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Abstract- Today, maximum of the organizations have to deal with big quantities of records, that is hastily growing. In order to 

address these explosively growing amounts of information, one has so that it will extract, examine, and process information 

time to time. Clustering has for this reason been identified keeping in view this example and it is considered as an essential 

device used to analyze huge statistics. Technological progress, specifically inside the regions of finance and enterprise 

informatics, poses a big task for big scale records clustering. To deal with this issue, researchers have provided you with 

parallel clustering algorithms that are primarily based on parallel programming fashions. MapReduce is one of the most 

typically used frameworks used for this motive and it has received high consciousness thanks to its flexibility, fault tolerance 

and programming ease. However, the overall performance has trouble for iterative packages. This paper gives an in depth 

evaluation of iterative frameworks which could help MapReduce for overcoming boundaries for iterative algorithms. 
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I. INTRODUCTION 

In the big data era, huge amounts of data have to be dealt 

carefully. In the year 2002, Yahoo! Web graph has reported 

that about a billion nodes and 7 billion edges have been 

reached.
1 

Social networking sites such as Twitter, Facebook 

etc., use several terabytes of data. Websites such as 

Wikipedia and YouTube produce about few hundreds of 

gigabytes per minute
2
. In order to handle such enormous 

data, clustering is being used. It allows analyzing and 

discovering distribution patterns for large spectrum of data. 

Data scientists have studied and proposed various algorithms 

in data mining for handling large scale datasets. But these 

data mining algorithms are unable to deal with the 

exponentially increasing data. Hence, the research 

community has shifted its focus from these techniques to 

parallel clustering algorithms that would be a better 

alternative to traditional cluttering methods operated on a 

single system
3
. Thus, parallel processing techniques that can 

easily handle and process huge data has become the prime 

focus of many. Of the many parallel processing techniques 

available, MapReduce is the simplest and popular choice of 

many huge companies, example Facebook4. In spite of its 

popularity, MapReduce has certain critical issues and 

challenges such as bandwidth wastage, I/O and CPU cycles 

for iterative algorithms like PageRank
[5,6]

, social network 

analysis, clustering and neural network analysis
7
.  

 

II. BIG DATA MANAGEMENT 

The term ‘Big Data’ is generally used to refer to large 

amount of data that companies and people use. The public 

and private data are obtained from sources that are 

unorganized and so it is difficult to cluster data. In other 

words, it is difficult for most of the corporations to store, 

process and analyze big data. Big data has many definitions 

and ways of interpretation. However, the widely accepted 

definition is characterized by the five Vs, that is, Volume, 

Variety, Velocity, Value and Veracity
[8,9]

.  

Volume–this dimension is associated with the enormous data 

handling capability or ability of a clustering algorithm. 

Using parallel algorithms, one can divide big data into 

smaller units such that all units are handled simultaneously 

by machines at the rate of one machine per one unit. Thus 

one can solve the problem of the exponentially growing big 

data needs. 

Variety – this dimension is associated with the ability of a 

clustering algorithm to handle a variety of data.  

Velocity–this dimension is associated with the speed of a 

clustering algorithm handling big data. Most of the iterative 

clustering algorithms have iterative computations and this 

would probably utilize more time to process. Use of parallel 

algorithms in this process could help increase speed.  

Value – this dimension is associated with the process of 

determining hidden values in the data and document those 

values.  

Veracity – this dimension is associated with reliability, 

origin and the accuracy of the data.  

 

2.1. MapReduce Overview 
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Many programmers distribute the data among several 

machines to speed up the processing of massive amounts of 

data and compute them as the volume of data has been 

multiplying. Data processing models such as Samza
10

, 

Tez
[11]

, and MapReduce
[12] 

divide the data between machines 

and enables each processor to work separately with the 

similar algorithm on various parts of the data. There are two 

main classifications of parallel processing applications, 

traditional parallel applications
[13,14]

 and data-intensive 

applications
[15,17]

. The assumption of data being fit into the 

memory of the distributed machines is predominantly seen 

in the traditional parallel applications. Due to the rapid 

increase in the data collection size, traditional parallel 

computation mechanisms fail to solve the big data issue. 

