Eleven AspectJ Programs” JOT, pp.117-142, 2010.

[50]. Oster, S., Zorcic, I., Markert, F., Lochau, “MoSo-PoLiTe: tool

support for pairwise and model-based software product line

testing”,In: Proceedings of VAMOS 2011.

[51]. Danilo Beuche, “Systems and software variability management”,

Springer, pp. 173-182, 2013.

[52]. Charles Krueger, Paul Clements, “Systems and Software Product

Line Engineering with Gears from BigLever Software”, SPLC-14,

pp.121-125, ACM, 2014.

[53]. Seidl, Christoph & Schaefer, Ina Assmann, “DeltaEcore-A

Model-Based Delta Language Generation Framework”, Lecture

Notes in Informatics (LNI), Proceedings - Series of the

Gesellschaft fur Informatik (GI), 2014.

[54]. Ribeiro, Márcio & Tolêdo, Társis & Winther, Johnni & Brabrand,

Claus & Borba, Paulo, “ Emergo: A Tool for Improving

Maintainability of Preprocessor-based Product Lines”, 2012

[55]. Florian Heidenreich, Jan Kopcsek, Christian Wende,

“FeatureMapper: Mapping Features to Models”, ICSE

Companion’08 Companion of the 30th international conference

on Software engineering, pp.943-944, 2008.

[56]. Janet Feigenspan, Maria Papendieck, Christian Kästner, Mathias

Frisch, Raimund Dachselt, “FeatureCommander: colorful #ifdef

world”, SPLC '11 Proceedings of the 15th International Software

Product Line Conference, Volume 2,48, 2011.

[57]. Sven Apel, Dirk Beyer, “Feature Cohesion in Software Product

Lines: An Exploratory Study”, ICSE 2011.

[58]. Y. Wong, E. Albert, R. Muschevici, J. Proença, J. Schäfer, R.

Schlatte, "The abs tool suite: modeling executing and analysing

distributed adaptable object-oriented systems", International

Journal on Software Tools for Technology Transfer, vol. 14, no.

5, pp. 567-588, 2012.

[59]. K. Gybels , J. Brichau, “Arranging Language Features for more

Robust Pattern-Based Crosscuts”, In Proc. Int’l Conf. Aspect-

Oriented Software Development. 2003.

[60]. M. P. Monteiro , J. M. Fernandes, “ Towards a catalog of aspect-

oriented refactorings”,. In Proc. of the 4th International

Conference on Aspect-Oriented Software Development (AOSD),

pages 111-122. ACM Press, March 2005.

[61]. Maxime Cordy, Andreas Classen, Patrick Heymans, Pierre-Yves

Schobbens, Axel Legay, “ProVeLines: A Product Line of Verifiers

for Software Product Lines”, SPLC 2014

[62]. Maushumi Lahon and Uzzal Sharma, "The Intricacies of Software

Component Composition", International Journal of Computer

Sciences and Engineering, Vol.03, Issue.01, pp.111-117, 2015.

Authors Profile

Mrs Kala K. U. pursed Bachelor of Science in
from University of calicut, Kerala, India in
2008 and Master of Computer Applications
from University of Calicut in year 2012. She
has qualified UGC NET in computer science
and applications in July 2016 and currently
pursuing Ph.D in Software Engineering,
Department of Computer Science,
Pondicherry University , India since 2016. Her main research
work focuses on Feature Oriented Software Development, Data
Mining and Recommendation Systems. She has 3 years of teaching
experience.

Dr M. Nandhini pursed Bachelor of Science in
year 1994 and Master of Science in year 1997
from Bharathidasan University, Tamilnadu,
India. She has qualified UGC NET in 1998 and
pursued M.Phil from Alagappa University and
Ph.D from Bharathiar University, and currently
working as Assistant Professor in Department
of Computer Science, Pondicherry University,
India since 2012.She has published more than
80 research papers in reputed international journals and
conferences including IEEE and it’s also available online.And also
she has published 3 books and one book chapter. His main research
work focuses on Soft Computing, Combinatorial Problem
Optimization, Artificial Intelligence, Software Engineering, Data
Mining and Recommendation Systems. She has 20 years of
teaching experience and 4 years of Research Experience.

