

 © 2017, IJCSE All Rights Reserved 292

International Journal of Computer Sciences and Engineering Open Access

Review Paper Volume-5, Issue-10 E-ISSN: 2347-2693

A Brief Account of Iterative Big Data Clustering Algorithms

M. Shankar Lingam
1
,

A. M. Sudhakara

2*

1
University of Mysore, Manasa Gangotri, Mysore, India

2*
Director, CIST, University of Mysore, India

*Corresponding Author: sudhakara.mysore@gmail.com

Available online at: www.ijcseonline.org

Received: 02/Oct/2017, Revised: 10/Sep/2017, Accepted: 20/Oct/2017, Published: 30/Oct/2017

Abstract- Today, maximum of the organizations have to deal with big quantities of records, that is hastily growing. In order to

address these explosively growing amounts of information, one has so that it will extract, examine, and process information

time to time. Clustering has for this reason been identified keeping in view this example and it is considered as an essential

device used to analyze huge statistics. Technological progress, specifically inside the regions of finance and enterprise

informatics, poses a big task for big scale records clustering. To deal with this issue, researchers have provided you with

parallel clustering algorithms that are primarily based on parallel programming fashions. MapReduce is one of the most

typically used frameworks used for this motive and it has received high consciousness thanks to its flexibility, fault tolerance

and programming ease. However, the overall performance has trouble for iterative packages. This paper gives an in depth

evaluation of iterative frameworks which could help MapReduce for overcoming boundaries for iterative algorithms.

Keywords: clustering, framework and Map reduces.

I. INTRODUCTION

In the big data era, huge amounts of data have to be dealt

carefully. In the year 2002, Yahoo! Web graph has reported

that about a billion nodes and 7 billion edges have been

reached.
1

Social networking sites such as Twitter, Facebook

etc., use several terabytes of data. Websites such as

Wikipedia and YouTube produce about few hundreds of

gigabytes per minute
2
. In order to handle such enormous

data, clustering is being used. It allows analyzing and

discovering distribution patterns for large spectrum of data.

Data scientists have studied and proposed various algorithms

in data mining for handling large scale datasets. But these

data mining algorithms are unable to deal with the

exponentially increasing data. Hence, the research

community has shifted its focus from these techniques to

parallel clustering algorithms that would be a better

alternative to traditional cluttering methods operated on a

single system
3
. Thus, parallel processing techniques that can

easily handle and process huge data has become the prime

focus of many. Of the many parallel processing techniques

available, MapReduce is the simplest and popular choice of

many huge companies, example Facebook4. In spite of its

popularity, MapReduce has certain critical issues and

challenges such as bandwidth wastage, I/O and CPU cycles

for iterative algorithms like PageRank
[5,6]

, social network

analysis, clustering and neural network analysis
7
.

II. BIG DATA MANAGEMENT

The term ‘Big Data’ is generally used to refer to large

amount of data that companies and people use. The public

and private data are obtained from sources that are

unorganized and so it is difficult to cluster data. In other

words, it is difficult for most of the corporations to store,

process and analyze big data. Big data has many definitions

and ways of interpretation. However, the widely accepted

definition is characterized by the five Vs, that is, Volume,

Variety, Velocity, Value and Veracity
[8,9]

.

Volume–this dimension is associated with the enormous data

handling capability or ability of a clustering algorithm.

Using parallel algorithms, one can divide big data into

smaller units such that all units are handled simultaneously

by machines at the rate of one machine per one unit. Thus

one can solve the problem of the exponentially growing big

data needs.

Variety – this dimension is associated with the ability of a

clustering algorithm to handle a variety of data.

Velocity–this dimension is associated with the speed of a

clustering algorithm handling big data. Most of the iterative

clustering algorithms have iterative computations and this

would probably utilize more time to process. Use of parallel

algorithms in this process could help increase speed.

Value – this dimension is associated with the process of

determining hidden values in the data and document those

values.

Veracity – this dimension is associated with reliability,

origin and the accuracy of the data.

2.1. MapReduce Overview

mailto:sudhakara.mysore@gmail.com

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 293

Many programmers distribute the data among several

machines to speed up the processing of massive amounts of

data and compute them as the volume of data has been

multiplying. Data processing models such as Samza
10

,

Tez
[11]

, and MapReduce
[12]

divide the data between machines

and enables each processor to work separately with the

similar algorithm on various parts of the data. There are two

main classifications of parallel processing applications,

traditional parallel applications
[13,14]

 and data-intensive

applications
[15,17]

. The assumption of data being fit into the

memory of the distributed machines is predominantly seen

in the traditional parallel applications. Due to the rapid

increase in the data collection size, traditional parallel

computation mechanisms fail to solve the big data issue.

Whereas, data-intensive applications require additional

computational and data resources that are run inside a

conditional loop until terminated. The selection of moving

the data to a computer or computer to a data is totally relied

on the requirements and load. A major advantage in data-

intensive applications is that data locality has significantly

become more important than ever before as it reduces the

network cost.

Among the several parallel processing models that compute

data-intensive applications, like the Open MP, MPI
[18]

,

MapReduce is the most widely used framework as it very

simple (has only two functions, a map and a reduce)

allowing the programmers to monitor data distribution,

replications, load balancing etc., easily
[19]

 . There are two

phases in MapReduce where the data points are processed

over a set of commodity machines in a distributed

environment.

