€
AX]CSE International Journal of Computer Sciences and Engineering [pen Access

Review Paper Volume-5, Issue-10 E-ISSN: 2347-2693

A Brief Account of Iterative Big Data Clustering Algorithms

M. Shankar Lingam®, A. M. Sudhakara®"

YUniversity of Mysore, Manasa Gangotri, Mysore, India
“Director, CIST, University of Mysore, India

*Corresponding Author: sudhakara.mysore@gmail.com
Available online at: www.ijcseonline.org
Received: 02/0ct/2017, Revised: 10/Sep/2017, Accepted: 20/Oct/2017, Published: 30/Oct/2017

Abstract- Today, maximum of the organizations have to deal with big quantities of records, that is hastily growing. In order to
address these explosively growing amounts of information, one has so that it will extract, examine, and process information
time to time. Clustering has for this reason been identified keeping in view this example and it is considered as an essential
device used to analyze huge statistics. Technological progress, specifically inside the regions of finance and enterprise
informatics, poses a big task for big scale records clustering. To deal with this issue, researchers have provided you with
parallel clustering algorithms that are primarily based on parallel programming fashions. MapReduce is one of the most
typically used frameworks used for this motive and it has received high consciousness thanks to its flexibility, fault tolerance
and programming ease. However, the overall performance has trouble for iterative packages. This paper gives an in depth

evaluation of iterative frameworks which could help MapReduce for overcoming boundaries for iterative algorithms.

Keywords: clustering, framework and Map reduces.

I. INTRODUCTION

In the big data era, huge amounts of data have to be dealt
carefully. In the year 2002, Yahoo! Web graph has reported
that about a billion nodes and 7 billion edges have been
reached.! Social networking sites such as Twitter, Facebook
etc., use several terabytes of data. Websites such as
Wikipedia and YouTube produce about few hundreds of
gigabytes per minute?. In order to handle such enormous
data, clustering is being used. It allows analyzing and
discovering distribution patterns for large spectrum of data.
Data scientists have studied and proposed various algorithms
in data mining for handling large scale datasets. But these
data mining algorithms are unable to deal with the
exponentially increasing data. Hence, the research
community has shifted its focus from these techniques to
parallel clustering algorithms that would be a better
alternative to traditional cluttering methods operated on a
single system?®. Thus, parallel processing techniques that can
easily handle and process huge data has become the prime
focus of many. Of the many parallel processing techniques
available, MapReduce is the simplest and popular choice of
many huge companies, example Facebook4. In spite of its
popularity, MapReduce has certain critical issues and
challenges such as bandwidth wastage, 1/0 and CPU cycles
for iterative algorithms like PageRank®™®, social network
analysis, clustering and neural network analysis’.

Il. BIG DATA MANAGEMENT

© 2017, IJCSE All Rights Reserved

The term ‘Big Data’ is generally used to refer to large
amount of data that companies and people use. The public
and private data are obtained from sources that are
unorganized and so it is difficult to cluster data. In other
words, it is difficult for most of the corporations to store,
process and analyze big data. Big data has many definitions
and ways of interpretation. However, the widely accepted
definition is characterized by the five Vs, that is, Volume,
Variety, Velocity, Value and Veracity®?.

Volume-this dimension is associated with the enormous data
handling capability or ability of a clustering algorithm.
Using parallel algorithms, one can divide big data into
smaller units such that all units are handled simultaneously
by machines at the rate of one machine per one unit. Thus
one can solve the problem of the exponentially growing big
data needs.

Variety — this dimension is associated with the ability of a
clustering algorithm to handle a variety of data.

Velocity—this dimension is associated with the speed of a
clustering algorithm handling big data. Most of the iterative
clustering algorithms have iterative computations and this
would probably utilize more time to process. Use of parallel
algorithms in this process could help increase speed.

Value — this dimension is associated with the process of
determining hidden values in the data and document those
values.

Veracity — this dimension is associated with reliability,
origin and the accuracy of the data.

2.1. MapReduce Overview

292

mailto:sudhakara.mysore@gmail.com

International Journal of Computer Sciences and Engineering

Many programmers distribute the data among several
machines to speed up the processing of massive amounts of
data and compute them as the volume of data has been
multiplying. Data processing models such as Samza'’,
Tez™ and MapReduce divide the data between machines
and enables each processor to work separately with the
similar algorithm on various parts of the data. There are two
main classifications of parallel processing applications,
traditional parallel applications™*! and data-intensive
applications™™*"). The assumption of data being fit into the
memory of the distributed machines is predominantly seen
in the traditional parallel applications. Due to the rapid
increase in the data collection size, traditional parallel
computation mechanisms fail to solve the big data issue.
Whereas, data-intensive applications require additional
computational and data resources that are run inside a
conditional loop until terminated. The selection of moving
the data to a computer or computer to a data is totally relied
on the requirements and load. A major advantage in data-
intensive applications is that data locality has significantly
become more important than ever before as it reduces the
network cost.

Among the several parallel processing models that compute
data-intensive applications, like the Open MP, MPIM
MapReduce is the most widely used framework as it very
simple (has only two functions, a map and a reduce)
allowing the programmers to monitor data distribution,
replications, load balancing etc., easily!™® . There are two
phases in MapReduce where the data points are processed
over a set of commodity machines in a distributed
environment.

The first phase is the Mapping phase that is defined by the
Map function where the input data is divided into Map
functions, and after computation the intermediate results are
produced in the form of key/value pairs. The second phase is
the Reduce phase which is defined by the Reduce function
taking a single key and processing the given function on its
associated values at a time, collects and is considered as
output of the job. The Reducer task is performed after the
intermediate results are generated and the data is shuffled
into the corresponding Reducer. Majority of the job
execution time is taken to move the intermediate results over
the network. The figure 2 depicts the process involved in
data processing.

