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Abstract - Since, the last three or four years, the field of “big data” has appeared as the new frontier in the wide spectrum of IT-

enabled innovations and favorable time allowed by the information revolution. Today, there is a raise necessity to analyses 

very huge datasets, that have been coined big data, and in need of uniqueness storage and processing infrastructures. 

MapReduce is a programming model the goal of processing big data in a parallel and distributed manner. In MapReduce, the 

client describes a map function that processes a key/value pair to procreate a set of intermediate value pairs & key, and a 

reduce function that merges all intermediate values be associated with the same intermediate key. In this paper, we aimed to 

demonstrate a close-up view about MapReduce. The MapReduce is a famous framework for data-intensive distributed 

computing of batch jobs. This is over-simplify fault tolerance, many implementations of MapReduce materialize the overall 

output of every map and reduce task before it can be consumed. Finally, we also discuss the comparison between RDBMS and 

MapReduce, and famous scheduling algorithms in this field.  
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I.  INTRODUCTION 

 

Today the volume of data being generated globally is 

increasing at a [1] dramatic rate. The enormous amount of 

data is rising everywhere due to advances in the [2] Internet 

and communication technologies and the interests of people 

using social media, Internet of Things, smart phones, sensor 

devices, online services and many more. The essential to 

manage efficiently the exponentially growing dataset is 

increasing each and every day. For examples, International 

Data Corporation (IDC) announces that 2.9 ZB (zettabytes) 

data of the universe were stored during the year of 2012 and 

this will increase up to 45 ZB by 2020 [3]. Correspondingly, 

Facebook processes around 550 TB (terabytes) data every 

day and Twitter generates 9 TB data day-to-day [4, 5]. The 

larger datasets don’t only include a structured form of data 

but more than 75% of the dataset includes semi-structured, 

unstructured and raw form of data.  The conventional data 

management tools such as the RDBMS, no longer prove to be 

adequate in handling this burst in data. This report gives an 

overview of the new ways to maintain such large datasets [6] 

by iterating over the MapReduce technique. In this survey 

paper, we review the background and state-of-the-art the 

MapReduce. The MapReduce [7] is a distributed computing 

model proposed by Google. The main purpose of MapReduce 

is to process volumetric data sets distributed and paralleled. It 

endows a programming model in which users can specify a 

map function that processes a key/value pair to originate a set 

of intermediate key/value pairs, and a detract function that 

merges all intermediate values related the same intermediate 

key [8]. The Map-Reduce has become a renowned model for 

developments in cloud computing. MapReduce is a 

programming model and an allied implementation for 

processing and generating spacious datasets that is 

responsible for a broad variety of real-world tasks[2, 6, 7].  
 
The first section is the introduction of Big Data. The second 

section comparison between MapReduce and RDBMS. The 

third section discusses MapReduce.  The fourth section about 

F footstep of MapReduce.  In fifth section MapReduce 

execution. Again sixth section MapReduce framework and  

its components. The seventh section MapReduce user 

interfaces and  eighth section MapReduce procedures . In the 

nine sections MapReduce performance   and ten sections 

MapReduce scheduling algorithms. Finally, last section is 

conclusion. 

 

II. COMPARISON BETWEEN THE  RDBMS AND 

MAPREDUCE 

 

The RDBMS is convenient for an application where data size 

is limited like it's in GBs, whereas MapReduce convenient 

for  
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an application where data size is in Exabyte [2]. If the data 

access pattern is dominated by seeks, it will take longer to 

read or write huge portions of the datasets than streaming 

through it, which operates at the transfer rate. On the 

contrary, for updating a miniature portion of records in a 

database, a traditional B-Tree works well. If updating the 

majority of a database, a B-tree is less lower than 

MapReduce, [9] which uses merge as well as sort to rebuild 

the database. MapReduce acceptable in an application where 

the data is written once and read numerous times much the 

same in your Facebook profile you post your photo once and 

that picture of your seen by your friends numerous times, 

whereas RDBMS good for data sets that are incessant 

updated [10]. The structured data is data that is organized into 

entities that have a defined format, namely XML documents 

or database tables that correspond to a distinctive predefines 

schema. In semi-structured data, is looser, and though there 

may be a schema, it is frequently ignored,  so it may be used 

as a guide to the structure of the data for instance, a 

spreadsheet, in which the structure is the grid of the cells, 

although the cells yourself may hold any form of data. 

