€
AX]CSE International Journal of Computer Sciences and Engineering [pen Access

Review Paper Volume-5, Issue-10 E-ISSN: 2347-2693

An Extensive Investigate the MapReduce Technology
Yusuf Perwej *, Md. Husamuddin®, Fokrul Alom Mazarbhuiya®

YDepartment of Information Technology, Al Baha University, Al Baha, Kingdom of Saudi Arabia(KSA)
Department of Information Technology, Al Baha University, Al Baha, Kingdom of Saudi Arabia(KSA)
*Department of Information Technology, Al Baha University, Al Baha, Kingdom of Saudi Arabia(KSA)

*Corresponding Author: yusufperwej@gmail.com

Available online at: www.ijcseonline.org

Received: 17/Sep/2017, Revised: 30/Sep/2017, Accepted: 13/0ct/2017, Published: 30/Oct/2017
Abstract - Since, the last three or four years, the field of “big data” has appeared as the new frontier in the wide spectrum of IT-
enabled innovations and favorable time allowed by the information revolution. Today, there is a raise necessity to analyses
very huge datasets, that have been coined big data, and in need of uniqueness storage and processing infrastructures.
MapReduce is a programming model the goal of processing big data in a parallel and distributed manner. In MapReduce, the
client describes a map function that processes a key/value pair to procreate a set of intermediate value pairs & key, and a
reduce function that merges all intermediate values be associated with the same intermediate key. In this paper, we aimed to
demonstrate a close-up view about MapReduce. The MapReduce is a famous framework for data-intensive distributed
computing of batch jobs. This is over-simplify fault tolerance, many implementations of MapReduce materialize the overall
output of every map and reduce task before it can be consumed. Finally, we also discuss the comparison between RDBMS and

MapReduce, and famous scheduling algorithms in this field.

Keywords - Big Data, MapReduce, Scheduling, Processing Layer, Indexing, Data Layout.

I. INTRODUCTION

Today the volume of data being generated globally is
increasing at a [1] dramatic rate. The enormous amount of
data is rising everywhere due to advances in the [2] Internet
and communication technologies and the interests of people
using social media, Internet of Things, smart phones, sensor
devices, online services and many more. The essential to
manage efficiently the exponentially growing dataset is
increasing each and every day. For examples, International
Data Corporation (IDC) announces that 2.9 ZB (zettabytes)
data of the universe were stored during the year of 2012 and
this will increase up to 45 ZB by 2020 [3]. Correspondingly,
Facebook processes around 550 TB (terabytes) data every
day and Twitter generates 9 TB data day-to-day [4, 5]. The
larger datasets don’t only include a structured form of data
but more than 75% of the dataset includes semi-structured,
unstructured and raw form of data. The conventional data
management tools such as the RDBMS, no longer prove to be
adequate in handling this burst in data. This report gives an
overview of the new ways to maintain such large datasets [6]
by iterating over the MapReduce technique. In this survey
paper, we review the background and state-of-the-art the
MapReduce. The MapReduce [7] is a distributed computing
model proposed by Google. The main purpose of MapReduce
is to process volumetric data sets distributed and paralleled. It
endows a programming model in which users can specify a

© 2017, IJCSE All Rights Reserved

map function that processes a key/value pair to originate a set
of intermediate key/value pairs, and a detract function that
merges all intermediate values related the same intermediate
key [8]. The Map-Reduce has become a renowned model for

developments in cloud computing. MapReduce is a
programming model and an allied implementation for
processing and generating spacious datasets that is

responsible for a broad variety of real-world tasks[2, 6, 7].

The first section is the introduction of Big Data. The second
section comparison between MapReduce and RDBMS. The
third section discusses MapReduce. The fourth section about
F footstep of MapReduce. In fifth section MapReduce
execution. Again sixth section MapReduce framework and
its components. The seventh section MapReduce user
interfaces and eighth section MapReduce procedures . In the
nine sections MapReduce performance and ten sections
MapReduce scheduling algorithms. Finally, last section is
conclusion.