Map function:

Data points are read as inputs by the Map task which then
produces the intermediate key/value pairs that primarily
consists of a key, a group number of values, and a value,
associated with the key. A Map task then enables a process

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

to generate new key/value that are sorted by their keys
locally.

Combiner function:

This is an optional function that when applied to the
intermediate results that are considered to have significant
repetition in their respective Map task, will perform a partial
reduction and passes on the intermediate key/value pairs to
the reducer.

Partition function:

It is mainly used for partitioning the intermediate keys that
are hashed to determine which reduce partition will process
the keys. To provide good balancing, Hadoop uses has
partitioner by default.

Reduce function:

The output of Map tasks is considered collectively as the
input for the reduce phase. With a user defined reduce
function that is primarily called by each reducer for each key
only once, the reduce task for each key is applied and its
corresponding values are then processed. The processing of
inputs to each reducer is done in the increasing key order.

Mepping Shuffing Redudng

Map it COMbINGT [

= combier ——

0 tap B Combiner

top [Combiner [>

Figure 1: Architecture of MapReduce
2.2. Hadoop Overview

Analyzing and querying massive amounts of data is difficult
through traditional mechanisms. Data scientist can use
Hadoop [5], an open source software, to distribute huge
scale data sets into several blocks and take advantage of the
distributed environment. Rather than scaling up, that implies
to add more resources such as RAM or CPU which is
expensive, Hadoop is designed to scale out by addition of
more machines in a cluster in distributed network with
commodity hardware. Rather than a primary storage
mechanism, the Hadoop Distributed File System (HDFS) is
designed as a workflow. Basically, the data is dumped into

293

International Journal of Computer Sciences and Engineering

the HDFS once and can be accessed any number of times,
bringing the code to data, that are split into blocks of
typically 64MB and can be accessed by any machine of that
cluster for parallel processing. Failures can be handled by
Hadoop by data replication where data is stored and
replicated over machines making sure that at least one
replica is stored in a different rack to ensure further data
availability and reliability. A set of commodity hardware
connected to one network in one location form the Hadoop
cluster. For parallel processing purposes, Hadoop consist of
HDFS and MapReduce engine whereas the cluster consists
of several daemons/servers.

A Name-node stores the meta data that is mapped from file
to block and location of block. A Data-node in HDFS stores
data, provides the exact physical location of data and
connects to Name-node. There is a Secondary Name-node
that is used to monitor the state of the cluster in case the
Name-node fails. An integration between HDFS and
MapReduce will occur where the performance is through the
master and slave nodes. Figure 3 explains the master node
(consisting of the Task Tracker and Job Tracker) from the
MapReduce layer and slave nodes that only have the Task
Tracker. Scheduling of all MapReduce jobs is done by the
Job Tracker which then assigns these tasks to the Task
Trackers that are used for execution in each slave node.

MMaster

¥ TaskTracker Name P Data
} \

TaskTracker Data

Job Tracker

Slave

Figure 2: Hadoop Distributed File System and MapReduce
Layer in Hadoop

Depending upon the availability of resources, Job Tracker
assigns several tasks to Task Tracker. As and when the Task
Tracker completes the tasks new tasks are assigned by the
Job Tracker. Task Tracker sends a heartbeat signal
periodically to the Job Tracker in case of machine failure.
The master node will check for the heartbeat signal from
Task Tracker and if it doesn’t receive any such signal for
some time from a machine then it will consider it to be a
failed machine. Rather than fixing the failed machine,
Hadoop assigns the failed task to another machine in the
cluster as a backup. Since the probability of failure of one
particular machine is very low, the failure of Job Tracker
itself is not considered very seriously as it cannot be solved
automatically [7].

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

2.3. Hadoop/MapReduce Limitations for Iterative
Applications

There has been a lot of research carried out in terms of
performance limitations on MapReduce®®!. The generic
weaknesses and limitations discussed in’ of MapReduce is
shown in figure 4. The focus is mainly on iterative programs
and the limitations related to MapReduce for the programs
discussed previously have been identified and are discussed
below:

Lack of loop aware task scheduling:

Multi-staging of tasks in a single run is not supported in
MapReduce. Therefore, operations that are repeated during
iterations like task initialization and cleanup (reload and
dump data) usually start new MapReduce jobs. So, when
dealing with large scale data sets scheduling overhead is
included.

Lack of handling static data:

There are primarily two kinds of data involved in a
MapReduce process, static data and state data. Static data is
unchanged during iterations and hence, a key problem in
MapReduce. In some of the iterative algorithms like the k-
means, by design, the Reducer needs the static data for
performing operations such as averaging etc., after state data
is generated. Therefore, there needs to be reloading and
shuffling of the static data during iterations that is practically
difficult when large data sets are involved and resulting in
overhead of communication.

Lack of Asynchronous execution:

Before completing a reduce task in the previous iteration a
new map task cannot be allowed in standard MapReduce
making each iteration wait for the previous iteration to
complete resulting in synchronization overhead.

Lack of built-in termination condition:

An additional MapReduce job is needed at each iteration for
termination as there is no provision of a built-in feature for
termination leading to overhead because of scheduling extra
costs.