The first phase is the Mapping phase that is defined by the

Map function where the input data is divided into Map

functions, and after computation the intermediate results are

produced in the form of key/value pairs. The second phase is

the Reduce phase which is defined by the Reduce function

taking a single key and processing the given function on its

associated values at a time, collects and is considered as

output of the job. The Reducer task is performed after the

intermediate results are generated and the data is shuffled

into the corresponding Reducer. Majority of the job

execution time is taken to move the intermediate results over

the network. The figure 2 depicts the process involved in

data processing.

Map function:

Data points are read as inputs by the Map task which then

produces the intermediate key/value pairs that primarily

consists of a key, a group number of values, and a value,

associated with the key. A Map task then enables a process

to generate new key/value that are sorted by their keys

locally.

Combiner function:

This is an optional function that when applied to the

intermediate results that are considered to have significant

repetition in their respective Map task, will perform a partial

reduction and passes on the intermediate key/value pairs to

the reducer.

Partition function:

It is mainly used for partitioning the intermediate keys that

are hashed to determine which reduce partition will process

the keys. To provide good balancing, Hadoop uses has

partitioner by default.

Reduce function:

The output of Map tasks is considered collectively as the

input for the reduce phase. With a user defined reduce

function that is primarily called by each reducer for each key

only once, the reduce task for each key is applied and its

corresponding values are then processed. The processing of

inputs to each reducer is done in the increasing key order.

Figure 1: Architecture of MapReduce

2.2. Hadoop Overview

Analyzing and querying massive amounts of data is difficult

through traditional mechanisms. Data scientist can use

Hadoop [5], an open source software, to distribute huge

scale data sets into several blocks and take advantage of the

distributed environment. Rather than scaling up, that implies

to add more resources such as RAM or CPU which is

expensive, Hadoop is designed to scale out by addition of

more machines in a cluster in distributed network with

commodity hardware. Rather than a primary storage

mechanism, the Hadoop Distributed File System (HDFS) is

designed as a workflow. Basically, the data is dumped into

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 294

the HDFS once and can be accessed any number of times,

bringing the code to data, that are split into blocks of

typically 64MB and can be accessed by any machine of that

cluster for parallel processing. Failures can be handled by

Hadoop by data replication where data is stored and

replicated over machines making sure that at least one

replica is stored in a different rack to ensure further data

availability and reliability. A set of commodity hardware

connected to one network in one location form the Hadoop

cluster. For parallel processing purposes, Hadoop consist of

HDFS and MapReduce engine whereas the cluster consists

of several daemons/servers.

A Name-node stores the meta data that is mapped from file

to block and location of block. A Data-node in HDFS stores

data, provides the exact physical location of data and

connects to Name-node. There is a Secondary Name-node

that is used to monitor the state of the cluster in case the

Name-node fails. An integration between HDFS and

MapReduce will occur where the performance is through the

master and slave nodes. Figure 3 explains the master node

(consisting of the Task Tracker and Job Tracker) from the

MapReduce layer and slave nodes that only have the Task

Tracker. Scheduling of all MapReduce jobs is done by the

Job Tracker which then assigns these tasks to the Task

Trackers that are used for execution in each slave node.

Figure 2: Hadoop Distributed File System and MapReduce

Layer in Hadoop

Depending upon the availability of resources, Job Tracker

assigns several tasks to Task Tracker. As and when the Task

Tracker completes the tasks new tasks are assigned by the

Job Tracker. Task Tracker sends a heartbeat signal

periodically to the Job Tracker in case of machine failure.

The master node will check for the heartbeat signal from

Task Tracker and if it doesn’t receive any such signal for

some time from a machine then it will consider it to be a

failed machine. Rather than fixing the failed machine,

Hadoop assigns the failed task to another machine in the

cluster as a backup. Since the probability of failure of one

particular machine is very low, the failure of Job Tracker

itself is not considered very seriously as it cannot be solved

automatically [7].

2.3. Hadoop/MapReduce Limitations for Iterative

Applications

There has been a lot of research carried out in terms of

performance limitations on MapReduce
[19,20]

. The generic

weaknesses and limitations discussed in
7
 of MapReduce is

shown in figure 4. The focus is mainly on iterative programs

and the limitations related to MapReduce for the programs

discussed previously have been identified and are discussed

below:

Lack of loop aware task scheduling:

Multi-staging of tasks in a single run is not supported in

MapReduce. Therefore, operations that are repeated during

iterations like task initialization and cleanup (reload and

dump data) usually start new MapReduce jobs. So, when

dealing with large scale data sets scheduling overhead is

included.

Lack of handling static data:

There are primarily two kinds of data involved in a

MapReduce process, static data and state data. Static data is

unchanged during iterations and hence, a key problem in

MapReduce. In some of the iterative algorithms like the k-

means, by design, the Reducer needs the static data for

performing operations such as averaging etc., after state data

is generated. Therefore, there needs to be reloading and

shuffling of the static data during iterations that is practically

difficult when large data sets are involved and resulting in

overhead of communication.

Lack of Asynchronous execution:

Before completing a reduce task in the previous iteration a

new map task cannot be allowed in standard MapReduce

making each iteration wait for the previous iteration to

complete resulting in synchronization overhead.

Lack of built-in termination condition:

An additional MapReduce job is needed at each iteration for

termination as there is no provision of a built-in feature for

termination leading to overhead because of scheduling extra

costs.

Figure 3: Limitations of MapReduce

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 295

III. REVIEW OF THE AVAILABLE WORKS

A review of the frameworks that enhanced the performance

of MapReduce based on iterative processing techniques is

presented in this section first. This is followed by a review

of parallel clustering algorithms on MapReduce.