Whereas, data-intensive applications require additional 

computational and data resources that are run inside a 

conditional loop until terminated. The selection of moving 

the data to a computer or computer to a data is totally relied 

on the requirements and load. A major advantage in data-

intensive applications is that data locality has significantly 

become more important than ever before as it reduces the 

network cost.  

Among the several parallel processing models that compute 

data-intensive applications, like the Open MP, MPI
[18]

, 

MapReduce is the most widely used framework as it very 

simple (has only two functions, a map and a reduce) 

allowing the programmers to monitor data distribution, 

replications, load balancing etc., easily
[19]

 . There are two 

phases in MapReduce where the data points are processed 

over a set of commodity machines in a distributed 

environment.  

The first phase is the Mapping phase that is defined by the 

Map function where the input data is divided into Map 

functions, and after computation the intermediate results are 

produced in the form of key/value pairs. The second phase is 

the Reduce phase which is defined by the Reduce function 

taking a single key and processing the given function on its 

associated values at a time, collects and is considered as 

output of the job. The Reducer task is performed after the 

intermediate results are generated and the data is shuffled 

into the corresponding Reducer. Majority of the job 

execution time is taken to move the intermediate results over 

the network. The figure 2 depicts the process involved in 

data processing.  

Map function: 

Data points are read as inputs by the Map task which then 

produces the intermediate key/value pairs that primarily 

consists of a key, a group number of values, and a value, 

associated with the key. A Map task then enables a process 

to generate new key/value that are sorted by their keys 

locally. 

Combiner function: 

This is an optional function that when applied to the 

intermediate results that are considered to have significant 

repetition in their respective Map task, will perform a partial 

reduction and passes on the intermediate key/value pairs to 

the reducer.  

Partition function: 

It is mainly used for partitioning the intermediate keys that 

are hashed to determine which reduce partition will process 

the keys. To provide good balancing, Hadoop uses has 

partitioner by default.  

Reduce function: 

The output of Map tasks is considered collectively as the 

input for the reduce phase. With a user defined reduce 

function that is primarily called by each reducer for each key 

only once, the reduce task for each key is applied and its 

corresponding values are then processed. The processing of 

inputs to each reducer is done in the increasing key order.  

 

Figure 1: Architecture of MapReduce 

2.2. Hadoop Overview 

Analyzing and querying massive amounts of data is difficult 

through traditional mechanisms. Data scientist can use 

Hadoop [5], an open source software, to distribute huge 

scale data sets into several blocks and take advantage of the 

distributed environment. Rather than scaling up, that implies 

to add more resources such as RAM or CPU which is 

expensive, Hadoop is designed to scale out by addition of 

more machines in a cluster in distributed network with 

commodity hardware. Rather than a primary storage 

mechanism, the Hadoop Distributed File System (HDFS) is 

designed as a workflow. Basically, the data is dumped into 
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the HDFS once and can be accessed any number of times, 

bringing the code to data, that are split into blocks of 

typically 64MB and can be accessed by any machine of that 

cluster for parallel processing. Failures can be handled by 

Hadoop by data replication where data is stored and 

replicated over machines making sure that at least one 

replica is stored in a different rack to ensure further data 

availability and reliability. A set of commodity hardware 

connected to one network in one location form the Hadoop 

cluster. For parallel processing purposes, Hadoop consist of 

HDFS and MapReduce engine whereas the cluster consists 

of several daemons/servers.  

A Name-node stores the meta data that is mapped from file 

to block and location of block. A Data-node in HDFS stores 

data, provides the exact physical location of data and 

connects to Name-node. There is a Secondary Name-node 

that is used to monitor the state of the cluster in case the 

Name-node fails. An integration between HDFS and 

MapReduce will occur where the performance is through the 

master and slave nodes. Figure 3 explains the master node 

(consisting of the Task Tracker and Job Tracker) from the 

MapReduce layer and slave nodes that only have the Task 

Tracker. Scheduling of all MapReduce jobs is done by the 

Job Tracker which then assigns these tasks to the Task 

Trackers that are used for execution in each slave node.  