However, unstructured data does not have any particular 

internal structure, for instance plain text or image data [2, 

11]. MapReduce works well on any type of unstructured or 

semi-structured data, since it is designed to interpret the data 

at processing time. Eventually the RDBMS scaling is 

nonlinear, whereas MapReduce is linear. 

 
Table 1. The Compared between RDBMS and MapReduce 

 
 

III. THE  MAPREDUCE 

 

The MapReduce is a framework for supporting the parallel 

processing of enormous amounts of unstructured data. In 

MapReduce incorporate [6] both a model to structure the 

computation and a runtime to parallelize the computation on 

a cluster of workstations in a fault-tolerant manner. The 

MapReduce can be seen as a programming exemplar to write 

applications that can be decomposed in [12, 13]a phase Map 

and a phase Reduce.  MapReduce is a programming model 

revolutionary by higher-order functions map and reduce 

commonly found in functional languages. In the circumstance 

functional programming, the map function enforces a given 

function to each element of a given list and return the new 

list. The reduce function provides all the elements of a list by  

applying a given function to an element and a partial 

outcome. In spite of, a lot more than this to make these 

phases  happen easily. Every possible computing node has to 

access the data it process [13]. To remain on the platform, 

this may be done in multiple ways. The data may beforehand 

be directly accessible to the nodes or may need to be 

scattered or re-balanced. The data are then echeloned in key-

value pairs. This part is normally  not accounted when assess 

the performance of a MapReduce application. 

 
 

Figure 1. The Normal Workflow of a MapReduce 

 

IV. THE FOOTSTEP OF MAPREDUCE 
 

The input data is automatically isolated by the MapReduce 

library into pieces, called splits. Each Map task processes a 

single split, consequently M splits entails M Map tasks. 

Again Map phase consists in having Mappers read the 

corresponding splits and production intermediate key/value 

pairs [1]. Usually, the Mapper uses a subsidiary input reader 

to read the raw input data. The objective of the reader is to 

convert the input [13] to a key/value pairs amenable to be 

processed by the Map function. The MapReduce framework 

to endorsement a diversification of [6, 12] jobs that are not 

tied to any specific input format. After the Map phase, a 

segmentation function is applied over the intermediate key 

space to divide it into R segmentation, each one to be 

processed in a Reduce task after that both R and the 

segmentation function can be configured by the user. 

 

 Task Assignment - The input data are echeloned 

into splits and, for each split, the master creates a 

Map task and allocate it to a worker. 

 

 Input Reader - Every Map task executes a function 

to extract the key/value pairs from the raw data 

internally the splits. 

 

 Map Function -  Every key/value pair is fed into the 

user-defined Map function that can production zero, 

one or more intermediate key/value pairs. These 

pairs  represent a temporary outcome, the 
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intermediate data are kept in the local disks of the 

Mappers. 

 

 Shuffle Phase - The median key/value pairs are 

assigned to Reducers by means of a segmentation 

function in a manner such that all median key/value 

pairs with the same median key will be processed by 

the same detract task and hence by the same 

Reducer. These median key/value pairs are spread at 

random across the cluster, the master passes to 

Reducers the information about the Mappers's 

location, because each Reducer may be able to 

remotely read its input. 

 

 
 

Figure 2. The Genral Footstep of  MapReduce 

 

 Combiner Phase (Optional) - If the user-defined 

detract function is exchangeable and associative, and 

there is a remarkable repetition of intermediate keys 

produced by each Mapper, an optional user-defined 

combiner function can be applied to the outputs of 

the Mapper [12]. The aim is to group, in pursuance 

of the intermediate key, all the intermediate values 

that were produced by the Map tasks of each 

Mapper. Normally, the same Reduce function code 

is used for the combiner function. If this combiner 

function is applied, each Mapper outputs only one 

median value per median key [13].  

 

 Reduce Function - Every Reducer passes the 

assigned median keys, and the corresponding set of 

median values, to the user-defined decrease 

function. The output of the reducers is stored in the 

global file system for lastingness.  
 