3.1. Review of iterative MapReduce Frameworks

Consider the following summarized figure of the current

popular iterative frameworks. The following sub sections

these significant factors are discussed.

Figure 4: Iterative MapReduce Frameworks

3.1.1. Execution Model

Iterative MapReduce programs make use of a chain of

map/reduce process and hence is slow. It splits the task into

multiple tasks and these are not processed in a single run and

hence this slows down the entire processing. For this

purpose, many iterative frameworks have been proposed.

HaLoop framework is similar to MapReduce and the tasks

are assigned to slave nodes using a parallel master node with

TaskTracker daemon. This communicates with the master

node. Each task can either Map or Reduce tasks. There are

major changes in the HaLoop framework. Primarily, there is

a new feature in the master node called the loop control. It

initializes new map-reduce tasks recurrently until the end

terminate condition is encountered. It eliminates the extra

MapReduce jobs used to check stop condition and hence the

overall communication overhead. The next change is that the

algorithm has a new task scheduler specifically for iterative

applications that supports data locality to co-locate the tasks

for same operations. It enables reuse of data within the

iterative process. Thirdly, the performance is improved by

caching the intermediate results obtained to the disk. The

issue, however, is that it uses synchronous execution like

MapReduce. Hence there would be delay as the reducer has

to wait till the map tasks are finished.

There is yet another framework that is similar to the

execution model in MapReduce called Twister. For the

purpose of communication, it utilizes publish/subscribe

messaging mechanism. However, the architecture of Twister

is different to MapReduce architecture. The input data in

Twister doesn’t have a distributed system. It is stored in a

local disk as native files. The issue relating to this is that the

collective memory of worker nodes has to accommodate this

static data and this would require them to handle huge

amounts of data sets. The performance of Twister is

enhanced because it stored the intermediate results. Also, a

driver is used for computation and a broker network is

established. The main driver program sends the input data to

the Mapper and Reducer. The results are collected and sent

to the main program
21

.

Another model, Pregel
22

 is an in-memory system which

utilizes the bulk synchronous parallel model for the purpose

of computations
 23

. The challenges in this model is that

issues because of synchronous scheduling. MapReduce

online
24

 also has synchronous execution method. The

intermediate results are pipelined between tasks and thus the

data is transferred between Reduce and Map tasks and hence

a connection is created between them and the output from

Reduce task is sent directly to Map tasks. Since the

framework doesn’t support overlapping of tasks, the Map

tasks are left pending until the Reduce tasks are finished.

There have been many frameworks that have been proposed

for asynchronous execution but this cannot be used in

MapReduce. One such is Spark
25

 which is an in-memory

framework and the computation model is different. It is

similar to DryadLINQ
26

 and FlumeJava
27

 as every data set is

considered as objects which can be converted using

transformations such as Map and Filter to Resilient

Distributed Dataset (RDD). There are options called as

actions and these collect and return the results to the driver.

Spark utilizes an advanced directed acyclic graph that can

reduce the number of excess stages in MapReduce jobs
28

 and

thus faster execution of jobs. Spark has the capacity to run

many complex tasks in a single run in multi stages and

splitting of jobs into multiple ones is not done.

According to
29

, Continuous bulk processing (CBP) can

maintain the iteration state in memory.it has a cyclic data

flow structure which speeds up iterative tasks unlike in

MapReduce. The data abstraction in CBP can be used to

control iterative dataflow. PrIteris another typical framework

that makes use of priority execution and every data point is

assigned a priority value. The subset of data that has the

highest priority is chosen and executed in the iteration [30].

In iMap Reduce algorithm, the authors proposed a persistent

socket connection that connects a Mapper to its

corresponding Reducer. Thus asynchronous method of

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 296

execution is used for data that is static and state data when

the state results arrive
31

.

3.1.2. Iterative Processing Technique

In the case of iterative processing techniques, HaLoop has a

better performance when compared to the standard

MapReduce method as it uses the technique of co-locating

tasks for a particular data point over various iterations. The

same machine deals with Map and Reduce tasks using the

same data with the concept of ‘inter-iteration locality’. This

approach helps in creating a cache for data and reuse of that

data during the iterations, thus reducing the I/O costs

involved. The technique used in Twister is the ‘long-running

map/reduce tasks’ technique which doesn’t change the state

data and reloading data for different iterations is not needed.

This method improves performance overhead for iterative

applications. iMapReduce makes use of persistent

mechanism for iterations and the Map or Reduce tasks are

kept active during the iteration process. This framework

could reduce the necessity of creating new repeated

MapReduce jobs for the same tasks. Also, the socket

connection in this framework doesn’t require a new

MapReduce job to combine static and state data. Similar to

iMapReduce technique, PrIter also provides a constant

connection between Map and Reduce tasks. The data is

divided into initial static and state and this is preloaded

before the map tasks begin in the iterative processing. The

static data is not altered and the state data is updated and

merged with the static data for iterations. When the iterative

end condition is met, the computation is terminated
7
.

In MapReduce online, a pipeline architecture is used to deal

with the iterative process which links Map and Reduce tasks.

Map tasks are paused until the previous iteration Reduce

tasks are completed. However, the introduction of online

aggregation
31

 can deal with the issues in computation amid

the MapReduce jobs.

Spark uses data abstraction to cache static and state data in

the device memory for reuse. Each data set is represented as

an object and the users have the option to choose the data set

that has to be cached for further iterations. CBP also uses

data abstraction method for iterative processing. Persistent

states are maintained for the reuse of previous jobs for

incremental processing and group wise processing and thus

the data movement within the system is reduced
7
.