Il. COMPARISON BETWEEN THE RDBMS AND
MAPREDUCE

The RDBMS is convenient for an application where data size

is limited like it's in GBs, whereas MapReduce convenient
for

218

mailto:yusufperwej@gmail.com

International Journal of Computer Sciences and Engineering

an application where data size is in Exabyte [2]. If the data
access pattern is dominated by seeks, it will take longer to
read or write huge portions of the datasets than streaming
through it, which operates at the transfer rate. On the
contrary, for updating a miniature portion of records in a
database, a traditional B-Tree works well. If updating the
majority of a database, a B-tree is less lower than
MapReduce, [9] which uses merge as well as sort to rebuild
the database. MapReduce acceptable in an application where
the data is written once and read numerous times much the
same in your Facebook profile you post your photo once and
that picture of your seen by your friends numerous times,
whereas RDBMS good for data sets that are incessant
updated [10]. The structured data is data that is organized into
entities that have a defined format, namely XML documents
or database tables that correspond to a distinctive predefines
schema. In semi-structured data, is looser, and though there
may be a schema, it is frequently ignored, so it may be used
as a guide to the structure of the data for instance, a
spreadsheet, in which the structure is the grid of the cells,
although the cells yourself may hold any form of data.
However, unstructured data does not have any particular
internal structure, for instance plain text or image data [2,
11]. MapReduce works well on any type of unstructured or
semi-structured data, since it is designed to interpret the data
at processing time. Eventually the RDBMS scaling is
nonlinear, whereas MapReduce is linear.

Table 1. The Compared between RDBMS and MapReduce

RDBMS MapReduce
Data Size Gigabytes Petabytes/Exabytes
Access Interactive and batch Batch
Updates Read and Write many times Write once, Read many times
Structure Static Schema Dynamic Schema
Integrity High Low
Scaling Nonlinear Linear

I11. THE MAPREDUCE

The MapReduce is a framework for supporting the parallel
processing of enormous amounts of unstructured data. In
MapReduce incorporate [6] both a model to structure the
computation and a runtime to parallelize the computation on
a cluster of workstations in a fault-tolerant manner. The
MapReduce can be seen as a programming exemplar to write
applications that can be decomposed in [12, 13]a phase Map
and a phase Reduce. MapReduce is a programming model
revolutionary by higher-order functions map and reduce
commonly found in functional languages. In the circumstance
functional programming, the map function enforces a given
function to each element of a given list and return the new
list. The reduce function provides all the elements of a list by
applying a given function to an element and a partial
outcome. In spite of, a lot more than this to make these

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

phases happen easily. Every possible computing node has to
access the data it process [13]. To remain on the platform,
this may be done in multiple ways. The data may beforehand
be directly accessible to the nodes or may need to be
scattered or re-balanced. The data are then echeloned in key-
value pairs. This part is normally not accounted when assess
the performance of a MapReduce application.

Map Shutfle Reduce

] — il

Ik 2 P
ik — il

Figure 1. The Normal Workflow of a MapReduce
IV. THE FOOTSTEP OF MAPREDUCE

The input data is automatically isolated by the MapReduce
library into pieces, called splits. Each Map task processes a
single split, consequently M splits entails M Map tasks.
Again Map phase consists in having Mappers read the
corresponding splits and production intermediate key/value
pairs [1]. Usually, the Mapper uses a subsidiary input reader
to read the raw input data. The objective of the reader is to
convert the input [13] to a key/value pairs amenable to be
processed by the Map function. The MapReduce framework
to endorsement a diversification of [6, 12] jobs that are not
tied to any specific input format. After the Map phase, a
segmentation function is applied over the intermediate key
space to divide it into R segmentation, each one to be
processed in a Reduce task after that both R and the
segmentation function can be configured by the user.

e Task Assignment - The input data are echeloned
into splits and, for each split, the master creates a
Map task and allocate it to a worker.

e Input Reader - Every Map task executes a function
to extract the key/value pairs from the raw data
internally the splits.

e Map Function - Every key/value pair is fed into the
user-defined Map function that can production zero,
one or more intermediate key/value pairs. These
pairs represent a temporary outcome, the

219

International Journal of Computer Sciences and Engineering

intermediate data are kept in the local disks of the
Mappers.

e Shuffle Phase - The median key/value pairs are
assigned to Reducers by means of a segmentation
function in a manner such that all median key/value
pairs with the same median key will be processed by
the same detract task and hence by the same
Reducer. These median key/value pairs are spread at
random across the cluster, the master passes to
Reducers the information about the Mappers's
location, because each Reducer may be able to
remotely read its input.