 
Figure 2: Hadoop Distributed File System and MapReduce 

Layer in Hadoop 

Depending upon the availability of resources, Job Tracker 

assigns several tasks to Task Tracker. As and when the Task 

Tracker completes the tasks new tasks are assigned by the 

Job Tracker. Task Tracker sends a heartbeat signal 

periodically to the Job Tracker in case of machine failure. 

The master node will check for the heartbeat signal from 

Task Tracker and if it doesn’t receive any such signal for 

some time from a machine then it will consider it to be a 

failed machine. Rather than fixing the failed machine, 

Hadoop assigns the failed task to another machine in the 

cluster as a backup. Since the probability of failure of one 

particular machine is very low, the failure of Job Tracker 

itself is not considered very seriously as it cannot be solved 

automatically [7]. 

2.3. Hadoop/MapReduce Limitations for Iterative 

Applications 

There has been a lot of research carried out in terms of 

performance limitations on MapReduce
[19,20]

. The generic 

weaknesses and limitations discussed in
7
 of MapReduce is 

shown in figure 4. The focus is mainly on iterative programs 

and the limitations related to MapReduce for the programs 

discussed previously have been identified and are discussed 

below: 

Lack of loop aware task scheduling: 

Multi-staging of tasks in a single run is not supported in 

MapReduce. Therefore, operations that are repeated during 

iterations like task initialization and cleanup (reload and 

dump data) usually start new MapReduce jobs. So, when 

dealing with large scale data sets scheduling overhead is 

included.   

Lack of handling static data: 

There are primarily two kinds of data involved in a 

MapReduce process, static data and state data. Static data is 

unchanged during iterations and hence, a key problem in 

MapReduce. In some of the iterative algorithms like the k-

means, by design, the Reducer needs the static data for 

performing operations such as averaging etc., after state data 

is generated. Therefore, there needs to be reloading and 

shuffling of the static data during iterations that is practically 

difficult when large data sets are involved and resulting in 

overhead of communication.  

Lack of Asynchronous execution: 

Before completing a reduce task in the previous iteration a 

new map task cannot be allowed in standard MapReduce 

making each iteration wait for the previous iteration to 

complete resulting in synchronization overhead.  

Lack of built-in termination condition: 

An additional MapReduce job is needed at each iteration for 

termination as there is no provision of a built-in feature for 

termination leading to overhead because of scheduling extra 

costs.  

 

Figure 3: Limitations of MapReduce 
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III. REVIEW OF THE AVAILABLE WORKS 

A review of the frameworks that enhanced the performance 

of MapReduce based on iterative processing techniques is 

presented in this section first. This is followed by a review 

of parallel clustering algorithms on MapReduce.  

 

3.1. Review of iterative MapReduce Frameworks 

Consider the following summarized figure of the current 

popular iterative frameworks. The following sub sections 

these significant factors are discussed.  

 

 
Figure 4: Iterative MapReduce Frameworks 

 

3.1.1. Execution Model  

Iterative MapReduce programs make use of a chain of 

map/reduce process and hence is slow. It splits the task into 

multiple tasks and these are not processed in a single run and 

hence this slows down the entire processing. For this 

purpose, many iterative frameworks have been proposed.  

HaLoop framework is similar to MapReduce and the tasks 

are assigned to slave nodes using a parallel master node with 

TaskTracker daemon. This communicates with the master 

node. Each task can either Map or Reduce tasks. There are 

major changes in the HaLoop framework. Primarily, there is 

a new feature in the master node called the loop control. It 

initializes new map-reduce tasks recurrently until the end 

terminate condition is encountered. It eliminates the extra 

MapReduce jobs used to check stop condition and hence the 

overall communication overhead. The next change is that the 

algorithm has a new task scheduler specifically for iterative 

applications that supports data locality to co-locate the tasks 

for same operations. It enables reuse of data within the 

iterative process. Thirdly, the performance is improved by 

caching the intermediate results obtained to the disk. The 

issue, however, is that it uses synchronous execution like 

MapReduce. Hence there would be delay as the reducer has 

to wait till the map tasks are finished.  