3.1.3. Load balancing and fault tolerance.

Fault tolerance in HaLoop is similar to that of Hadoop. It

makes use of intra-iteration technique and then the cache is

reconstructed and sent to the assigned worker with failed

partition. In Twister, the mechanism for fault tolerance is

similar to that of the implementations in Google and Hadoop

wherein the application state is saved through the iterations.

If there is a failure encountered, the complete iteration can

be rolled back. iMapReduce has the fault tolerance similar to

the standard MapReduce. But the results from the previous

iterations are retained by storing the state data in a

distributed file system. In case of a failure, the last iteration

would be recomputed using the stored state data. The tasks

in iMapReduce are persistent and they are in contrast to the

task scheduling mechanism used inMapReduce and hence it

cannot utilize the mechanism used for balancing load in

MapReduce. Comparison of the completion time of the

received notification of tasks completed after every iteration

is done by the master node and this is used to differentiate

the leaders and stragglers. In the MapReduce online, a

bookkeeping mechanism has been added to the current

Hadoop implementation. Also, the map task output is kept

tentative till the reducer receives a notification about the

successful execution of the tasks from Job Tracker. A new

copy of the tasks is started when a failure is encountered.

The output of the reduce tasks can be reproduced in case of

failure using the stored map task outputs.

For load balancing, PrIter makes use of ‘MRPair migration’

mechanism. In this the average processing time that is

received from map/reduce pair threshold is compared by the

master node and if the processing time is less than the

threshold, the assigned worker is considered slow and the

pairs are assigned to a faster worker. The State Table and

graph partition are loaded from the DFS. Thus PrIter is

resistant from failuresin task completion. If there is a worker

failure, a healthy worker is assigned the failure task and the

other MRPairs roll back to the same fix point and the last

failed task is re-computed. Spark relies on RDDs for fault

tolerance. When failure occurs, roll back of the entire

program is not required. The lost partitions or the RDDs are

reloaded for fault recovery. Fault tolerance in Pregelis done

with the help of check points which is set using ping

message. When the master node doesn’t receive a ping

message from the workers, then that worker is considered as

a failure and the graph partition is assigned to healthy

workers. These healthy workers use the last check point to

reproduce partition state. But for failure recovery, all the

vertices in the iteration have to be re-executed [7].

3.1.4. File system.

HDFS is supported in Haloop, PrIter, MapReduce online,

Spark, and CBP; whereas Pregel supports Google File

System (GFS). Twister does not have this feature and large

data sets have to be split by the user only.

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 297

3.2. Review of Parallel Clustering Algorithms Based on

MapReduce

Similar to the iterative algorithms discussed in the previous

section, this section deals with the categorized summary and

review of various parallel clustering algorithms that are

based on MapReduce. The categories are - centroid-based

clustering; density-based clustering; connectivity-based

clustering; high-dimensional clustering; similarity-based

clustering and co-clustering. This is summarized in the

following figure.

Figure 5: Parallel Clustering Algorithms

IV. ANALYSIS

A detailed analysis of parallel clustering algorithms has been

provided that is based on several vital parameters. One

should be aware of the fact that comparing these algorithms

is not an easy task given the wide variety of mechanisms

used. Main objective is to find the aspects of what has been

used in the algorithm that helps identify the disadvantages of

several existing parallel algorithms and those which can be

used for future research.

4.1. Algorithm class

As explained in
44

, the current clustering algorithms will be

classified based on the total number of MR jobs needed to

perform the necessary MapReduce model. This classification

helps in selecting the suitable framework for executing the

algorithms. For illustration purposes, ParC is the only

algorithm that can be classified into the first class among all

the compared algorithms. This class is known as

embarrassing algorithms as the entire algorithm can be

performed in a single MR round. Second class algorithms

like SnI and CLARA perform MapReduce model in a

constant number of MR rounds. As there are very few MR

jobs needed to implement the first and second class

algorithms the cost of running them is negligible. The other

compared algorithms need synchronization steps between

iterations like checking the termination conditions and

hence, classified into third class. The work carried out in
33

belongs to the third class as it requires multiple iterations

until the termination condition is met which is not suitable

for any MapReduce style. Using the Twister approach to

support ‘PAM like’ in the work done in [44], reduces the

whole of an algorithm providing a long running strategy to

keep tasks alive until termination is met in a single MR

round.

4.2. Data shuffling

By reducing the shuffling of data over iterations can achieve

improvement in performance. Techniques like directly

passing the data to Mapper from Reducer or joining the state

data with static data will result in improved performance

whilst removing extra MR jobs also there would not be any

necessity to write the output to the DFS. Data shuffling cost

in the work done in
44

 that uses CLARA is medium as only

two MR jobs are need to be executed. The k-means based in

MapReduce in
39

 will generate and send intermediate results

to the Reducer and the static data is gathered for averaging

the operations. Due to this operation, the static data will be

shuffled between the Mapper and Reducer at each iteration

increasing the network communication cost. In
66

,

iMapReduce is used which will let the reduce tasks

broadcast to all Map tasks the updated state data that will

minimize the communication cost. The shuffling in case of

Single-linkage Hierarchical Clustering (SHC) algorithm is

dramatically reduced as the Prim-MR job is performed that

cuts the edges in an early stage. Though the MSTs are

shuffled at the Reducers once stored on DFS at Map side.

Processing of Kruskal Reducer needs to wait for input

shuffling. To minimize the number of iterations along with

reducing the shuffling cost, the work in
52

 has used batch

updating.