~ clobal File System i

" mMaster |

(1) Task
_ Assignment

e |

Mapper A _ Mapper C
[T]] [

{2) Input Rea der._.'_i :__.(z) Input Reader _'_'_.(2] Input Reader:_‘_
EOEOERD EDEOEED] (] (0] |
“(3) Map I;unctinnj (2) Map ;=unct'mn i [(3) Map ;undimf
OO0EmEn OEEEO00 O0EE00O
7___7___7__—*——_4L_——*_—___7___7___7
(__{4) Shuffle Phase
Reducer A _,_——*-"_7___7“7___7_"-*——_,_ Reducer B

R[HIRIRIE IR] O0ORO8 R0 A
:_'(5) Sort & Grnllp?.:?. (= Sr.trtP& Group |
[TTTTTT [(ITTTT] [T
B .,D; e [Reduo; unction
[(6) Reduce Functio 1] (O] ducs Function [/

P
——"% Clobal Ale Syspesi’.
- v

oo
Figure 2. The Genral Footstep of MapReduce

e Combiner Phase (Optional) - If the user-defined
detract function is exchangeable and associative, and
there is a remarkable repetition of intermediate keys
produced by each Mapper, an optional user-defined
combiner function can be applied to the outputs of
the Mapper [12]. The aim is to group, in pursuance
of the intermediate key, all the intermediate values
that were produced by the Map tasks of each
Mapper. Normally, the same Reduce function code
is used for the combiner function. If this combiner
function is applied, each Mapper outputs only one
median value per median key [13].

e Reduce Function - Every Reducer passes the

assigned median keys, and the corresponding set of
median values, to the user-defined decrease

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

function. The output of the reducers is stored in the
global file system for lastingness.

e Sort & Group - When the remote reads are ended,
each Reducer sort the median data in order to group
all its input pairs by their median keys.

V. A MAPREDUCE EXECUTION

The Apache Hadoop is the most famous open-source
implementation of the MapReduce framework [2]. It is
written in Java and has received contributions from big
companies such as Facebook and others. The Google's
MapReduce, Hadoop also employs two dissimilar layers. The
Hadoop MapReduce Framework, a processing layer
accountable for running MapReduce jobs and the HDFS, a
distributed storage layer accountable for compatible storing
the data among the cluster nodes.

A. Processing Layer

The entities associated with the processing layer are one
master, named the JobTracker, and one or more workers,
named the TaskTrackers. The main contribution of the
JobTracker is to coordinate all the jobs running on the system
and to allocate tasks to run on the TaskTrackers which
periodically report to the JobTracker the headway of their
running tasks. The Hadoop's scheduler makes each job [13]
use the entire cluster and takes the jobs' priorities into account
when scheduling them. This means that topmost priority jobs
will run first. In spite of, Hadoop also supports other
schedulers, including shared cluster schedulers that allow
running jobs from several users at the same time. In view of
task scheduling, Hadoop does not build an a priori plan to set
up which tasks are going to run on which nodes instead
Hadoop take the plunge on which nodes to deploy each task
in runtime. Example for employe nikhat a task, it is assigned
the next one [14]. This means that should an employer nikhat
all tasks related the data it stores locally, it may be fed tasks
which entail acquire data from other workers. There are ten
dissimilar places in the query-execution pipeline of Hadoop
where User Defined Functions (UDFs) may be injected. A
user of the framework can define how the input data is
divided and how a divided is parsed into key/value pairs, for
example. This side makes Hadoop is comfortably
customizable MapReduce framework.

