

 © 2017, IJCSE All Rights Reserved 218

International Journal of Computer Sciences and Engineering Open Access

Review Paper Volume-5, Issue-10 E-ISSN: 2347-2693

An Extensive Investigate the MapReduce Technology

Yusuf Perwej
1*

, Md. Husamuddin
2
, Fokrul Alom Mazarbhuiya

3

1*

Department of Information Technology, Al Baha University, Al Baha, Kingdom of Saudi Arabia(KSA)
2
Department of Information Technology, Al Baha University, Al Baha, Kingdom of Saudi Arabia(KSA)

3
Department of Information Technology, Al Baha University, Al Baha, Kingdom of Saudi Arabia(KSA)

*Corresponding Author: yusufperwej@gmail.com

Available online at: www.ijcseonline.org

Received: 17/Sep/2017, Revised: 30/Sep/2017, Accepted: 13/Oct/2017, Published: 30/Oct/2017

Abstract - Since, the last three or four years, the field of “big data” has appeared as the new frontier in the wide spectrum of IT-

enabled innovations and favorable time allowed by the information revolution. Today, there is a raise necessity to analyses

very huge datasets, that have been coined big data, and in need of uniqueness storage and processing infrastructures.

MapReduce is a programming model the goal of processing big data in a parallel and distributed manner. In MapReduce, the

client describes a map function that processes a key/value pair to procreate a set of intermediate value pairs & key, and a

reduce function that merges all intermediate values be associated with the same intermediate key. In this paper, we aimed to

demonstrate a close-up view about MapReduce. The MapReduce is a famous framework for data-intensive distributed

computing of batch jobs. This is over-simplify fault tolerance, many implementations of MapReduce materialize the overall

output of every map and reduce task before it can be consumed. Finally, we also discuss the comparison between RDBMS and

MapReduce, and famous scheduling algorithms in this field.

Keywords - Big Data, MapReduce, Scheduling, Processing Layer, Indexing, Data Layout.

I. INTRODUCTION

Today the volume of data being generated globally is

increasing at a [1] dramatic rate. The enormous amount of

data is rising everywhere due to advances in the [2] Internet

and communication technologies and the interests of people

using social media, Internet of Things, smart phones, sensor

devices, online services and many more. The essential to

manage efficiently the exponentially growing dataset is

increasing each and every day. For examples, International

Data Corporation (IDC) announces that 2.9 ZB (zettabytes)

data of the universe were stored during the year of 2012 and

this will increase up to 45 ZB by 2020 [3]. Correspondingly,

Facebook processes around 550 TB (terabytes) data every

day and Twitter generates 9 TB data day-to-day [4, 5]. The

larger datasets don’t only include a structured form of data

but more than 75% of the dataset includes semi-structured,

unstructured and raw form of data. The conventional data

management tools such as the RDBMS, no longer prove to be

adequate in handling this burst in data. This report gives an

overview of the new ways to maintain such large datasets [6]

by iterating over the MapReduce technique. In this survey

paper, we review the background and state-of-the-art the

MapReduce. The MapReduce [7] is a distributed computing

model proposed by Google. The main purpose of MapReduce

is to process volumetric data sets distributed and paralleled. It

endows a programming model in which users can specify a

map function that processes a key/value pair to originate a set

of intermediate key/value pairs, and a detract function that

merges all intermediate values related the same intermediate

key [8]. The Map-Reduce has become a renowned model for

developments in cloud computing. MapReduce is a

programming model and an allied implementation for

processing and generating spacious datasets that is

responsible for a broad variety of real-world tasks[2, 6, 7].

The first section is the introduction of Big Data. The second

section comparison between MapReduce and RDBMS. The

third section discusses MapReduce. The fourth section about

F footstep of MapReduce. In fifth section MapReduce

execution. Again sixth section MapReduce framework and

its components. The seventh section MapReduce user

interfaces and eighth section MapReduce procedures . In the

nine sections MapReduce performance and ten sections

MapReduce scheduling algorithms. Finally, last section is

conclusion.