Grid file has been used in the case of DBSCAN by
67

 that

performs in a single MR round minimizing the shuffling cost

at the partitioning stage. The main reason why this happens

is the data from within the space Si and its halo replication

from bordering spaces are shuffled to the target Reducer

easily. Spatial indices such as breath-first-search are used in

the next stage of running local DBSCAN that is considered

an iterative algorithm increasing the shuffling cost for the

computations of the neighbors in almost each node, which is

very expensive considering big data. Structural similarity for

each edge of the graph cutting off the edges within the

threshold is used to reduce the cost of shuffling in
50

.

To exert their advantages on big data and also aiming to

reduce the data shuffling, algorithms for subspace clustering

such SnI and ParC are used. Because of the sampling

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 298

method in the first phase and filtering in the second phase,

SnI provides better performance. The work in
57

 is termed as

an exact algorithm as it does not use sampling approach. It

also increases the shuffling cost as there are extra MR jobs

to handle. The approach in
68

 where the synchronization of

the only updated cluster assignments and cluster information

happens to reduce shuffling cost along with avoiding the

shuffling of row and columns between iterations.

iMapReduce in
66

 implements co-clustering that supports the

iterative processes of co-clustering algorithms by joining the

state and static data.

4.3. Mechanism, problem, and the required modification

Simple MR jobs have been applied to achieve a parallel

clustering algorithm in the works of
[33-35,44,39,40]

. Good results

in terms of clustering time have been produced by using

these approaches. Re-reading the input data at each iteration

and capturing of large data sets due to job lag have been

shown in these results. If following modifications are done,

then these approaches would work better:

a. To help keep the static data in memory, caching of

Mapper input can be done, so reloading will not

happen at each iteration

b. To check the termination condition, caching of

Reducer input can be done, along with terminating

extra MapReduce jobs

c. A joining mechanism can be used to build a

connection between the Reduce task and the Map

Task enabling algorithms such as k-means to use

the static for averaging operations as Reducer needs

it

Some studies that use iterative graph algorithms such as

breath-first-search
[69,50]

 are not correct for MapReduce style.

This will cause the entire graph structure to reload and

shuffle from Mapper to the Reducer at each iteration which

needs to remain unchanged during iterations. There are

alternatives for iterative graph algorithms such as the Bulk

synchronous parallel model
29

, that will let graph algorithms

to run on large vertices and edges.

Kruskal’s algorithm in
53

 is used to reduce the single-linkage

problem in many of the hierarchical clustering algorithms.

Re-reading the MSTs would be considered the main issue in

this approach as the cost of doing this operation for large

data sets is huge. To avoid materialization of the MSTs on

DFS, an alternative approach can be used known as the lazy

operations. In addition to that, to help the KruskalReducer to

process without holding on for input shuffling, a location

aware schedule can be proposed.

Hybrid mechanism is proposed in the approach described in
63

 that uses MapReduce and MPI. Iterative part of the

spectral algorithm can be now handled by the MPI, that

seems to work better than MapReduce in terms of iterative

applications. Based on Twister, the work in
[42,44]

implemented iterative algorithms like k-means, PAM and

IB. Overhead within the iterations is now reduced as

expected by the proposed long-running mechanism.

Implementation of iterative MapReduce (HaLoop) in the

work of
5
 takes advantage of caching mechanisms.

Surprisingly, the main purpose of the proposed approach is

to cache the Mapper input and Reducer output in order to

reduce MR rounds but,
5
 claims that HaLoop works better

when compared to Twister in terms of fault tolerance due to

the long-running MapReduce tasks. All these works lack the

ability for executing asynchronously making the Map tasks

not to start executing as they need to wait for other Map

tasks to complete. To support asynchronous execution,

iMapReduce and Spark have been used in
[70,66]

, that

minimize the clustering time for k-means and co-clustering

algorithms.

V. CONCLUSIONS AND OUTLOOK

When dealing with large scale data sets, efficient parallel

clustering algorithms and frameworks ensure scalability and

good performance are achieved. A new data processing

approach is introduced by MapReduce in this era of big data.

Because of its ease of programming, flexibility and fault

tolerance, MapReduce has garnered considerable attention in

the world of big data. One has note that there are still certain

limitations when pertaining to MapReduce like dealing with

iterative applications. An analysis has been made in this

study on several other parallel clustering algorithms that

have attracted significant attention in the big data era. Most

of these algorithms can perform better than various

traditional sequential algorithms on scale up and speed up

metrics. It is evident from the detailed discussion of several

parallel algorithms that the field of parallel big data

clustering is very young and is open for further research. The

rate of improvement in parallel processing models and the

amount of data growth is indirectly proportional as the

volumes of data is increasing but the improvement in the

parallel processing models is still very slow. An observation

has been made that MapReduce has limitations in the case of

iterative applications. Also, consideration of several state-of-

the-art techniques like the Spark, Twister, HaLoop and

MapReduce that are vital big data parallel processing models

too cannot figure out the issues with iterative algorithms. In

summary, the principle findings of this study are:

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 299

a. A combination of all the merits of the existing

parallel processing models is needed to design a

new parallel processing model from scratch that is

more fault tolerant whilst supporting iterative

algorithms

b. Because MapReduce/Hadoop implementation does

not fully support iterative techniques, it is not the

end of MapReduce. One should understand the

maturity of MapReduce over iterative algorithms

and also many vendors support it. Therefore, a

good alternative to handle iterative big data

algorithms could be a hybrid system

c. Improvement of the clustering time of large data

sets can be achieved by parallel data processing but

it also degrades the performance and quality.