Generic limitations

Iterative computation
Iterative processing

Data processing limitations
Lack of loop-aware task
3 Early Termination scheduling
i | Lack of handling the state
MapReduce Query optimization data

: Data access

Lack of Asynchronous
execution

Lack of built-intermination
condition feature

real time processing

Fair work allocation

avoidance of redundanty :
processing

Figure 3: Limitations of MapReduce

294

International Journal of Computer Sciences and Engineering

I1l. REVIEW OF THE AVAILABLE WORKS

A review of the frameworks that enhanced the performance
of MapReduce based on iterative processing techniques is
presented in this section first. This is followed by a review
of parallel clustering algorithms on MapReduce.

3.1. Review of iterative MapReduce Frameworks

Consider the following summarized figure of the current
popular iterative frameworks. The following sub sections
these significant factors are discussed.

Iterative
MapReduce
Framewarks

[. ’
Modification in herative processin
Frogramming interface technique

Load balancing and Fault-
tolerance

File System ‘

— interiteration — oFs |

E—

| Asynchronous
‘ 1 Wemory

- Long running G |

Pipelining

‘7 General abstraction

“— Anatunal Graph #P1

Figure 4: Iterative MapReduce Frameworks

3.1.1. Execution Model

Iterative MapReduce programs make use of a chain of
map/reduce process and hence is slow. It splits the task into
multiple tasks and these are not processed in a single run and
hence this slows down the entire processing. For this
purpose, many iterative frameworks have been proposed.
HaLoop framework is similar to MapReduce and the tasks
are assigned to slave nodes using a parallel master node with
TaskTracker daemon. This communicates with the master
node. Each task can either Map or Reduce tasks. There are
major changes in the HaLoop framework. Primarily, there is
a new feature in the master node called the loop control. It
initializes new map-reduce tasks recurrently until the end
terminate condition is encountered. It eliminates the extra
MapReduce jobs used to check stop condition and hence the
overall communication overhead. The next change is that the
algorithm has a new task scheduler specifically for iterative
applications that supports data locality to co-locate the tasks
for same operations. It enables reuse of data within the
iterative process. Thirdly, the performance is improved by
caching the intermediate results obtained to the disk. The
issue, however, is that it uses synchronous execution like
MapReduce. Hence there would be delay as the reducer has
to wait till the map tasks are finished.

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

There is yet another framework that is similar to the
execution model in MapReduce called Twister. For the
purpose of communication, it utilizes publish/subscribe
messaging mechanism. However, the architecture of Twister
is different to MapReduce architecture. The input data in
Twister doesn’t have a distributed system. It is stored in a
local disk as native files. The issue relating to this is that the
collective memory of worker nodes has to accommodate this
static data and this would require them to handle huge
amounts of data sets. The performance of Twister is
enhanced because it stored the intermediate results. Also, a
driver is used for computation and a broker network is
established. The main driver program sends the input data to
the Mapper and Reducer. The results are collected and sent
to the main program®.

Another model, Pregel? is an in-memory system which
utilizes the bulk synchronous parallel model for the purpose
of computations . The challenges in this model is that
issues because of synchronous scheduling. MapReduce
online®® also has synchronous execution method. The
intermediate results are pipelined between tasks and thus the
data is transferred between Reduce and Map tasks and hence
a connection is created between them and the output from
Reduce task is sent directly to Map tasks. Since the
framework doesn’t support overlapping of tasks, the Map
tasks are left pending until the Reduce tasks are finished.
There have been many frameworks that have been proposed
for asynchronous execution but this cannot be used in
MapReduce. One such is Spark®® which is an in-memory
framework and the computation model is different. It is
similar to DryadLINQ? and FlumeJava®’ as every data set is
considered as objects which can be converted using
transformations such as Map and Filter to Resilient
Distributed Dataset (RDD). There are options called as
actions and these collect and return the results to the driver.
Spark utilizes an advanced directed acyclic graph that can
reduce the number of excess stages in MapReduce jobs® and
thus faster execution of jobs. Spark has the capacity to run
many complex tasks in a single run in multi stages and
splitting of jobs into multiple ones is not done.

According to®, Continuous bulk processing (CBP) can
maintain the iteration state in memory.it has a cyclic data
flow structure which speeds up iterative tasks unlike in
MapReduce. The data abstraction in CBP can be used to
control iterative dataflow. Prlteris another typical framework
that makes use of priority execution and every data point is
assigned a priority value. The subset of data that has the
highest priority is chosen and executed in the iteration [30].
In iMap Reduce algorithm, the authors proposed a persistent
socket connection that connects a Mapper to its
corresponding Reducer. Thus asynchronous method of

295

International Journal of Computer Sciences and Engineering

execution is used for data that is static and state data when
the state results arrive®.

3.1.2. Iterative Processing Technique

In the case of iterative processing techniques, HalLoop has a
better performance when compared to the standard
MapReduce method as it uses the technique of co-locating
tasks for a particular data point over various iterations. The
same machine deals with Map and Reduce tasks using the
same data with the concept of ‘inter-iteration locality’. This
approach helps in creating a cache for data and reuse of that
data during the iterations, thus reducing the 1/O costs
involved. The technique used in Twister is the ‘long-running
map/reduce tasks’ technique which doesn’t change the state
data and reloading data for different iterations is not needed.
This method improves performance overhead for iterative
applications. iMapReduce makes use of persistent
mechanism for iterations and the Map or Reduce tasks are
kept active during the iteration process. This framework
could reduce the necessity of creating new repeated
MapReduce jobs for the same tasks. Also, the socket
connection in this framework doesn’t require a new
MapReduce job to combine static and state data. Similar to
iMapReduce technique, Prlter also provides a constant
connection between Map and Reduce tasks. The data is
divided into initial static and state and this is preloaded
before the map tasks begin in the iterative processing. The
static data is not altered and the state data is updated and
merged with the static data for iterations. When the iterative
end condition is met, the computation is terminated’.