B. Storage Layer

The Hadoop DFS (HDFS) is a distributed file system
designed to store unswerving less, i.e., once the data is
written into the HDFS is not converted but can be read many
times. The HFDS implementation uses three various entities
first one NameNode, second one secondary NameNode and
thired one or more DataNodes. A NameNode in charge of for

220

International Journal of Computer Sciences and Engineering

storing the metadata of all lies in the distributed file system.
In order to recover the metadata files in case of a NameNode
lack of success, the SecondaryNameNode keeps a copy of the
most recent checkpoint of the lesystem metadata. Every file
in HDFS is echeloned into various fixed-size blocks, similar
that each block is stored on any of the DataNodes. Hadoop
replicates each block places them strategically in order to
make better availability two replicas on DataNodes on the
same rack and the third one on a various rack, to inhibit from
loss of data, should an entire rack be liquidated. It is worth
noting the difference between input divided and HDFS
blocks. As long as an HDFS block is an indivisible part of a
file that is stored in each node, an input divided is logical data
that is processed by a Map task. There is no necessity for
divided to be tied to blocks, and not even less. Think about
the case where a file is divided by lines, such that each Map
task processes one line. It may come about that a line over us
from an HDFS block, i.e., the divided boundaries do not
coincide with the HDFS block boundaries. In this situation,
the Mapper processing that line must retrieve the next HDFS
block to receive the final part of the line.

VI. THE MAPREDUCE FRAMEWORK AND IT’S
COMPONENTS

The MapReduce is a programming model and an allied
implementation for processing and generating volumetric
data sets. Assume that programs written in this functional
manner MapReduce are automatically parallelized and
executed on a spacious cluster of commodity machines [15,
16]. In a primary MapReduce job, it consists of the following
components.

|

M3
3 Task
Tracker
|
hap Phase
Figure 3. The Architecture & Components of MapReduce

Job Client — This is submits MapReduce jobs to job tracker.

Job Tracker — This is one part of a master node and it
allocates job to task tracker.

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

Task Tracker — This is one part of slave node and it track all
task data. As soon as finished the task informed to job
tracker.

Pay Load — This is one type of applications, notably designed
for MapReduce functions.

Mapper — This is the prime intention of the mapper is
mapping the input data to intermediate key/value pairs.

Name Node — This is managing the HDFS Data.

Data Node — This is searched advance data are attendance in
processing places.

Master Node — This is the prime intention of Master node is
receiving job data from clients.

Slavenode — This is runs Map and Reduce jobs.

VIl. THE MAPREDUCE USER INTERFACES

In this section provides some detail about user-facing aspects
of the MapReduce framework. This helps you implement,
configure, and tune your jobs in a fine-grained way.

e Payload - In payload applications normally
implement the Mapper and Reducer interfaces to
provide the map and reduce methods. These form
the core of the job.

e Job Configuration - In JobConf describe a
MapReduce job configuration. JobConf is the
primary interface for a wuser to mention a
MapReduce job to the Hadoop framework for
execution. The framework tries to honestly execute
the job as mentioned by JobConf.

e Task Execution & Environment - The TaskTracker
executes the Mapper/ Reducer task as a child
process in a distinct jvm. After that child-task
inherits the environment of the parent TaskTracker.
The user can describe supplementary options to the
child-jvm via the mapred.

e Job Submission and Monitoring - The Job is the
primary interface by which a user job communicates
with the Resource Manager. Job provides
condescension to submit jobs, track their progress,
access component task reports and logs, and get
MapReduce cluster status details.

e Job Input - In the input format represents the input
identification for a MapReduce job. The MapReduce
framework relies on the input format of the job too.
Again validate the input specification of the job.
After that divide the input file into logical input,
divide instances, each of which is then assigned to a
personal Mapper. Again the RecordReader
implementation used to gather input records from
the logical input, divide for processing by the
Mapper.

e Job Output - In the output format represents the
output identification for a MapReduce job. The
MapReduce framework relies on the output format

221

http://www.credosystemz.com/training-in-chennai/best-big-data-training-in-chennai/

International Journal of Computer Sciences and Engineering

of the job too. Again validate the output
specification of the job for example, inspection that
the output directory does not previously alive.

VIIl. THE MAPREDUCE PROCEDURES

In this paper, we are discuss about two different MapReduce
procedures firstly the single-job procedure, in which
subdivide of work to tasks is done without taking document
sizes into account and secondly the chain-job procedure, in
which a first job downloads the documents (take the plunge
their sizes) and performs some preparatory entity-mining,
while a second job (chained with the first) sustain the mining
over size-aware division of the contents to produce the
accomplished NEM analysis.