Hence, the main worry is to achieve a reasonable

trade-off between quality and speed in the case of

big data

d. A study on the unavailability of clustering

algorithms that can be processed in parallel has

been carried out. Major challenge is to figure out a

method that will eliminate the inherent dependence

of algorithms

e. Many studies have implemented MapReduce

directing the research to be applied more towards

the parallel clustering algorithms using other

iterative frameworks such as Pregel, CBP and

PrIter.

REFERENCES

[1]. Kang U, Tong H, Sun J, Lin C-Y, Faloutsos C. GBASE, in

Proceedings of the 17th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining –

KDD’11, San Diego,CA,USA,2011 Aug, pp. 1091.

[2]. “YouTube statistic.” [Online].

Available:http://www.youtube.com/yt/press/statistics.html.

[last accessed June 22, 2014],Dare Accessed:22/6/2014.

[3]. Kim W. Parallel clustering algorithms: survey, CSC 8530

parallel algorithms, 2009, pp.1-32.

[4]. Aiyer A, Bautin M, Chen GJ, Damania P, Khemani P,

Muthukkaruppan K, Vaidya M. Storage infrastructure behind

facebook messages using HBase at scale. IEEE Data

Engineering 2012, 35(2), pp.4–13.

[5]. Bu Y, Howe B, Balazinska M, Ernst MD. HaLoop: efficient

iterative data processing on large clusters, in

36
th
International Conference on Very Large Data Bases,

2010 Sep, 3(1-2),pp.285-96.

[6]. Page L, Sergey Brin RM, Winograd T. The PageRank

citation ranking: bringing order to the web, 1998 Jan, pp.1-

17..

[7]. Mohebi A, Aghabozorgi S, Ying Wah T, Herawan T,

Yahyapour R. Iterative big data clustering algorithms: a

review, Software Practicle Experience, 2016,46,pp. 107–29.

[8]. Zikopoulos P, Parasuraman K, Deutsch T, Giles DC.

Harness the Power of Big Data the IBM Big Data Platform

[Kindle Edition], 1st edn. McGraw-Hill Osborne Media:

New York, 2012 Sep.

[9]. Assunção MD, Calheiros RN, Bianchi S, Netto MAS, Buyya

R. Big Data computing and clouds: Trends and future

directions, Journal of Parallel and Distributed Computing

2014,75(13),pp.156–75.

[10]. Riccomini C. Samza: Real-time stream processing at

LinkedIn, 2013. Retrieved July 5, 2014, from http://www.

infoq.com/presentations/samza-linkedin, Date ACCESSED:

5/7/2014.

[11]. Murthy A. Tez: accelerating processing of data stored in

HDFS, 2013. [Online]. Available:

http://hortonworks.com/blog/introducing-tez-faster-hadoop-

processing/,Date Accessed: 20/2/2013.

[12]. Dean J, Ghemawat S. MapReduce: simplified data

processing on large clusters, Communications of the ACM

2008, 51(1),pp.1–13.

[13]. Dhillon IS, Modha DS. A data-clustering algorithm on

distributed memory multiprocessors, in Proceeding Revised

Papers from Large-Scale Parallel Data Mining, Workshop on

Large-Scale Parallel KDD Systems, SIGKDD, 1999,pp.245–

60.

[14]. Forman G, Zhang B. Distributed data clustering can be

efficient and exact, ACM SIGKDD Explorations Newsletter

2000, 2(2),pp.34–38.

[15]. Kang U, Papalexakis E, Harpale A, Faloutsos C.

GigaTensor, in Proceedings of the 18th ACM SIGKDD

International Conference on Knowledge Discovery and Data

Mining – KDD’12, 2012,pp.1-316.

[16]. Kang U, Tsourakakis CE, Faloutsos C. PEGASUS: mining

peta-scale graphs, Knowledge and Information Systems

2010,27(2),pp.303–25.

[17]. White T. Hadoop—The Definitive Guide: Storage and

Analysis at Internet Scale, 3rd edn. O’Reilly R (ed.). Ireland,

2012 Jan, pp.1-647.

[18]. Snir M, Otto S, Huss-Lederman S, Walker D, Dongarra J.

MPI–the Complete Reference, Second edn, the MPI Core,

MIT Press: Cambridge, MA, USA, 1998 Sep,pp.1-350.

[19]. Stonebraker M, Abadi D, DeWitt DJ, Madden S, Paulson E,

Pavlo A, Rasin A. MapReduce and parallel

DBMSs,Communications of the ACM 2010, 53(1),pp.1-64.

[20]. Pavlo A, Paulson E, Rasin A, Abadi DJ, DeWitt DJ, Madden

S, Stonebraker M. A comparison of approaches to largescale

data analysis, In Proceedings of

theACMSIGMODInternational Conference on Management

of Data (SIGMOD), 2009, pp.165–78.

[21]. Ekanayake J, Li H, Zhang B, Gunarathne T, Bae S-H, Qiu J,

Fox G. Twister, in Proceedings of the 19th ACM

International Symposium on High Performance Distributed

Computing - HPDC’10,Chicago, 2010 Jun, pp. 810-18.

[22]. Malewicz G, Austern MH, Bik AJ, Dehnert JC, Horn I,

Leiser N, Czajkowski G. Pregel, in Proceedings of the 2010

international conference on Management of data -

SIGMOD’10, 2010,pp.1- 135.

[23]. Valiant LG. A bridging model for parallel computation.

Communications of the ACM 1990, 33(8),pp.103–11.