In MapReduce online, a pipeline architecture is used to deal
with the iterative process which links Map and Reduce tasks.
Map tasks are paused until the previous iteration Reduce
tasks are completed. However, the introduction of online
aggregation®! can deal with the issues in computation amid
the MapReduce jobs.

Spark uses data abstraction to cache static and state data in
the device memory for reuse. Each data set is represented as
an object and the users have the option to choose the data set
that has to be cached for further iterations. CBP also uses
data abstraction method for iterative processing. Persistent
states are maintained for the reuse of previous jobs for
incremental processing and group wise processing and thus
the data movement within the system is reduced’.

3.1.3. Load balancing and fault tolerance.

Fault tolerance in HalLoop is similar to that of Hadoop. It
makes use of intra-iteration technique and then the cache is
reconstructed and sent to the assigned worker with failed
partition. In Twister, the mechanism for fault tolerance is

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

similar to that of the implementations in Google and Hadoop
wherein the application state is saved through the iterations.
If there is a failure encountered, the complete iteration can
be rolled back. iMapReduce has the fault tolerance similar to
the standard MapReduce. But the results from the previous
iterations are retained by storing the state data in a
distributed file system. In case of a failure, the last iteration
would be recomputed using the stored state data. The tasks
in iMapReduce are persistent and they are in contrast to the
task scheduling mechanism used inMapReduce and hence it
cannot utilize the mechanism used for balancing load in
MapReduce. Comparison of the completion time of the
received notification of tasks completed after every iteration
is done by the master node and this is used to differentiate
the leaders and stragglers. In the MapReduce online, a
bookkeeping mechanism has been added to the current
Hadoop implementation. Also, the map task output is kept
tentative till the reducer receives a notification about the
successful execution of the tasks from Job Tracker. A new
copy of the tasks is started when a failure is encountered.
The output of the reduce tasks can be reproduced in case of
failure using the stored map task outputs.

For load balancing, Prlter makes use of ‘“MRPair migration’
mechanism. In this the average processing time that is
received from map/reduce pair threshold is compared by the
master node and if the processing time is less than the
threshold, the assigned worker is considered slow and the
pairs are assigned to a faster worker. The State Table and
graph partition are loaded from the DFS. Thus Prlter is
resistant from failuresin task completion. If there is a worker
failure, a healthy worker is assigned the failure task and the
other MRPairs roll back to the same fix point and the last
failed task is re-computed. Spark relies on RDDs for fault
tolerance. When failure occurs, roll back of the entire
program is not required. The lost partitions or the RDDs are
reloaded for fault recovery. Fault tolerance in Pregelis done
with the help of check points which is set using ping
message. When the master node doesn’t receive a ping
message from the workers, then that worker is considered as
a failure and the graph partition is assigned to healthy
workers. These healthy workers use the last check point to
reproduce partition state. But for failure recovery, all the
vertices in the iteration have to be re-executed [7].

3.1.4. File system.

HDFS is supported in Haloop, Priter, MapReduce onling,
Spark, and CBP; whereas Pregel supports Google File
System (GFS). Twister does not have this feature and large
data sets have to be split by the user only.

296

International Journal of Computer Sciences and Engineering

3.2. Review of Parallel Clustering Algorithms Based on
MapReduce

Similar to the iterative algorithms discussed in the previous
section, this section deals with the categorized summary and
review of various parallel clustering algorithms that are
based on MapReduce. The categories are - centroid-based
clustering; density-based clustering; connectivity-based
clustering; high-dimensional clustering; similarity-based
clustering and co-clustering. This is summarized in the
following figure.

Parallel clustering algorithms

—— ; a——

i Centroid based | : Denstybased i Connectivity based: | High diemensional | i Similarity based | i Coclustering
i dustering i i custeng i clutering i i clustering i i dlustedng

— K-means |

{Copikmeansé

e

Figure 5: Parallel Clustering Algorithms
IV. ANALYSIS

A detailed analysis of parallel clustering algorithms has been
provided that is based on several vital parameters. One
should be aware of the fact that comparing these algorithms
is not an easy task given the wide variety of mechanisms
used. Main objective is to find the aspects of what has been
used in the algorithm that helps identify the disadvantages of
several existing parallel algorithms and those which can be
used for future research.

4.1. Algorithm class

As explained in*, the current clustering algorithms will be
classified based on the total number of MR jobs needed to
perform the necessary MapReduce model. This classification
helps in selecting the suitable framework for executing the
algorithms. For illustration purposes, ParC is the only
algorithm that can be classified into the first class among all
the compared algorithms. This class is known as
embarrassing algorithms as the entire algorithm can be
performed in a single MR round. Second class algorithms
like Snl and CLARA perform MapReduce model in a
constant number of MR rounds. As there are very few MR
jobs needed to implement the first and second class
algorithms the cost of running them is negligible. The other
compared algorithms need synchronization steps between

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

iterations like checking the termination conditions and
hence, classified into third class. The work carried out in®
belongs to the third class as it requires multiple iterations
until the termination condition is met which is not suitable
for any MapReduce style. Using the Twister approach to
support ‘PAM like’ in the work done in [44], reduces the
whole of an algorithm providing a long running strategy to
keep tasks alive until termination is met in a single MR
round.