II. COMPARISON BETWEEN THE RDBMS AND

MAPREDUCE

The RDBMS is convenient for an application where data size

is limited like it's in GBs, whereas MapReduce convenient

for

mailto:yusufperwej@gmail.com

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 219

an application where data size is in Exabyte [2]. If the data

access pattern is dominated by seeks, it will take longer to

read or write huge portions of the datasets than streaming

through it, which operates at the transfer rate. On the

contrary, for updating a miniature portion of records in a

database, a traditional B-Tree works well. If updating the

majority of a database, a B-tree is less lower than

MapReduce, [9] which uses merge as well as sort to rebuild

the database. MapReduce acceptable in an application where

the data is written once and read numerous times much the

same in your Facebook profile you post your photo once and

that picture of your seen by your friends numerous times,

whereas RDBMS good for data sets that are incessant

updated [10]. The structured data is data that is organized into

entities that have a defined format, namely XML documents

or database tables that correspond to a distinctive predefines

schema. In semi-structured data, is looser, and though there

may be a schema, it is frequently ignored, so it may be used

as a guide to the structure of the data for instance, a

spreadsheet, in which the structure is the grid of the cells,

although the cells yourself may hold any form of data.

However, unstructured data does not have any particular

internal structure, for instance plain text or image data [2,

11]. MapReduce works well on any type of unstructured or

semi-structured data, since it is designed to interpret the data

at processing time. Eventually the RDBMS scaling is

nonlinear, whereas MapReduce is linear.

Table 1. The Compared between RDBMS and MapReduce

III. THE MAPREDUCE

The MapReduce is a framework for supporting the parallel

processing of enormous amounts of unstructured data. In

MapReduce incorporate [6] both a model to structure the

computation and a runtime to parallelize the computation on

a cluster of workstations in a fault-tolerant manner. The

MapReduce can be seen as a programming exemplar to write

applications that can be decomposed in [12, 13]a phase Map

and a phase Reduce. MapReduce is a programming model

revolutionary by higher-order functions map and reduce

commonly found in functional languages. In the circumstance

functional programming, the map function enforces a given

function to each element of a given list and return the new

list. The reduce function provides all the elements of a list by

applying a given function to an element and a partial

outcome. In spite of, a lot more than this to make these

phases happen easily. Every possible computing node has to

access the data it process [13]. To remain on the platform,

this may be done in multiple ways. The data may beforehand

be directly accessible to the nodes or may need to be

scattered or re-balanced. The data are then echeloned in key-

value pairs. This part is normally not accounted when assess

the performance of a MapReduce application.

Figure 1. The Normal Workflow of a MapReduce

IV. THE FOOTSTEP OF MAPREDUCE

The input data is automatically isolated by the MapReduce

library into pieces, called splits. Each Map task processes a

single split, consequently M splits entails M Map tasks.

Again Map phase consists in having Mappers read the

corresponding splits and production intermediate key/value

pairs [1]. Usually, the Mapper uses a subsidiary input reader

to read the raw input data. The objective of the reader is to

convert the input [13] to a key/value pairs amenable to be

processed by the Map function. The MapReduce framework

to endorsement a diversification of [6, 12] jobs that are not

tied to any specific input format. After the Map phase, a

segmentation function is applied over the intermediate key

space to divide it into R segmentation, each one to be

processed in a Reduce task after that both R and the

segmentation function can be configured by the user.

 Task Assignment - The input data are echeloned

into splits and, for each split, the master creates a

Map task and allocate it to a worker.

 Input Reader - Every Map task executes a function

to extract the key/value pairs from the raw data

internally the splits.

 Map Function - Every key/value pair is fed into the

user-defined Map function that can production zero,

one or more intermediate key/value pairs. These

pairs represent a temporary outcome, the

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 220

intermediate data are kept in the local disks of the

Mappers.

 Shuffle Phase - The median key/value pairs are

assigned to Reducers by means of a segmentation

function in a manner such that all median key/value

pairs with the same median key will be processed by

the same detract task and hence by the same

Reducer. These median key/value pairs are spread at

random across the cluster, the master passes to

Reducers the information about the Mappers's

location, because each Reducer may be able to

remotely read its input.

Figure 2. The Genral Footstep of MapReduce

 Combiner Phase (Optional) - If the user-defined

detract function is exchangeable and associative, and

there is a remarkable repetition of intermediate keys

produced by each Mapper, an optional user-defined

combiner function can be applied to the outputs of

the Mapper [12]. The aim is to group, in pursuance

of the intermediate key, all the intermediate values

that were produced by the Map tasks of each

Mapper. Normally, the same Reduce function code

is used for the combiner function. If this combiner

function is applied, each Mapper outputs only one

median value per median key [13].

 Reduce Function - Every Reducer passes the

assigned median keys, and the corresponding set of

median values, to the user-defined decrease

function. The output of the reducers is stored in the

global file system for lastingness.