A. Single Job Procedure

In the single-job procedure includes an initial stage that
queries a search engine to receive the hits to be processed and
prefabricate the distribution of tasks, followed by a
subsequent stage of the MapReduce job itself, both shown in
figure 4. Here master node (where the JobTracker executes)
carries out preliminary processing. First, it queries a Web
Search Engine, which comeback a set of titles, URLs, and
snippets [17] etc. Subsequently, the master attempt to
determine the URL content length, in order to preferable
balance the downloading

Query

WSE requests

HEAD requests

<Title>
<URL
<snippet>

WSE

Figure 4. Single-job design

and processing of the URL contents in the MapReduce job.
Again instate this is to perform an HTTP HEAD request for
each URL earlier to downloading it. These processes again
and again pops the top of the stack and inserts it to the divide
with the least total size, until the stack is empty. When the
assignment of URLs is finished the produced divide are
stored in HDFS. At the subsequent stage of the single-job
procedure a number of mapper tasks are indite on a number
of JVMs hosted by Cloud VMs.

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

B. Chain Job Procedure

We have evolved a substitute MapReduce procedure that
consists of two chained jobs (Jobs #1 and #2) as shown in
figure 5. The appropriateness behind this design is the
following Job #1 downloads the exhaustive document set and
thus gains exact information [18] about content sizes. Here
upon Job #2 is now capable of performing a size-aware
assignment of the remaining documents to tasks. At the same
moment, we have confidence that most users panegyrize a
quick NEM preview on a sample of the hits before getting the
full-scale analysis. In Job #1 is designed to carry out such a
preview the master node queries the search engine getting the
beginning set of titles, URLs, and snippets. Then, it creates
the beginning divided of the URLs without using any
information about their sizes. Eventual after Job#1 tasks in
the first instance downloading documents while performing
only limited-scale NEM analysis, there is no requirement to

create much tasks than the number of JVM slots
approachable.
bt — Trests b
v/ ™ \
[[g e e e

Figure 5. Chain-job design
IX. THE MAPREDUCE PERFORMANCE

The MapReduce may not endow the desired performance in
inappreciable use cases, such as the selection scenario. In this
section we describe the most pertinent of these techniques,
like that indexing, data layouts, and co-location, which
purpose at improving data accesses during the Map phase of
selective query process.

A. Indexing

In a plain MapReduce framework, the execution of a job need
that a full scan of the dataset is performed (example for
reading all the records one by one) further if only a small
subset of them is going to be selected. Additionally, all
partitioned generate Map tasks even if some of them do not
contain pertinent data and will not create any intermediate

222

[0S

‘gl ‘,‘ e

: we T, W -
s 08 Mors] o

~{) = mapper —.
e+ HOFS 4 E W -

: M {| -

: Felgh Documents 4 :

: L :

Pt

International Journal of Computer Sciences and Engineering

data. As well, in the Map phase, all blocks have to be
perfectly

fetched from disk, which insinuate that all attributes of all
records are fetched to main memory without taking into
account which ones the job is fascinated in [19]. This issue
can keep away from if the input data are indexed before the
mapping step takes place. Momentarily, an index is built for
one attribute and consists in a list of various values of that
attribute contained in the indexed data, as well as possible the
positions where these values can be found in the input file.

e Record Level Indexing

Commonly, this access requires having the index inside each
partition, which is then used at query time to select the
applicable records from the partition, instead of reading the
entire partition record by record [20].

e Split Level Indexing

It has been attention that the execution time of a query
depends on the number of waves of Map tasks that are
executed, which in turn depends on the number of processed
partition [21]. Additionally, the time to process a partition is
dominated by the I/O time for reading its dataplus the
overhead of commencement the Map task to process it.

e Block Level Indexing

In this case where the partition is comprised of several
blocks, one can create block-level indexes. All blocks
contain several records, these indexes have the potential to
bring meaningful time savings, in pursuance of to the
monitoring [21] block-level indexes map attributes values to
blocks that contain at least one record with that attributes
value. By means of these indexes, when processing a
partition, the applicable blocks are loaded and processed,
whereas the blocks familiar not to match the selection
specification are omitted.