 Sort & Group - When the remote reads are ended, 

each Reducer sort the median data in order to group 

all its input pairs by their median keys. 

 

V.  A  MAPREDUCE EXECUTION 

 

The Apache Hadoop is the most famous open-source 

implementation of the MapReduce framework [2]. It is 

written in Java and has received contributions from big 

companies such as Facebook and others. The Google's 

MapReduce, Hadoop also employs two dissimilar layers. The 

Hadoop MapReduce Framework, a processing layer 

accountable for running MapReduce jobs and the HDFS, a 

distributed storage layer accountable for compatible storing  

the data among the cluster nodes. 

 
A.  Processing Layer 

 

The entities associated with the processing layer are one 

master, named the JobTracker, and one or more workers, 

named the TaskTrackers. The main contribution of the 

JobTracker is to coordinate all the jobs running on the system 

and to allocate tasks to run on the TaskTrackers which 

periodically report to the JobTracker the headway of their 

running tasks. The Hadoop's scheduler makes each job [13] 

use the entire cluster and takes the jobs' priorities into account 

when scheduling them. This means that topmost priority jobs 

will run first. In spite of, Hadoop also supports other 

schedulers, including shared cluster schedulers that allow 

running jobs from several users at the same time. In view of 

task scheduling, Hadoop does not build an a priori plan to set 

up which tasks are going to run on which nodes instead 

Hadoop take the plunge on which nodes to deploy each task 

in runtime. Example for employe nikhat a task, it is assigned 

the next one [14]. This means that should an employer nikhat 

all tasks related the data it stores locally, it may be fed tasks 

which entail acquire data from other workers. There are ten 

dissimilar places in the query-execution pipeline of Hadoop 

where User Defined Functions (UDFs) may be injected. A 

user of the framework can define how the input data is 

divided and how a divided is parsed into key/value pairs, for 

example. This side makes Hadoop is comfortably 

customizable MapReduce framework. 

 
B. Storage Layer 

 

The Hadoop DFS (HDFS) is a distributed file system 

designed to store unswerving less, i.e., once the data is 

written into the HDFS is not converted but can be read many 

times. The HFDS implementation uses three various entities 

first one NameNode, second one secondary NameNode and 

thired one or more DataNodes. A NameNode in charge of for 
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storing the metadata of all lies in the distributed file system. 

In order to recover the metadata  files in case of a NameNode 

lack of success, the SecondaryNameNode keeps a copy of the 

most recent checkpoint of the lesystem metadata. Every file 

in HDFS is echeloned into various fixed-size blocks, similar 

that each block is stored on any of the DataNodes. Hadoop 

replicates each block places them strategically in order to 

make better availability two replicas on DataNodes on the  

same rack and the third one on a various  rack, to inhibit from 

loss of data, should an entire rack be liquidated. It is worth 

noting the difference between input divided and HDFS 

blocks. As long as an HDFS block is an indivisible part of a 

file that is stored in each node, an input divided is logical data 

that is processed by a Map task. There is no necessity for 

divided to be tied to blocks, and not even  less. Think about 

the case where a  file is divided by lines, such that each Map 

task processes one line. It may come about that a line over us 

from an HDFS block, i.e., the divided boundaries do not 

coincide with the HDFS block boundaries. In this situation, 

the Mapper processing that line must retrieve the next HDFS 

block to receive the final part of the line. 

 

VI.  THE MAPREDUCE FRAMEWORK AND  IT’S 

COMPONENTS 

 

The MapReduce is a programming model and an allied 

implementation for processing and generating volumetric 

data sets. Assume that programs written in this functional 

manner MapReduce are automatically parallelized and 

executed on a spacious cluster of commodity machines [15, 

16]. In a primary MapReduce job, it consists of the following 

components. 

 

 
Figure 3. The Architecture & Components of  MapReduce 

Job Client – This is submits MapReduce jobs to job tracker. 

Job Tracker – This is one part of a master node and it 

allocates  job to task tracker. 

Task Tracker – This is one part of slave node and it track all 

task data. As soon as finished the task informed to job 

tracker. 

Pay Load – This is one type of applications, notably designed 

for MapReduce functions. 

Mapper – This is the prime intention of the mapper is 

mapping the input data to intermediate key/value pairs. 