 

There is yet another framework that is similar to the 

execution model in MapReduce called Twister. For the 

purpose of communication, it utilizes publish/subscribe 

messaging mechanism. However, the architecture of Twister 

is different to MapReduce architecture. The input data in 

Twister doesn’t have a distributed system. It is stored in a 

local disk as native files. The issue relating to this is that the 

collective memory of worker nodes has to accommodate this 

static data and this would require them to handle huge 

amounts of data sets. The performance of Twister is 

enhanced because it stored the intermediate results. Also, a 

driver is used for computation and a broker network is 

established. The main driver program sends the input data to 

the Mapper and Reducer. The results are collected and sent 

to the main program
21

. 

 

Another model, Pregel
22

 is an in-memory system which 

utilizes the bulk synchronous parallel model for the purpose 

of computations
 23

. The challenges in this model is that 

issues because of synchronous scheduling. MapReduce 

online
24

 also has synchronous execution method. The 

intermediate results are pipelined between tasks and thus the 

data is transferred between Reduce and Map tasks and hence 

a connection is created between them and the output from 

Reduce task is sent directly to Map tasks. Since the 

framework doesn’t support overlapping of tasks, the Map 

tasks are left pending until the Reduce tasks are finished. 

There have been many frameworks that have been proposed 

for asynchronous execution but this cannot be used in 

MapReduce. One such is Spark
25

 which is an in-memory 

framework and the computation model is different. It is 

similar to DryadLINQ
26

 and FlumeJava
27

 as every data set is 

considered as objects which can be converted using 

transformations such as Map and Filter to Resilient 

Distributed Dataset (RDD). There are options called as 

actions and these collect and return the results to the driver. 

Spark utilizes an advanced directed acyclic graph that can 

reduce the number of excess stages in MapReduce jobs
28

 and 

thus faster execution of jobs. Spark has the capacity to run 

many complex tasks in a single run in multi stages and 

splitting of jobs into multiple ones is not done.  

According to
29

, Continuous bulk processing (CBP) can 

maintain the iteration state in memory.it has a cyclic data 

flow structure which speeds up iterative tasks unlike in 

MapReduce. The data abstraction in CBP can be used to 

control iterative dataflow. PrIteris another typical framework 

that makes use of priority execution and every data point is 

assigned a priority value. The subset of data that has the 

highest priority is chosen and executed in the iteration [30]. 

In iMap Reduce algorithm, the authors proposed a persistent 

socket connection that connects a Mapper to its 

corresponding Reducer. Thus asynchronous method of 
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execution is used for data that is static and state data when 

the state results arrive
31

.  

3.1.2. Iterative Processing Technique 

In the case of iterative processing techniques, HaLoop has a 

better performance when compared to the standard 

MapReduce method as it uses the technique of co-locating 

tasks for a particular data point over various iterations. The 

same machine deals with Map and Reduce tasks using the 

same data with the concept of ‘inter-iteration locality’. This 

approach helps in creating a cache for data and reuse of that 

data during the iterations, thus reducing the I/O costs 

involved. The technique used in Twister is the ‘long-running 

map/reduce tasks’ technique which doesn’t change the state 

data and reloading data for different iterations is not needed. 

This method improves performance overhead for iterative 

applications. iMapReduce makes use of persistent 

mechanism for iterations and the Map or Reduce tasks are 

kept active during the iteration process. This framework 

could reduce the necessity of creating new repeated 

MapReduce jobs for the same tasks. Also, the socket 

connection in this framework doesn’t require a new 

MapReduce job to combine static and state data. Similar to 

iMapReduce technique, PrIter also provides a constant 

connection between Map and Reduce tasks. The data is 

divided into initial static and state and this is preloaded 

before the map tasks begin in the iterative processing. The 

static data is not altered and the state data is updated and 

merged with the static data for iterations. When the iterative 

end condition is met, the computation is terminated
7
.  

In MapReduce online, a pipeline architecture is used to deal 

with the iterative process which links Map and Reduce tasks. 

Map tasks are paused until the previous iteration Reduce 

tasks are completed. However, the introduction of online 

aggregation
31

 can deal with the issues in computation amid 

the MapReduce jobs. 