B. Data Layout

The storage unit of HDFS consists in a fixed-size (generically
64MB to 96MB) block of data. Actually, the way the data are
arranged within this block of data can much affect the
repercussion times of the system. Now we call this inner
organization of blocks the data layout. We now familiarize
four various data layouts that may be applied on MapReduce.

e Row Oriented

When utilization this layout all fields of one record are stored
sequentially in the file, and several records are placed
contiguously in the disk blocks. This layout endows rapidly
data loading in many cases, the data to be stored is endow
row-by-row, that means one entire record at a time. In Row-

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

based systems are designed to adroitly process queries where
several columns of a record required to be processed at the
same time, the entire row can be brought back with a single
access to the disk.

e Column Oriented

When utilization this layout, datasets are vertically split by
column, each column is stored independently and accessed
only when the corresponding attribute is required. In this
layout is well favorable for read operations that accessed a
mini number of columns, since columns that are not
applicable for the intended output are not read. As an
outcome, record reconstruction may need network transfers to
access the needed columns from various storage nodes.

e Column Groups

In this layout consists in organizing all columns of a dataset
in various groups of columns. The various column groups
may have overlapping columns. The data within each column
group is not connected to any particular data layout. It seems
stored in a row or column-oriented way. A benefit of column
groups is that it can keep away from the overhead of record
reconstruction if a query desire an existing amalgamation of
columns.
o PAX

In this hybrid layout combines the [22] benefit of both row-
oriented and column-oriented layouts. Every field of a record
is on the same block as the row-oriented layout, make
provision for low cost of record reconstruction. In spite of,
within each disk page containing the block, PAX uses mini
pages to group every values affiliation to each column.

X. MAPREDUCE SCHEDULING ALGORITHMS

In this section, we describe briefly scheduling algorithms is
one of the most critical dimensions of MapReduce. There are
many algorithms to address these matters with different
techniques and outlook. Now a few of them get attention to
improve data locality and few of them implements to provide
synchronization processing.

A. Fair Scheduling Algorithm

The Fair scheduling is a method of assigning resources to
jobs such that all jobs get on usual, an identical share of
resources over time. Meanwhile a single job running, that job
uses the entire cluster. When additional jobs are submitted
tasks slots that free up are assigned to the recent jobs, because
each job gets approximately the same amount of CPU time.
Dissimilar the lapse Hadoop scheduler, which forms a queue
of jobs, this lets, short jobs finish in pertinent time while not
starving long jobs. It is also a simple way to [23] share a
cluster between several of the others. The Fair Scheduler

223

International Journal of Computer Sciences and Engineering

algorithm can range the number of concurrent running jobs
[24] per user and per pool. This can be advantageous when a
user must submit hundreds of jobs at one time, or to make
sure that intermediate data does not fill up disk space on a
cluster when too many simultaneous jobs are running.

B. Hadoop On Demand (HOD) Scheduling Algorithm

In this Hadoop On Demand (HOD) Scheduling Algorithm is
a system for provisioning and managing unconstrained
Hadoop MapReduce and Hadoop Distributed File System
(HDFS) example on a shared cluster of nodes. These
algorithms make it convenient for administrators and users to
quickly setup and use Hadoop. The HOD is also a very
advantageous tool for Hadoop developers and testers who
requirement to share a physical cluster for testing their own
Hadoop versions [23]. The HOD utilization the torque
resource manager to do node allocation. In the allocated
nodes, it can start Hadoop MapReduce and HDFS daemons.
It automatically originates the convenient configuration files
(Hadoop-site.xml) for the Hadoop daemons and client. This
algorithm also has the ability to distribute Hadoop to the
nodes in the virtual cluster that it allocates.

C. Capacity Scheduler Algorithm

In this algorithm contrive to run Hadoop Map-Reduce as a
shared, multi-tenant cluster in an operational affable manner
while maximizing the throughput and the usage of the cluster
while running Map-Reduce applications. This algorithm to
allow sharing a huge cluster while giving every company a
minimum capacity promise. The central idea is that the
available resources [25, 23] in the Hadoop Map-Reduce
cluster segregates among multiple organizations who
collectively fund the cluster based on computing necessity.
There is an added gain that a company can access any excess
competence now being used by others. This endow elasticity
for the company in a cost-effective manner.