Name Node – This is managing the HDFS Data. 

Data Node – This is searched advance data are attendance in 

processing places. 

Master Node – This is the prime intention of Master node is 

receiving  job data from clients. 

Slavenode – This is runs Map and Reduce jobs. 

 

VII.  THE MAPREDUCE USER INTERFACES 
 

In this section provides some detail about user-facing aspects 

of the MapReduce framework. This helps you implement, 

configure, and tune your jobs in a fine-grained way.  

 

 Payload - In payload applications normally 

implement the Mapper and Reducer interfaces to 

provide the map and reduce methods. These form 

the core of the job. 

 Job Configuration - In JobConf describe a 

MapReduce job configuration. JobConf is the 

primary interface for a user to mention a 

MapReduce job to the Hadoop framework for 

execution. The framework tries to honestly execute 

the job as mentioned by JobConf. 

 Task Execution & Environment - The TaskTracker 

executes the Mapper/ Reducer task as a child 

process in a distinct jvm. After that child-task 

inherits the environment of the parent TaskTracker. 

The user can describe supplementary options to the 

child-jvm via the mapred. 

 Job Submission and Monitoring - The Job is  the 

primary interface by which a user job communicates 

with the Resource Manager. Job provides 

condescension to submit jobs, track their progress, 

access component task reports and logs, and get 

MapReduce cluster status details. 

 Job Input - In the input format represents the input 

identification for a MapReduce job. The MapReduce 

framework relies on the input format of the job too. 

Again validate the input specification of the job. 

After that divide the input file into logical input, 

divide instances, each of which is then assigned to a 

personal Mapper. Again the RecordReader 

implementation used to gather input records from 

the logical input, divide for processing by the 

Mapper. 

 Job Output - In the output format represents the 

output identification for a MapReduce job. The 

MapReduce framework relies on the output format 

http://www.credosystemz.com/training-in-chennai/best-big-data-training-in-chennai/
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of the job too. Again validate the output 

specification of the job for example, inspection that 

the output directory does not previously alive.  

 

VIII.  THE MAPREDUCE PROCEDURES 
 

In this paper, we are discuss about two different MapReduce 

procedures firstly the single-job procedure, in which 

subdivide of work to tasks is done without taking document 

sizes into account and secondly the chain-job procedure, in 

which a first job downloads the documents (take the plunge 

their sizes) and performs some preparatory entity-mining, 

while a second job (chained with the first) sustain the mining 

over size-aware division of the contents to produce the 

accomplished NEM analysis. 
 
A.  Single Job Procedure 

 
In the single-job procedure includes an initial stage that 

queries a search engine to receive the hits to be processed and 

prefabricate the distribution of tasks, followed by a 

subsequent stage of the MapReduce job itself, both shown in 

figure 4. Here master node (where the JobTracker executes) 

carries out preliminary processing. First, it queries a Web 

Search Engine, which comeback a set of titles, URLs, and 

snippets [17] etc. Subsequently, the master attempt to 

determine the URL content length, in order to preferable 

balance the downloading  

 
Figure 4. Single-job design 

  
and processing of the URL contents in the MapReduce job. 

Again instate this is to perform an HTTP HEAD request for 

each URL earlier to downloading it. These processes again 

and again pops the top of the stack and inserts it to the divide 

with the least total size, until the stack is empty. When the 

assignment of URLs is finished the produced divide are 

stored in HDFS. At the subsequent stage of the single-job 

procedure a number of mapper tasks are indite on a number 

of JVMs hosted by Cloud VMs.  

B. Chain Job Procedure 

 

We have evolved a substitute MapReduce procedure that 

consists of two chained jobs (Jobs #1 and #2) as shown in 

figure 5. The appropriateness behind this design is the 

following Job #1 downloads the exhaustive document set and 

thus gains exact information [18] about content sizes. Here 

upon Job #2  is now capable of performing a size-aware 

assignment of the remaining documents to tasks. At the same 

moment, we have confidence that most users panegyrize a 

quick NEM preview on a sample of the hits before getting the 

full-scale analysis. In Job #1 is designed to carry out such a 

preview the master node queries the search engine getting the 

beginning set of titles, URLs, and snippets. Then, it creates 

the beginning divided of the URLs without using any 

information about their sizes. Eventual after Job#1 tasks in 

the first instance downloading documents while performing 

only limited-scale NEM analysis, there is no requirement to 

create much tasks than the number of JVM slots 

approachable. 