4.2. Data shuffling

By reducing the shuffling of data over iterations can achieve
improvement in performance. Techniques like directly
passing the data to Mapper from Reducer or joining the state
data with static data will result in improved performance
whilst removing extra MR jobs also there would not be any
necessity to write the output to the DFS. Data shuffling cost
in the work done in* that uses CLARA is medium as only
two MR jobs are need to be executed. The k-means based in
MapReduce in* will generate and send intermediate results
to the Reducer and the static data is gathered for averaging
the operations. Due to this operation, the static data will be
shuffled between the Mapper and Reducer at each iteration
increasing the network communication cost. In®,
iMapReduce is used which will let the reduce tasks
broadcast to all Map tasks the updated state data that will
minimize the communication cost. The shuffling in case of
Single-linkage Hierarchical Clustering (SHC) algorithm is
dramatically reduced as the Prim-MR job is performed that
cuts the edges in an early stage. Though the MSTs are
shuffled at the Reducers once stored on DFS at Map side.
Processing of Kruskal Reducer needs to wait for input
shuffling. To minimize the number of iterations along with
reducing the shuffling cost, the work in® has used batch
updating.

Grid file has been used in the case of DBSCAN by®’ that
performs in a single MR round minimizing the shuffling cost
at the partitioning stage. The main reason why this happens
is the data from within the space Si and its halo replication
from bordering spaces are shuffled to the target Reducer
easily. Spatial indices such as breath-first-search are used in
the next stage of running local DBSCAN that is considered
an iterative algorithm increasing the shuffling cost for the
computations of the neighbors in almost each node, which is
very expensive considering big data. Structural similarity for
each edge of the graph cutting off the edges within the
threshold is used to reduce the cost of shuffling in®.

To exert their advantages on big data and also aiming to
reduce the data shuffling, algorithms for subspace clustering
such Snl and ParC are used. Because of the sampling

297

International Journal of Computer Sciences and Engineering

method in the first phase and filtering in the second phase,
Snl provides better performance. The work in * is termed as
an exact algorithm as it does not use sampling approach. It
also increases the shuffling cost as there are extra MR jobs
to handle. The approach in ® where the synchronization of
the only updated cluster assignments and cluster information
happens to reduce shuffling cost along with avoiding the
shuffling of row and columns between iterations.
iMapReduce in ® implements co-clustering that supports the
iterative processes of co-clustering algorithms by joining the
state and static data.

4.3. Mechanism, problem, and the required modification

Simple MR jobs have been applied to achieve a parallel
clustering algorithm in the works of®3%44%%401 Good results
in terms of clustering time have been produced by using
these approaches. Re-reading the input data at each iteration
and capturing of large data sets due to job lag have been
shown in these results. If following modifications are done,
then these approaches would work better:

a. To help keep the static data in memory, caching of
Mapper input can be done, so reloading will not
happen at each iteration

b. To check the termination condition, caching of
Reducer input can be done, along with terminating
extra MapReduce jobs

c. A joining mechanism can be used to build a
connection between the Reduce task and the Map
Task enabling algorithms such as k-means to use
the static for averaging operations as Reducer needs
it

Some studies that use iterative graph algorithms such as
breath-first-search!®*’! are not correct for MapReduce style.
This will cause the entire graph structure to reload and
shuffle from Mapper to the Reducer at each iteration which
needs to remain unchanged during iterations. There are
alternatives for iterative graph algorithms such as the Bulk
synchronous parallel model %, that will let graph algorithms
to run on large vertices and edges.

Kruskal’s algorithm in®® is used to reduce the single-linkage
problem in many of the hierarchical clustering algorithms.
Re-reading the MSTs would be considered the main issue in
this approach as the cost of doing this operation for large
data sets is huge. To avoid materialization of the MSTs on
DFS, an alternative approach can be used known as the lazy
operations. In addition to that, to help the KruskalReducer to
process without holding on for input shuffling, a location
aware schedule can be proposed.

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

Hybrid mechanism is proposed in the approach described in
% that uses MapReduce and MPI. lterative part of the
spectral algorithm can be now handled by the MPI, that
seems to work better than MapReduce in terms of iterative
applications. Based on Twister, the work int?*!
implemented iterative algorithms like k-means, PAM and
IB. Overhead within the iterations is now reduced as
expected by the proposed long-running mechanism.

Implementation of iterative MapReduce (HalLoop) in the
work of ° takes advantage of caching mechanisms.
Surprisingly, the main purpose of the proposed approach is
to cache the Mapper input and Reducer output in order to
reduce MR rounds but, ° claims that HaLoop works better
when compared to Twister in terms of fault tolerance due to
the long-running MapReduce tasks. All these works lack the
ability for executing asynchronously making the Map tasks
not to start executing as they need to wait for other Map
tasks to complete. To support asynchronous execution,
iMapReduce and Spark have been used inl’®®% that
minimize the clustering time for k-means and co-clustering
algorithms.

V. CONCLUSIONS AND OUTLOOK

When dealing with large scale data sets, efficient parallel
clustering algorithms and frameworks ensure scalability and
good performance are achieved. A new data processing
approach is introduced by MapReduce in this era of big data.
Because of its ease of programming, flexibility and fault
tolerance, MapReduce has garnered considerable attention in
the world of big data. One has note that there are still certain
limitations when pertaining to MapReduce like dealing with
iterative applications. An analysis has been made in this
study on several other parallel clustering algorithms that
have attracted significant attention in the big data era. Most
of these algorithms can perform better than various
traditional sequential algorithms on scale up and speed up
metrics. It is evident from the detailed discussion of several
parallel algorithms that the field of parallel big data
clustering is very young and is open for further research. The
rate of improvement in parallel processing models and the
amount of data growth is indirectly proportional as the
volumes of data is increasing but the improvement in the
parallel processing models is still very slow. An observation
has been made that MapReduce has limitations in the case of
iterative applications. Also, consideration of several state-of-
the-art techniques like the Spark, Twister, HalLoop and
MapReduce that are vital big data parallel processing models
too cannot figure out the issues with iterative algorithms. In
summary, the principle findings of this study are:

298

International Journal of Computer Sciences and Engineering

a.