D. Center-of-Gravity Reduce Scheduler Algorithm

The Center-of-Gravity reduce scheduler algorithm to work
designing a locality-aware, skew-aware alleviate task
scheduler for reduction MapReduce network traffic [26]. The
proposed scheduler algorithm attempts to schedule every
alleviate the task at its center-of-gravity node laid down [27]
by the network locations. Regarding scheduling reducers at
their center-of-gravity nodes, they argue for reduce network
traffic, which may possibly allow more MapReduce jobs to
stick together on the same system [28].

XI. CONCLUSION

In the real world, data processing and storage approaches are
facing many challenges in meeting the persistently increasing
insistence of big data. Thus, it becomes greatly challenging to
operate on the enormous data. In the Big data area,
MapReduce is one of the key approaches used for nursing

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

giant data sets. MapReduce was introduced to extricate
volumetric data, computational problems, and in particular
designed to run on commodity hardware and its based on
divide and conquer principles. This is because of its
appreciable flexibility, which allows automatic parallelization
and execution on a huge-scale cluster with more than
thousands of nodes. In this paper, presents MapReduce
concepts, footstep of MapReduce, execution of MapReduce,
MapReduce framework and its components, we also highlight
the MapReduce user interfaces. Finally, we investigated the
procedures, performance, scheduling algorithms in
MapReduce. These surveys aim to provide an extensive
overview and big-picture to readers of this exciting area.

REFERENCES

[1]. Kim, G.-H., Trimi, S., & Chung, J.-H. (2014). Big-data
applications in the government sector. Communicationsof the
ACM, 57(3), pp 78-85.

[2]. Dr. Yusuf Perwej, “An Experiential Study of the Big Data,” for
published in the International Transaction of Electrical and
Computer Engineers System (ITECES), USA, ISSN (Print): 2373-
1273 ISSN (Online): 2373-1281, Vol. 4, No. 1, page 14-25, March
2017, DOI:10.12691/iteces-4-1-3.

[3]. R. Murugesh, I. Meenatchi, "A Study Using Pl on: Sorting
Structured Big Data In Distributed Environment Using Apache
Hadoop MapReduce", International Journal of Computer Sciences
and Engineering, Vol.2, Issue.8, pp.35-38, 2014.

[4]. “Apache Hadoop,” Apache. [Online].
http://hadoop.apache.org/. [Accessed: 18-Feb-2015].

[5]. M. Khan, P. M. Ashton, M. Li, G. A. Taylor, I. Pisica, and J. Liu,
“Parallel Detrended Fluctuation Analysis for Fast Event Detection
on Massive PMU Data,” Smart Grid, IEEE Trans., vol. 6, no. 1, pp.
360-368, Jan. 2015.

[6]. K. Parimalal G. Rajkumar, A. Ruba, S. Vijayalakshmi,
"Challenges and Opportunities with Big Data", International
Journal of Scientific Research in Computer Science and
Engineering, Vol.5, Issue.5, pp.16-20, 2017.

[7]. Lee, D., Kim, J.-S.,, & Maeng, S. “Large-scale incremental
processing with MapReduce”, Future Generation Computer
Systems, 36, pp 6679, (2014), doi:10.1016/j.future.2013.09.010.

[8]. M. Khan, M. Li, P. Ashton, G. Taylor, and J. Liu, “Big data
analytics on PMU measurements,” in Fuzzy Systems and
Knowledge Discovery (FSKD), 2014 11th International
Conference on, 2014, pp. pp 715-719.

[9]. Qi, C. Cheng, L., & Zhen, X. (2014). Improving mapreduce
performance using smart speculative execution strategy. IEEE
Transactions on Computers, Vol. 63(4), pp 954-967.
Doi:10.1109/TC.2013.15.

[10].J. Kwon, K. Park, D. Lee, S. Lee, PSR: Pre-computing Solutions in
RDBMS for Fast Web services Composition Search, in:
Proceedings of the 2nd International Conference on Web Services,
Salt Lake City, Utah, USA, ICWS 2007, pp. 808-815.

[11].Yan, F., Cherkasova, L., Zhang, Z., & Smirni, E. (2014).
Heterogeneous cores for mapreduce processing: Opportunity or
challenge? Paper presented at the proceedings of IEEE/IFIP
NOMS.

[12]. Chen, R., & Chen, H. , Tiled-MapReduce: Efficient and flexible
MapReduce processing on multicore with tiling. ACM
Transactions on Architecture and Code Optimization (TACO),
Volume 10 Issue 1, April 2013, pp 3.