 

 
 

Figure 5. Chain-job design 

 

IX.  THE MAPREDUCE PERFORMANCE 

 

The MapReduce may not endow the desired performance in 

inappreciable use cases, such as the selection scenario. In this 

section we describe the most pertinent of these techniques, 

like that indexing, data layouts, and co-location, which 

purpose at improving data accesses during the Map phase of 

selective query process. 

 

A. Indexing 

In a plain MapReduce framework, the execution of a job need 

that a full scan of the dataset is performed (example for 

reading all the records one by one) further if only a small 

subset of them is going to be selected. Additionally, all 

partitioned generate Map tasks even if some of them do not 

contain pertinent data and will not create any intermediate 
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data. As well, in the Map phase, all blocks have to be 

perfectly  

fetched from disk, which insinuate that all attributes of all 

records are fetched to main memory without taking into 

account which ones the job is fascinated in [19]. This issue 

can keep away from if the input data are indexed before the 

mapping step takes place. Momentarily, an index is built for 

one attribute and consists in a list of various values of that 

attribute contained in the indexed data, as well as possible the 

positions where these values can be found in the input file. 

 

 Record Level Indexing 

 

Commonly, this access requires having the index inside each 

partition, which is then used at query time to select the 

applicable records from the partition, instead of reading the 

entire partition record by record [20]. 

. 

 Split Level Indexing  
 

It has been attention that the execution time of a query 

depends on the number of waves of Map tasks that are 

executed, which in turn depends on the number of processed 

partition [21]. Additionally, the time to process a partition is 

dominated by the I/O time for reading its dataplus the 

overhead of commencement  the Map task to process it. 

 

 Block Level Indexing 

 

In this case where the partition is comprised of several 

blocks, one can create block-level indexes. All  blocks 

contain several records, these indexes have the potential to 

bring meaningful time savings, in pursuance of to the 

monitoring  [21] block-level indexes map attributes values to 

blocks that contain at least one record with that attributes 

value. By means of these indexes, when processing a 

partition, the applicable blocks are loaded and processed, 

whereas the blocks familiar not to match the selection 

specification are omitted. 

 

B. Data Layout 

The storage unit of HDFS consists in a fixed-size (generically 

64MB to 96MB) block of data. Actually, the way the data are 

arranged within this block of data can much affect the 

repercussion times of the system. Now we call this inner 

organization of blocks the data layout. We now familiarize 

four various data layouts that may be applied on MapReduce. 

 

 Row Oriented  

 

When utilization this layout all fields of one record are stored 

sequentially in the file, and several records are placed 

contiguously in the disk blocks. This layout endows rapidly 

data loading in many cases, the data to be stored is endow 

row-by-row, that means one entire record at a time. In Row-

based systems are designed to adroitly process queries where 

several columns of a record required to be processed at the 

same time, the entire row can be brought back with a single 

access to the disk. 

 

 Column Oriented   
 

When utilization this layout, datasets are vertically split by 

column, each column is stored independently and accessed 

only when the corresponding attribute is required. In this 

layout is well favorable for read operations that accessed a 

mini number of columns, since columns that are not 

applicable for the intended output are not read. As an 

outcome, record reconstruction may need network transfers to 

access the needed columns from various storage nodes. 

 

 Column Groups   
 

In this layout consists in organizing all columns of a dataset 

in various groups of columns. The various column groups 

may have overlapping columns. The data within each column 

group is not connected to any particular data layout. It seems 

stored in a row or column-oriented way. A benefit of column 

groups is that it can keep away from the overhead of record 

reconstruction if a query desire an existing amalgamation of 

columns. 

 PAX   
 

In this hybrid layout combines the [22] benefit of both row-

oriented and column-oriented layouts. Every field of a record 

is on the same block as the row-oriented layout, make 

provision for low cost of record reconstruction. In spite of, 

within each disk page containing the block, PAX uses mini 

pages to group every values affiliation to each column. 