1.

[2].

[31.
[41.

[5].

[6].

[71.

(8]

A combination of all the merits of the existing
parallel processing models is needed to design a
new parallel processing model from scratch that is
more fault tolerant whilst supporting iterative
algorithms

Because MapReduce/Hadoop implementation does
not fully support iterative techniques, it is not the
end of MapReduce. One should understand the
maturity of MapReduce over iterative algorithms
and also many vendors support it. Therefore, a
good alternative to handle iterative big data
algorithms could be a hybrid system

Improvement of the clustering time of large data
sets can be achieved by parallel data processing but
it also degrades the performance and quality.
Hence, the main worry is to achieve a reasonable
trade-off between quality and speed in the case of
big data

A study on the unavailability of clustering
algorithms that can be processed in parallel has
been carried out. Major challenge is to figure out a
method that will eliminate the inherent dependence
of algorithms

Many studies have implemented MapReduce
directing the research to be applied more towards
the parallel clustering algorithms using other
iterative frameworks such as Pregel, CBP and
Priter.

REFERENCES

Kang U, Tong H, Sun J, Lin C-Y, Faloutsos C. GBASE, in
Proceedings of the 17th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining —
KDD’11, San Diego,CA,USA,2011 Aug, pp. 1091.
“YouTube statistic.” [Online].
Available:http://www.youtube.com/yt/press/statistics.html.
[last accessed June 22, 2014],Dare Accessed:22/6/2014.

Kim W. Parallel clustering algorithms: survey, CSC 8530
parallel algorithms, 2009, pp.1-32.

Aiyer A, Bautin M, Chen GJ, Damania P, Khemani P,
Muthukkaruppan K, Vaidya M. Storage infrastructure behind
facebook messages using HBase at scale. IEEE Data
Engineering 2012, 35(2), pp.4-13.

Bu Y, Howe B, Balazinska M, Ernst MD. HalLoop: efficient
iterative data processing on large clusters, in
36"International Conference on Very Large Data Bases,
2010 Sep, 3(1-2),pp.285-96.

Page L, Sergey Brin RM, Winograd T. The PageRank
citation ranking: bringing order to the web, 1998 Jan, pp.1-
17..

Mohebi A, Aghabozorgi S, Ying Wah T, Herawan T,
Yahyapour R. lterative big data clustering algorithms: a
review, Software Practicle Experience, 2016,46,pp. 107-29.
Zikopoulos P, Parasuraman K, Deutsch T, Giles DC.
Harness the Power of Big Data the IBM Big Data Platform

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

[Kindle Edition], 1st edn. McGraw-Hill Osborne Media:
New York, 2012 Sep.

[9]. Assuncdo MD, Calheiros RN, Bianchi S, Netto MAS, Buyya
R. Big Data computing and clouds: Trends and future
directions, Journal of Parallel and Distributed Computing
2014,75(13),pp.156-75.

[10]. Riccomini C. Samza: Real-time stream processing at
LinkedIn, 2013. Retrieved July 5, 2014, from http://www.
infog.com/presentations/samza-linkedin, Date ACCESSED:
5/7/2014.

[11]. Murthy A. Tez: accelerating processing of data stored in
HDFS, 2013. [Online]. Available:
http://hortonworks.com/blog/introducing-tez-faster-hadoop-
processing/,Date Accessed: 20/2/2013.

[12]. Dean J, Ghemawat S. MapReduce: simplified data
processing on large clusters, Communications of the ACM
2008, 51(1),pp.1-13.

[13]. Dhillon IS, Modha DS. A data-clustering algorithm on
distributed memory multiprocessors, in Proceeding Revised
Papers from Large-Scale Parallel Data Mining, Workshop on
Large-Scale Parallel KDD Systems, SIGKDD, 1999,pp.245-
60.

[14]. Forman G, Zhang B. Distributed data clustering can be
efficient and exact, ACM SIGKDD Explorations Newsletter
2000, 2(2),pp.34-38.

[15]. Kang U, Papalexakis E, Harpale A, Faloutsos C.
GigaTensor, in Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining — KDD’12, 2012,pp.1-316.

[16]. Kang U, Tsourakakis CE, Faloutsos C. PEGASUS: mining
peta-scale graphs, Knowledge and Information Systems
2010,27(2),pp.303-25.

[17]. White T. Hadoop—The Definitive Guide: Storage and
Analysis at Internet Scale, 3rd edn. O’Reilly R (ed.). Ireland,
2012 Jan, pp.1-647.

[18]. Snir M, Otto S, Huss-Lederman S, Walker D, Dongarra J.
MPI-the Complete Reference, Second edn, the MPI Core,
MIT Press: Cambridge, MA, USA, 1998 Sep,pp.1-350.

[19]. Stonebraker M, Abadi D, DeWitt DJ, Madden S, Paulson E,
Pavlo A, Rasin A. MapReduce and parallel
DBMSs,Communications of the ACM 2010, 53(1),pp.1-64.

[20]. Pavlo A, Paulson E, Rasin A, Abadi DJ, DeWitt DJ, Madden
S, Stonebraker M. A comparison of approaches to largescale
data analysis, In Proceedings of
theACMSIGMOD International Conference on Management
of Data (SIGMOD), 2009, pp.165-78.

[21]. Ekanayake J, Li H, Zhang B, Gunarathne T, Bae S-H, Qiu J,
Fox G. Twister, in Proceedings of the 19th ACM
International Symposium on High Performance Distributed
Computing - HPDC’10,Chicago, 2010 Jun, pp. 810-18.