[24]. Condie T, Conway N, Alvaro P, Hellerstein JM, Elmeleegy

K, Sears R. MapReduce online, in NSDI’10 Proceedings of

the 7th USENIX conference on Networked systems design

and implementation Berkley,,2010,21,pp.1-15.

[25]. Zaharia M, Chowdhury M, Franklin MJ, Shenker S, Stoica I.

Spark: cluster computing with working sets, in HotCloud’10

Proceedings of the 2nd USENIX conference on Hot topics in

cloud computing, 2010, pp.1-10.

[26]. Yu Y, Isard M, Fetterly D, Budiu M, Erlingsson Ú, Gunda

PK, Currey J. DryadLINQ: a system for general-purpose

http://www/
http://hortonworks.com/blog/introducing-tez-faster-hadoop-processing/,Date
http://hortonworks.com/blog/introducing-tez-faster-hadoop-processing/,Date

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 300

distributed data-parallel computing using a high-level

language, in OSDI’08 Proceedings of the 8th USENIX

conference on Operating systems design and

implementation, Berkeley,USA,CA,2008, pp. 1–14.

[27]. Chambers C, Raniwala A, Perry F, Adams S, Henry RR,

Bradshaw R, Weizenbaum N. FlumeJava, ACM SIGPLAN

Notices 2010, 45(6),pp.1-363.

[28]. Thulasiraman K, Swamy MNS. Graphs: Theory and

Algorithms. John Wiley & Sons, Inc.: New York, 1992.

[29]. Logothetis D, Olston C, Reed B, Webb KC, Yocum K.

Stateful bulk processing for incremental analytics, in

Proceedings of the 1st ACM symposium on Cloud

computing - SoCC’10, 2010 Jun, pp.1-12 ..

[30]. Zhang Y, Gao Q, Gao L, Wang C. PrIter: a distributed

framework for prioritizing iterative computations. IEEE

Transactions on Parallel and Distributed Systems 2013,

24(9),pp.1884–93.

[31]. Hellerstein JM, Haas PJ, Wang HJ. Online aggregation,

Proceedings of the 1997 ACM SIGMOD International

Conference on Management of Data – SIGMOD’97, 1997,

26(2),pp.171–82.

[32]. Wu X, Kumar V, Ross Quinlan J, Ghosh J, Yang Q, Motoda

H, McLachlan GJ, Ng A, Liu B, Yu PS, Zhou Z-H,

Steinbach M, Hand DJ, Steinberg D, Top 10 algorithms in

data mining, Knowledge and Information Systems 2007,

14(1),pp.1–37.

[33]. Zhao W, He Q, Ma H. Parallel K-Means Clustering Based

on, 2009, pp.674–79.

[34]. Zhou P, Ye W, Lei J. Large-scale data sets clustering based

on MapReduce and Hadoop, The Journal of

ComputerInformation Systems 2011, 16(7),pp.5956–63.

[35]. Nguyen CD, Nguyen DT, Pham V. LNCS 7975 - Parallel

two-phase K-means, 2013,7975, pp.224–31.

[36]. Pham DT, Dimov SS, Nguyen CD. An incremental K-means

algorithm, in Proceedings of the Institution of Mechanical

Engineers, Part C: Journal of Mechanical Engineering

Science, 2004, pp.783–95.

[37]. Bahmani B, Moseley B, Vattani A, Kumar R, Vassilvitskii S.

Scalable k-means++. Proceedings of the VLDB Endowment

2012, 5(7),pp.622–33.

[38]. Arthur D, Vassilvitskii S. k-means++: the advantages of

careful seeding, in SODA’07 Proceedings of the eighteenth

annual ACM-SIAM symposium on Discrete algorithms,

2007,pp. 1027–35.

[39]. Li C, Zhang Y, Jiao M, Yu G. Mux-Kmeans : Multiplex

Kmeans for clustering large-scale data set categories and

subject descriptors, in Proceedings of the 5th ACM

workshop on Scientific cloud computing - ScienceCloud’14,

2014, pp. 25–32.

[40]. Aljarah I, Ludwig SA. Parallel particle swarm optimization

clustering algorithm based on MapReduce methodology, in

2012 Fourth World Congress on Nature and Biologically

Inspired Computing (NaBIC), Mexico City,2012 Nov,pp.

104–11.

[41]. Kennedy J, Eberhart R. Particle swarm optimization.

Proceedings of ICNN’95 - International Conference on

Neural Networks, 1995,4,pp.1942–48.

[42]. Sun Z, Fox G, Gu W, Li Z. A parallel clustering method

combined information bottleneck theory and centroid-based

clustering, Journal of Supercomputing 2014, 69(1),pp.452–

67.

[43]. Tishby N, Pereira FC, Bialek W. The information bottleneck

method, Apr. 2000,pp.1-16.

[44]. Satish Narayana Srirama PJ, Vainikko E. Adapting scientific

computing problems to clouds using MapReduce, Future

Generation Computer Systems 2012, 8(1),pp.184–92.

[45]. Kaufman L, Rousseeuw P. Finding groups in data: an

introduction to cluster analysis, in Wiley Interscience, 1990,

pp.1-5.

[46]. Martin Ester XX, Kriegel H-P, Jörg S. A density-based

algorithm for discovering clusters in large spatial databases

with noise, in 2nd International Conference on Knowledge

Discovery and Data Mining, Portland, 1996,pp. 226–31.

[47]. Li L, Xi Y. Research on clustering algorithm and its

parallelization strategy, International Conference on

Computational and Information Sciences Chengudu,China,

2011, pp.325–28.