Spark uses data abstraction to cache static and state data in 

the device memory for reuse. Each data set is represented as 

an object and the users have the option to choose the data set 

that has to be cached for further iterations. CBP also uses 

data abstraction method for iterative processing. Persistent 

states are maintained for the reuse of previous jobs for 

incremental processing and group wise processing and thus 

the data movement within the system is reduced
7
.  

3.1.3. Load balancing and fault tolerance.  

Fault tolerance in HaLoop is similar to that of Hadoop. It 

makes use of intra-iteration technique and then the cache is 

reconstructed and sent to the assigned worker with failed 

partition. In Twister, the mechanism for fault tolerance is 

similar to that of the implementations in Google and Hadoop 

wherein the application state is saved through the iterations. 

If there is a failure encountered, the complete iteration can 

be rolled back. iMapReduce has the fault tolerance similar to 

the standard MapReduce. But the results from the previous 

iterations are retained by storing the state data in a 

distributed file system. In case of a failure, the last iteration 

would be recomputed using the stored state data. The tasks 

in iMapReduce are persistent and they are in contrast to the 

task scheduling mechanism used inMapReduce and hence it 

cannot utilize the mechanism used for balancing load in 

MapReduce. Comparison of the completion time of the 

received notification of tasks completed after every iteration 

is done by the master node and this is used to differentiate 

the leaders and stragglers. In the MapReduce online, a 

bookkeeping mechanism has been added to the current 

Hadoop implementation. Also, the map task output is kept 

tentative till the reducer receives a notification about the 

successful execution of the tasks from Job Tracker. A new 

copy of the tasks is started when a failure is encountered. 

The output of the reduce tasks can be reproduced in case of 

failure using the stored map task outputs.  

For load balancing, PrIter makes use of ‘MRPair migration’ 

mechanism. In this the average processing time that is 

received from map/reduce pair threshold is compared by the 

master node and if the processing time is less than the 

threshold, the assigned worker is considered slow and the 

pairs are assigned to a faster worker. The State Table and 

graph partition are loaded from the DFS. Thus PrIter is 

resistant from failuresin task completion. If there is a worker 

failure, a healthy worker is assigned the failure task and the 

other MRPairs roll back to the same fix point and the last 

failed task is re-computed. Spark relies on RDDs for fault 

tolerance. When failure occurs, roll back of the entire 

program is not required. The lost partitions or the RDDs are 

reloaded for fault recovery.  Fault tolerance in Pregelis done 

with the help of check points which is set using ping 

message. When the master node doesn’t receive a ping 

message from the workers, then that worker is considered as 

a failure and the graph partition is assigned to healthy 

workers. These healthy workers use the last check point to 

reproduce partition state. But for failure recovery, all the 

vertices in the iteration have to be re-executed [7]. 

3.1.4. File system.  

HDFS is supported in Haloop, PrIter, MapReduce online, 

Spark, and CBP; whereas Pregel supports Google File 

System (GFS). Twister does not have this feature and large 

data sets have to be split by the user only.   
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3.2. Review of Parallel Clustering Algorithms Based on 

MapReduce 

Similar to the iterative algorithms discussed in the previous 

section, this section deals with the categorized summary and 

review of various parallel clustering algorithms that are 

based on MapReduce. The categories are - centroid-based 

clustering; density-based clustering; connectivity-based 

clustering; high-dimensional clustering; similarity-based 

clustering and co-clustering. This is summarized in the 

following figure. 

 

Figure 5: Parallel Clustering Algorithms 

IV. ANALYSIS 

A detailed analysis of parallel clustering algorithms has been 

provided that is based on several vital parameters. One 

should be aware of the fact that comparing these algorithms 

is not an easy task given the wide variety of mechanisms 

used. Main objective is to find the aspects of what has been 

used in the algorithm that helps identify the disadvantages of 

several existing parallel algorithms and those which can be 

used for future research.  