[22]. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I,
Leiser N, Czajkowski G. Pregel, in Proceedings of the 2010
international conference on Management of data -
SIGMOD’10, 2010,pp.1- 135.

[23]. Valiant LG. A bridging model for parallel computation.
Communications of the ACM 1990, 33(8),pp.103-11.

[24]. Condie T, Conway N, Alvaro P, Hellerstein JM, Elmeleegy
K, Sears R. MapReduce online, in NSDI’10 Proceedings of
the 7th USENIX conference on Networked systems design
and implementation Berkley,,2010,21,pp.1-15.

[25]. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I.
Spark: cluster computing with working sets, in HotCloud’10
Proceedings of the 2nd USENIX conference on Hot topics in
cloud computing, 2010, pp.1-10.

[26]. Yu Y, lIsard M, Fetterly D, Budiu M, Erlingsson U, Gunda
PK, Currey J. DryadLINQ: a system for general-purpose

299

http://www/
http://hortonworks.com/blog/introducing-tez-faster-hadoop-processing/,Date
http://hortonworks.com/blog/introducing-tez-faster-hadoop-processing/,Date

International Journal of Computer Sciences and Engineering

distributed data-parallel computing using a high-level
language, in OSDI’08 Proceedings of the 8th USENIX
conference on Operating systems design and
implementation, Berkeley,USA,CA,2008, pp. 1-14.

[27]. Chambers C, Raniwala A, Perry F, Adams S, Henry RR,
Bradshaw R, Weizenbaum N. FlumeJava, ACM SIGPLAN
Notices 2010, 45(6),pp.1-363.

[28]. Thulasiraman K, Swamy MNS. Graphs: Theory and
Algorithms. John Wiley & Sons, Inc.: New York, 1992.

[29]. Logothetis D, Olston C, Reed B, Webb KC, Yocum K.
Stateful bulk processing for incremental analytics, in
Proceedings of the 1st ACM symposium on Cloud
computing - SoCC’10, 2010 Jun, pp.1-12 ..

[30]. Zhang Y, Gao Q, Gao L, Wang C. Prlter: a distributed
framework for prioritizing iterative computations. IEEE
Transactions on Parallel and Distributed Systems 2013,
24(9),pp.1884-93.

[31]. Hellerstein JM, Haas PJ, Wang HJ. Online aggregation,
Proceedings of the 1997 ACM SIGMOD International
Conference on Management of Data — SIGMOD’97, 1997,
26(2),pp.171-82.

[32]. Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda
H, McLachlan GJ, Ng A, Liu B, Yu PS, Zhou Z-H,
Steinbach M, Hand DJ, Steinberg D, Top 10 algorithms in
data mining, Knowledge and Information Systems 2007,
14(1),pp.1-37.

[33]. Zhao W, He Q, Ma H. Parallel K-Means Clustering Based
on, 2009, pp.674—79.

[34]. Zhou P, Ye W, Lei J. Large-scale data sets clustering based
on MapReduce and Hadoop, The Journal of
Computerinformation Systems 2011, 16(7),pp.5956-63.

[35]. Nguyen CD, Nguyen DT, Pham V. LNCS 7975 - Parallel
two-phase K-means, 2013,7975, pp.224-31.

[36]. Pham DT, Dimov SS, Nguyen CD. An incremental K-means
algorithm, in Proceedings of the Institution of Mechanical
Engineers, Part C: Journal of Mechanical Engineering
Science, 2004, pp.783-95.

[37]. Bahmani B, Moseley B, Vattani A, Kumar R, Vassilvitskii S.
Scalable k-means++. Proceedings of the VLDB Endowment
2012, 5(7),pp.622-33.

[38]. Arthur D, Vassilvitskii S. k-means++: the advantages of
careful seeding, in SODA’07 Proceedings of the eighteenth
annual ACM-SIAM symposium on Discrete algorithms,
2007,pp. 1027-35.

[39].Li C, Zhang Y, Jiao M, Yu G. Mux-Kmeans : Multiplex
Kmeans for clustering large-scale data set categories and
subject descriptors, in Proceedings of the 5th ACM
workshop on Scientific cloud computing - ScienceCloud’14,
2014, pp. 25-32.

[40]. Aljarah I, Ludwig SA. Parallel particle swarm optimization
clustering algorithm based on MapReduce methodology, in
2012 Fourth World Congress on Nature and Biologically
Inspired Computing (NaBIC), Mexico City,2012 Nov,pp.
104-11.

[41]. Kennedy J, Eberhart R. Particle swarm optimization.
Proceedings of ICNN’95 - International Conference on
Neural Networks, 1995,4,pp.1942-48.

[42].Sun Z, Fox G, Gu W, Li Z. A parallel clustering method
combined information bottleneck theory and centroid-based
clustering, Journal of Supercomputing 2014, 69(1),pp.452—
67.

[43]. Tishby N, Pereira FC, Bialek W. The information bottleneck
method, Apr. 2000,pp.1-16.

[44]. Satish Narayana Srirama PJ, Vainikko E. Adapting scientific
computing problems to clouds using MapReduce, Future
Generation Computer Systems 2012, 8(1),pp.184-92.

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

[45]. Kaufman L, Rousseeuw P. Finding groups in data: an
introduction to cluster analysis, in Wiley Interscience, 1990,
pp.1-5.

[46]. Martin Ester XX, Kriegel H-P, Jorg S. A density-based
algorithm for discovering clusters in large spatial databases
with noise, in 2nd International Conference on Knowledge
Discovery and Data Mining, Portland, 1996,pp. 226-31.