[48]. Kim Y, Shim K, Kim M-S, Sup Lee J. DBCURE-MR: an

efficient density-based clustering algorithm for large data

using MapReduce.,Information Systems 2014, 42,pp.15–35.

[49]. Ankerst M, Breunig MM, Kriegel H-P, Sander Journal of

OPTICS, ACM SIGMOD Record, 1999, 28(2),pp.49–60.

[50]. Zhao W, Martha V, Xu X. PSCAN: A Parallel Structural

Clustering Algorithm for Big Networks in MapReduce, in

2013 IEEE 27th International Conference on Advanced

Information Networking and Applications (AINA),

Barcelona,2013, pp.862–69.

[51]. NandiniRaghavan U, Albert R, Kumara S. Near linear time

algorithm to detect community structures in large-scale

networks, Physical Review 2007 Sep, 76(3),pp.1.

[52]. Sun T, Shu C, Li F, Yu H, Ma L, Fang Y. An efficient

hierarchical clustering method for large datasets with

MapReduce, in 2009 International Conference on Parallel

and Distributed Computing, Applications and

Technologies,Higashi Hiroshima, 2009 Dec,pp. 494–99.

[53]. Jin WLC, Patwary MMA, Agrawal A, Hendrix W. DiSC: A

distributed single-linkage hierarchical clustering algorithm

using MapReduce, in Proceedings of the 4
th

International SC

Workshop on Data Intensive Computing in the Clouds,

2013,pp.1-10.

[54]. Cormen TH, Leiserson CE, Rivest RL, Stein C. Introduction

to Algorithms, 2nd edn, McGraw-Hill Higher Education:

New York, USA, 2001,pp.1-640.

[55]. Parsons L, Haque E, Liu H. Subspace clustering for high

dimensional data, ACM SIGKDD Explorations Newsletter

2004, 6(1),pp. 90–105.

[56]. R. Murugesh, I. Meenatchi, "A Study Using PI on: Sorting

Structured Big Data In Distributed Environment Using

Apache Hadoop MapReduce", International Journal of

Computer Sciences and Engineering, Vol.2, Issue.8, pp.35-

38, 2014.

[57]. Fries ST, Wels S. Projected clustering for huge data sets in

MapReduce | Chair of Computer Science 9, in International

Conference on Extending Database Technology (EDBT

2014), Athens, Greece, 2014,pp. 49–60.

[58]. Moise G, Sander J, Ester M. P3C: a robust projected

clustering algorithm, in Sixth International Conference on

Data Mining (ICDM’06), Hong Kong,2006 Dec, pp.414–25.

[59]. Hyndman RJ. The problem with Sturges’ rule for

constructing histograms, no. 1995 Jul,pp. 1–2.

[60]. Elgohary A, Farahat AK, Kamel MS, Karray F. Embed and

conquer: scalable embeddings for kernel k-means on

MapReduce, in Appears in Proceedings of the SIAM

International Conference on Data Mining (SDM), 2014,

2013,pp. 1–18.

[61]. Über die praktische Auflösung von

linearen. “Integralgleichungen mit Anwendungen auf

Randwertaufgaben”, Acta Mathematica, 1930,

54(1),pp.185–204.

[62]. Rahul R. Ghuleand Sachin N. Deshmukh, "Comparative

Study on Speculative Execution Strategy to Improve

MapReduce Performance", International Journal of

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 301

Computer Sciences and Engineering, Vol.3, Issue.3, pp.197-

200, 2015.

[63]. Chen W-Y, Sunnyvale Y, Song H, Bai C-JL, Chang EY.

Parallel spectral clustering in distributed systems, IEEE

Transactions on Pattern Analysis and Machine Intelligence

2011, 33(3),pp.568–86.

[64]. Maschho K, Sorensen D. A portable implementation of

ARPACK for distributed memory parallel architectures, In

Proceeding of Copper Mountain Conference on Iterative

Methods, 1996,pp.1-8.

[65]. Papadimitriou S, Sun J. DisCo: distributed co-clustering

with Map-Reduce: A Case Study Towards Petabyte-Scale

End-to-End Mining, in 2008 Eighth IEEE International

Conference on Data Mining, Pisa,2008 Dec,pp.512–21.

[66]. Su S, Cheng X, Gao L, Yin J. Co-Cluster D: a distributed

framework for data co-clustering with sequential updates, in

International Conference on Data Mining (ICDM), 2013

IEEE 13th,Dallas TX, 2013, pp.1193–98.

[67]. M. Shankar Lingam, A. M. Sudhakara, "A Brief Account of

Iterative Big Data Clustering Algorithms", International

Journal of Computer Sciences and Engineering, Vol.5,

Issue.10, pp.300-309, 2017.

[68]. Dhillon IS. Co-clustering documents and words using

bipartite spectral graph partitioning, in Proceedings of the

seventh ACM SIGKDD international conference on

Knowledge discovery and data mining - KDD’01, 2001,pp.

269–74.

[69]. P. Dadheech, D. Goyal, S. Srivastava, "Performance

Improvement of Heterogeneous Hadoop Clusters Using

MapReduce For Big Data", International Journal of

Computer Sciences and Engineering, Vol.5, Issue.8, pp.211-

214, 2017.

[70]. Zaharia M, Chowdhury M, Das T, Dave A, Ma J, McCauley

M, Franklin MJ, Shenker S, Stoica I. Resilient distributed

datasets: a fault-tolerant abstraction for in-memory cluster

computing, in Proceeding NSDI’12 Proceedings of the 9th

USENIX conference on Networked Systems Design and

Implementation, 2012,2,pp.1-14.