 
X.  MAPREDUCE SCHEDULING ALGORITHMS 

 

In this section, we describe briefly scheduling algorithms is 

one of the most critical dimensions of MapReduce. There are 

many algorithms to address these matters with different 

techniques and outlook. Now a few of them get attention to 

improve data locality and few of them implements to provide 

synchronization processing. 

 

A.  Fair Scheduling Algorithm 

The Fair scheduling is a method of assigning resources to 

jobs such that all jobs get on usual, an identical share of 

resources over time. Meanwhile a single job running, that job 

uses the entire cluster. When additional jobs are submitted 

tasks slots that free up are assigned to the recent jobs, because 

each job gets approximately the same amount of CPU time. 

Dissimilar the lapse Hadoop scheduler, which forms a queue 

of jobs, this lets, short jobs finish in pertinent time while not 

starving long jobs. It is also a simple way to [23] share a 

cluster between several of the others. The Fair Scheduler 
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algorithm can range the number of concurrent running jobs 

[24] per user and per pool. This can be advantageous when a 

user must submit hundreds of jobs at one time, or to make 

sure that intermediate data does not fill up disk space on a 

cluster when too many simultaneous jobs are running. 

 

B.  Hadoop On Demand (HOD) Scheduling Algorithm 

In this Hadoop On Demand (HOD) Scheduling Algorithm is 

a system for provisioning and managing unconstrained 

Hadoop MapReduce and Hadoop Distributed File System 

(HDFS) example on a shared cluster of nodes. These  

algorithms make it convenient for administrators and users to 

quickly setup and use Hadoop. The HOD is also a very 

advantageous tool for Hadoop developers and testers who 

requirement to share a physical cluster for testing their own 

Hadoop versions [23].  The HOD utilization the torque 

resource manager to do node allocation. In the allocated 

nodes, it can start Hadoop MapReduce and HDFS daemons. 

It automatically originates the convenient configuration files 

(Hadoop-site.xml) for the Hadoop daemons and client. This  

algorithm also has the ability to distribute Hadoop to the 

nodes in the virtual cluster that it allocates. 

 
C.  Capacity Scheduler Algorithm 

In this  algorithm contrive to run Hadoop Map-Reduce as a 

shared, multi-tenant cluster in an operational affable manner 

while maximizing the throughput and the usage of the cluster 

while running Map-Reduce applications. This  algorithm to 

allow sharing a huge cluster while giving every company a 

minimum capacity promise. The central idea is that the 

available resources [25, 23] in the Hadoop Map-Reduce 

cluster segregates among multiple organizations who 

collectively fund the cluster based on computing necessity. 

There is an added gain that a company can access any excess 

competence now being used by others. This endow elasticity 

for the company in a cost-effective manner. 

 
D. Center-of-Gravity Reduce Scheduler Algorithm 

The Center-of-Gravity reduce scheduler algorithm to work 

designing a locality-aware, skew-aware alleviate task 

scheduler for reduction MapReduce network traffic [26]. The 

proposed scheduler algorithm attempts to schedule every 

alleviate the task at its center-of-gravity node laid down [27] 

by the network locations. Regarding scheduling reducers at 

their center-of-gravity nodes, they argue for reduce network 

traffic, which may possibly allow more MapReduce jobs to 

stick together on the same system [28]. 

 
XI. CONCLUSION 

 

In the real world, data processing and storage approaches are 

facing many challenges in meeting the persistently increasing 

insistence of big data. Thus, it becomes greatly challenging to 

operate on the enormous data. In the Big data area, 

MapReduce is one of the key approaches used for nursing 

giant data sets. MapReduce was introduced to extricate 

volumetric data, computational problems, and in particular 

designed to run on commodity hardware and its based on 

divide and conquer principles. This is because of its  

appreciable flexibility, which allows automatic parallelization 

and execution on a huge-scale cluster with more than 

thousands of nodes. In this paper, presents MapReduce 

concepts, footstep of MapReduce, execution of MapReduce, 

MapReduce framework and its components, we also highlight 

the MapReduce user interfaces.   Finally, we investigated the 

procedures, performance, scheduling algorithms in 

MapReduce. These surveys aim to provide an extensive 

overview and big-picture to readers of this exciting area. 
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