4.1. Algorithm class 

As explained in
44

, the current clustering algorithms will be 

classified based on the total number of MR jobs needed to 

perform the necessary MapReduce model. This classification 

helps in selecting the suitable framework for executing the 

algorithms. For illustration purposes, ParC is the only 

algorithm that can be classified into the first class among all 

the compared algorithms. This class is known as 

embarrassing algorithms as the entire algorithm can be 

performed in a single MR round. Second class algorithms 

like SnI and CLARA perform MapReduce model in a 

constant number of MR rounds. As there are very few MR 

jobs needed to implement the first and second class 

algorithms the cost of running them is negligible. The other 

compared algorithms need synchronization steps between 

iterations like checking the termination conditions and 

hence, classified into third class. The work carried out in
33

 

belongs to the third class as it requires multiple iterations 

until the termination condition is met which is not suitable 

for any MapReduce style. Using the Twister approach to 

support ‘PAM like’ in the work done in [44], reduces the 

whole of an algorithm providing a long running strategy to 

keep tasks alive until termination is met in a single MR 

round.  

4.2. Data shuffling 

By reducing the shuffling of data over iterations can achieve 

improvement in performance. Techniques like directly 

passing the data to Mapper from Reducer or joining the state 

data with static data will result in improved performance 

whilst removing extra MR jobs also there would not be any 

necessity to write the output to the DFS. Data shuffling cost 

in the work done in
44

 that uses CLARA is medium as only 

two MR jobs are need to be executed. The k-means based in 

MapReduce in
39

 will generate and send intermediate results 

to the Reducer and the static data is gathered for averaging 

the operations. Due to this operation, the static data will be 

shuffled between the Mapper and Reducer at each iteration 

increasing the network communication cost. In
66

, 

iMapReduce is used which will let the reduce tasks 

broadcast to all Map tasks the updated state data that will 

minimize the communication cost. The shuffling in case of 

Single-linkage Hierarchical Clustering (SHC) algorithm is 

dramatically reduced as the Prim-MR job is performed that 

cuts the edges in an early stage. Though the MSTs are 

shuffled at the Reducers once stored on DFS at Map side. 

Processing of Kruskal Reducer needs to wait for input 

shuffling. To minimize the number of iterations along with 

reducing the shuffling cost, the work in
52

 has used batch 

updating.   

Grid file has been used in the case of DBSCAN by
67

 that 

performs in a single MR round minimizing the shuffling cost 

at the partitioning stage. The main reason why this happens 

is the data from within the space Si and its halo replication 

from bordering spaces are shuffled to the target Reducer 

easily. Spatial indices such as breath-first-search are used in 

the next stage of running local DBSCAN that is considered 

an iterative algorithm increasing the shuffling cost for the 

computations of the neighbors in almost each node, which is 

very expensive considering big data. Structural similarity for 

each edge of the graph cutting off the edges within the 

threshold is used to reduce the cost of shuffling in
50

.  

To exert their advantages on big data and also aiming to 

reduce the data shuffling, algorithms for subspace clustering 

such SnI and ParC are used. Because of the sampling 
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method in the first phase and filtering in the second phase, 

SnI provides better performance. The work in 
57

 is termed as 

an exact algorithm as it does not use sampling approach. It 

also increases the shuffling cost as there are extra MR jobs 

to handle. The approach in 
68

 where the synchronization of 

the only updated cluster assignments and cluster information 

happens to reduce shuffling cost along with avoiding the 

shuffling of row and columns between iterations. 

iMapReduce in 
66

 implements co-clustering that supports the 

iterative processes of co-clustering algorithms by joining the 

state and static data.  

4.3. Mechanism, problem, and the required modification 

Simple MR jobs have been applied to achieve a parallel 

clustering algorithm in the works of
[33-35,44,39,40]

. Good results 

in terms of clustering time have been produced by using 

these approaches. Re-reading the input data at each iteration 

and capturing of large data sets due to job lag have been 

shown in these results. If following modifications are done, 

then these approaches would work better: 

a. To help keep the static data in memory, caching of 

Mapper input can be done, so reloading will not 

happen at each iteration 

b. To check the termination condition, caching of 

Reducer input can be done, along with terminating 

extra MapReduce jobs  

c. A joining mechanism can be used to build a 

connection between the Reduce task and the Map 

Task enabling algorithms such as k-means to use 

the static for averaging operations as Reducer needs 

it 

Some studies that use iterative graph algorithms such as 

breath-first-search
[69,50]

 are not correct for MapReduce style. 