[13]. Dean, J. & S. Ghemawat (2004). Mapreduce: simpli_ed data
processing on large clusters. In Proceedings of the 6th conference

Available:

224

International Journal of Computer Sciences and Engineering

on Symposium on Opearting Systems Design & Imple-mentation -
Volume 6, OSDI'04, Berkeley, CA, USA, pp. 10-10. USENIX
Association.

[14]. Lee, K.-H., Y .-J. Lee, H. Choi, Y. D. Chung, & B. Moon “Parallel
data processing with mapreduce: a survey”, SIGMOD Rec. vol 40
(4), pp 11-20. (2012).

[15]. S. Sakr, A. Liu, A. Fayoumi, "The family of mapreduce and large-
scale data processing systems", ACM Computing Surveys, vol. 46,
no. 1, pp. 1-44, 2013.

[16].Q. He, Q. Tan, X. Ma, Z. Shi, "The high-activity parallel
implementation of data preprocessing based on MapReduce", Proc.
of the 5th International Conference on Rough Set and Knowledge
Technology, 2010.

[17]. Google developers: Web metrics - size and number of resources,”
https:// developers.google.com/speed/articles/web-metrics,
accessed: 11/04/2013.

[18]. Mapreduce:Chainingjobs,http://developer.yahoo.com / hadoop/
tutorial/ module4.html#chaining, accessed: 11/04/2013.

[19]. Richter, S., J.-A. Quian_e-Ruiz, S. Schuh, & J. Dittrich. “Towards
zero-overhead adaptive indexing in hadoop”, (2012), CoRR
abs/1212.3480.

[20]. Dittrich, J., J.-A. Quian_e-Ruiz, A. Jindal, Y. Kargin, V. Setty, &
J. Schad (2010, September). Hadoop++: making a yellow elephant
run like a cheetah (without it even noticing). Proc. VLDB
Endow.vol 3 (1-2), 515-529.

[21]. Eltabakh, M. Y., F. Ozcan, Y. Sismanis, P. J. Haas, H. Pirahesh, &
J. Vondrak (2013). Eagleeyed elephant: Split-oriented indexing in
hadoop. In Proceedings of the 16th International Conference on
Extending Database Technology, EDBT '13, New York, NY, USA,
pp. 89-100. ACM.

[22]. Ailamaki, A., D. J. DeWitt, M. D. Hill, & M. Skounakis (2001).
Weaving relations for cache performance. In Proceedings of the
27th International Conference on Very Large Data Bases, VLDB
'01, San Francisco, CA, USA, pp. 169-180. Morgan Kaufmann
Publishers Inc.

[23]. https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html

[24]. Xingwu Zheng, Zhou Zhou, Xu Yang, Zhiling Lan, Jia Wang,
"Exploring Plan-Based Scheduling for Large-Scale Computing
Systems", Cluster Computing (CLUSTER) 2016 IEEE International
Conference on, pp. 259-268, 2016, ISSN 2168-9253.

[25].Y. Tao Y, Q. Zhang, L. Shi and P. Chen, “ Job scheduling
optimization for multi-user MapReduce clusters ”, In: The fourth
international symposium on parallel architectures, algorithms and
programming. IEEE; 2011. pp 213-17.

[26]. Nikolaos D. Doulamis, Panagiotis Kokkinos, Emmanouel
Varvarigos, "Resource Selection for Tasks with Time Requirements
Using Spectral Clustering”, Computers IEEE Transactions on, vol.
63, pp. 461-474, 2014, ISSN 0018-9340.

[27]. Mohammad Hammoud, M. Suhail Rehman, Majd F. Sakr, "Center-
of-Gravity Reduce Task Scheduling to Lower MapReduce Network
Traffic", IEEE, 2012, pp.49-58. d0i:10.1109/CLOUD.2012.92

[28]. P. Nguyen, T. Simon, M. Halem, D. Chapman and Q. Le, “ A
hybrid scheduling algorithm for data intensive workloads in
aMapReduce environment”, In: Proceedings of the 2012 IEEE/
ACM fifth international conference on utility and cloud computing.
Washington, DC, USA: IEEE computer society; UCC'12, 2012, pp
161-168.

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

225

https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html