[47].Li L, Xi Y. Research on clustering algorithm and its
parallelization strategy, International Conference on
Computational and Information Sciences Chengudu,China,
2011, pp.325-28.

[48]. Kim Y, Shim K, Kim M-S, Sup Lee J. DBCURE-MR: an
efficient density-based clustering algorithm for large data
using MapReduce.,Information Systems 2014, 42,pp.15-35.

[49]. Ankerst M, Breunig MM, Kriegel H-P, Sander Journal of
OPTICS, ACM SIGMOD Record, 1999, 28(2),pp.49-60.

[50]. Zhao W, Martha V, Xu X. PSCAN: A Parallel Structural
Clustering Algorithm for Big Networks in MapReduce, in
2013 IEEE 27th International Conference on Advanced
Information Networking and Applications (AINA),
Barcelona,2013, pp.862-69.

[51]. NandiniRaghavan U, Albert R, Kumara S. Near linear time
algorithm to detect community structures in large-scale
networks, Physical Review 2007 Sep, 76(3),pp.1.

[52].Sun T, Shu C, Li F, Yu H, Ma L, Fang Y. An efficient
hierarchical clustering method for large datasets with
MapReduce, in 2009 International Conference on Parallel
and Distributed Computing, Applications and
Technologies,Higashi Hiroshima, 2009 Dec,pp. 494-99.

[53]. Jin WLC, Patwary MMA, Agrawal A, Hendrix W. DiSC: A
distributed single-linkage hierarchical clustering algorithm
using MapReduce, in Proceedings of the 4™International SC
Workshop on Data Intensive Computing in the Clouds,
2013,pp.1-10.

[54]. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction
to Algorithms, 2nd edn, McGraw-Hill Higher Education:
New York, USA, 2001,pp.1-640.

[55]. Parsons L, Haque E, Liu H. Subspace clustering for high
dimensional data, ACM SIGKDD Explorations Newsletter
2004, 6(1),pp. 90-105.

[56]. R. Murugesh, I. Meenatchi, "A Study Using Pl on: Sorting
Structured Big Data In Distributed Environment Using
Apache Hadoop MapReduce”, International Journal of
Computer Sciences and Engineering, Vol.2, Issue.8, pp.35-
38, 2014.

[57]. Fries ST, Wels S. Projected clustering for huge data sets in
MapReduce | Chair of Computer Science 9, in International
Conference on Extending Database Technology (EDBT
2014), Athens, Greece, 2014,pp. 49-60.

[58]. Moise G, Sander J, Ester M. P3C: a robust projected
clustering algorithm, in Sixth International Conference on
Data Mining (ICDM’06), Hong Kong,2006 Dec, pp.414-25.

[59]. Hyndman RJ. The problem with Sturges’ rule for
constructing histograms, no. 1995 Jul,pp. 1-2.

[60]. Elgohary A, Farahat AK, Kamel MS, Karray F. Embed and
conquer: scalable embeddings for kernel k-means on
MapReduce, in Appears in Proceedings of the SIAM
International Conference on Data Mining (SDM), 2014,

2013,pp. 1-18.
[61]. Uber die praktische Aufldsung von
linearen. “Integralgleichungen mit Anwendungen auf

Randwertaufgaben ”, Acta
54(1),pp.185-204.

[62]. Rahul R. Ghuleand Sachin N. Deshmukh, "Comparative
Study on Speculative Execution Strategy to Improve
MapReduce Performance”, International Journal of

Mathematica, 1930,

300

International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

Computer Sciences and Engineering, Vol.3, Issue.3, pp.197-
200, 2015.

[63]. Chen W-Y, Sunnyvale Y, Song H, Bai C-JL, Chang EY.
Parallel spectral clustering in distributed systems, IEEE
Transactions on Pattern Analysis and Machine Intelligence
2011, 33(3),pp.568-86.

[64]. Maschho K, Sorensen D. A portable implementation of
ARPACK for distributed memory parallel architectures, In
Proceeding of Copper Mountain Conference on lterative
Methods, 1996,pp.1-8.

[65]. Papadimitriou S, Sun J. DisCo: distributed co-clustering
with Map-Reduce: A Case Study Towards Petabyte-Scale
End-to-End Mining, in 2008 Eighth IEEE International
Conference on Data Mining, Pisa,2008 Dec,pp.512-21.

[66].Su S, Cheng X, Gao L, Yin J. Co-Cluster D: a distributed
framework for data co-clustering with sequential updates, in
International Conference on Data Mining (ICDM), 2013
IEEE 13th,Dallas TX, 2013, pp.1193-98.

[67]. M. Shankar Lingam, A. M. Sudhakara, "A Brief Account of
Iterative Big Data Clustering Algorithms", International
Journal of Computer Sciences and Engineering, Vol.5,
Issue.10, pp.300-309, 2017.

[68]. Dhillon 1S. Co-clustering documents and words using
bipartite spectral graph partitioning, in Proceedings of the
seventh ACM SIGKDD international conference on
Knowledge discovery and data mining - KDD’01, 2001,pp.
269-74.

[69]. P. Dadheech, D. Goyal, S. Srivastava, "Performance
Improvement of Heterogeneous Hadoop Clusters Using
MapReduce For Big Data", International Journal of
Computer Sciences and Engineering, Vol.5, Issue.8, pp.211-
214, 2017.

[70]. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley
M, Franklin MJ, Shenker S, Stoica I. Resilient distributed
datasets: a fault-tolerant abstraction for in-memory cluster
computing, in Proceeding NSDI’12 Proceedings of the 9th
USENIX conference on Networked Systems Design and
Implementation, 2012,2,pp.1-14.

© 2017, IJCSE All Rights Reserved 301