This will cause the entire graph structure to reload and 

shuffle from Mapper to the Reducer at each iteration which 

needs to remain unchanged during iterations. There are 

alternatives for iterative graph algorithms such as the Bulk 

synchronous parallel model 
29

, that will let graph algorithms 

to run on large vertices and edges.  

Kruskal’s algorithm in
53

 is used to reduce the single-linkage 

problem in many of the hierarchical clustering algorithms. 

Re-reading the MSTs would be considered the main issue in 

this approach as the cost of doing this operation for large 

data sets is huge. To avoid materialization of the MSTs on 

DFS, an alternative approach can be used known as the lazy 

operations. In addition to that, to help the KruskalReducer to 

process without holding on for input shuffling, a location 

aware schedule can be proposed.   

Hybrid mechanism is proposed in the approach described in 
63

 that uses MapReduce and MPI. Iterative part of the 

spectral algorithm can be now handled by the MPI, that 

seems to work better than MapReduce in terms of iterative 

applications. Based on Twister, the work in
[42,44]

 

implemented iterative algorithms like k-means, PAM and 

IB. Overhead within the iterations is now reduced as 

expected by the proposed long-running mechanism.  

Implementation of iterative MapReduce (HaLoop) in the 

work of 
5
 takes advantage of caching mechanisms. 

Surprisingly, the main purpose of the proposed approach is 

to cache the Mapper input and Reducer output in order to 

reduce MR rounds but, 
5
 claims that HaLoop works better 

when compared to Twister in terms of fault tolerance due to 

the long-running MapReduce tasks. All these works lack the 

ability for executing asynchronously making the Map tasks 

not to start executing as they need to wait for other Map 

tasks to complete. To support asynchronous execution, 

iMapReduce and Spark have been used in
[70,66]

, that 

minimize the clustering time for k-means and co-clustering 

algorithms.  

V. CONCLUSIONS AND OUTLOOK 

When dealing with large scale data sets, efficient parallel 

clustering algorithms and frameworks ensure scalability and 

good performance are achieved. A new data processing 

approach is introduced by MapReduce in this era of big data. 

Because of its ease of programming, flexibility and fault 

tolerance, MapReduce has garnered considerable attention in 

the world of big data. One has note that there are still certain 

limitations when pertaining to MapReduce like dealing with 

iterative applications. An analysis has been made in this 

study on several other parallel clustering algorithms that 

have attracted significant attention in the big data era. Most 

of these algorithms can perform better than various 

traditional sequential algorithms on scale up and speed up 

metrics. It is evident from the detailed discussion of several 

parallel algorithms that the field of parallel big data 

clustering is very young and is open for further research. The 

rate of improvement in parallel processing models and the 

amount of data growth is indirectly proportional as the 

volumes of data is increasing but the improvement in the 

parallel processing models is still very slow. An observation 

has been made that MapReduce has limitations in the case of 

iterative applications. Also, consideration of several state-of-

the-art techniques like the Spark, Twister, HaLoop and 

MapReduce that are vital big data parallel processing models 

too cannot figure out the issues with iterative algorithms. In 

summary, the principle findings of this study are: 
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a. A combination of all the merits of the existing 

parallel processing models is needed to design a 

new parallel processing model from scratch that is 

more fault tolerant whilst supporting iterative 

algorithms 

b. Because MapReduce/Hadoop implementation does 

not fully support iterative techniques, it is not the 

end of MapReduce. One should understand the 

maturity of MapReduce over iterative algorithms 

and also many vendors support it. Therefore, a 

good alternative to handle iterative big data 

algorithms could be a hybrid system 

c. Improvement of the clustering time of large data 

sets can be achieved by parallel data processing but 

it also degrades the performance and quality. 

Hence, the main worry is to achieve a reasonable 

trade-off between quality and speed in the case of 

big data 

d. A study on the unavailability of clustering 

algorithms that can be processed in parallel has 

been carried out. Major challenge is to figure out a 

method that will eliminate the inherent dependence 

of algorithms 

e. Many studies have implemented MapReduce 

directing the research to be applied more towards 

the parallel clustering algorithms using other 

iterative frameworks such as Pregel, CBP and 

PrIter. 
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