 Sort & Group - When the remote reads are ended,

each Reducer sort the median data in order to group

all its input pairs by their median keys.

V. A MAPREDUCE EXECUTION

The Apache Hadoop is the most famous open-source

implementation of the MapReduce framework [2]. It is

written in Java and has received contributions from big

companies such as Facebook and others. The Google's

MapReduce, Hadoop also employs two dissimilar layers. The

Hadoop MapReduce Framework, a processing layer

accountable for running MapReduce jobs and the HDFS, a

distributed storage layer accountable for compatible storing

the data among the cluster nodes.

A. Processing Layer

The entities associated with the processing layer are one

master, named the JobTracker, and one or more workers,

named the TaskTrackers. The main contribution of the

JobTracker is to coordinate all the jobs running on the system

and to allocate tasks to run on the TaskTrackers which

periodically report to the JobTracker the headway of their

running tasks. The Hadoop's scheduler makes each job [13]

use the entire cluster and takes the jobs' priorities into account

when scheduling them. This means that topmost priority jobs

will run first. In spite of, Hadoop also supports other

schedulers, including shared cluster schedulers that allow

running jobs from several users at the same time. In view of

task scheduling, Hadoop does not build an a priori plan to set

up which tasks are going to run on which nodes instead

Hadoop take the plunge on which nodes to deploy each task

in runtime. Example for employe nikhat a task, it is assigned

the next one [14]. This means that should an employer nikhat

all tasks related the data it stores locally, it may be fed tasks

which entail acquire data from other workers. There are ten

dissimilar places in the query-execution pipeline of Hadoop

where User Defined Functions (UDFs) may be injected. A

user of the framework can define how the input data is

divided and how a divided is parsed into key/value pairs, for

example. This side makes Hadoop is comfortably

customizable MapReduce framework.

B. Storage Layer

The Hadoop DFS (HDFS) is a distributed file system

designed to store unswerving less, i.e., once the data is

written into the HDFS is not converted but can be read many

times. The HFDS implementation uses three various entities

first one NameNode, second one secondary NameNode and

thired one or more DataNodes. A NameNode in charge of for

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 221

storing the metadata of all lies in the distributed file system.

In order to recover the metadata files in case of a NameNode

lack of success, the SecondaryNameNode keeps a copy of the

most recent checkpoint of the lesystem metadata. Every file

in HDFS is echeloned into various fixed-size blocks, similar

that each block is stored on any of the DataNodes. Hadoop

replicates each block places them strategically in order to

make better availability two replicas on DataNodes on the

same rack and the third one on a various rack, to inhibit from

loss of data, should an entire rack be liquidated. It is worth

noting the difference between input divided and HDFS

blocks. As long as an HDFS block is an indivisible part of a

file that is stored in each node, an input divided is logical data

that is processed by a Map task. There is no necessity for

divided to be tied to blocks, and not even less. Think about

the case where a file is divided by lines, such that each Map

task processes one line. It may come about that a line over us

from an HDFS block, i.e., the divided boundaries do not

coincide with the HDFS block boundaries. In this situation,

the Mapper processing that line must retrieve the next HDFS

block to receive the final part of the line.

VI. THE MAPREDUCE FRAMEWORK AND IT’S

COMPONENTS

The MapReduce is a programming model and an allied

implementation for processing and generating volumetric

data sets. Assume that programs written in this functional

manner MapReduce are automatically parallelized and

executed on a spacious cluster of commodity machines [15,

16]. In a primary MapReduce job, it consists of the following

components.

Figure 3. The Architecture & Components of MapReduce

Job Client – This is submits MapReduce jobs to job tracker.

Job Tracker – This is one part of a master node and it

allocates job to task tracker.

Task Tracker – This is one part of slave node and it track all

task data. As soon as finished the task informed to job

tracker.

Pay Load – This is one type of applications, notably designed

for MapReduce functions.

Mapper – This is the prime intention of the mapper is

mapping the input data to intermediate key/value pairs.

Name Node – This is managing the HDFS Data.

Data Node – This is searched advance data are attendance in

processing places.

Master Node – This is the prime intention of Master node is

receiving job data from clients.

Slavenode – This is runs Map and Reduce jobs.

VII. THE MAPREDUCE USER INTERFACES

In this section provides some detail about user-facing aspects

of the MapReduce framework. This helps you implement,

configure, and tune your jobs in a fine-grained way.

 Payload - In payload applications normally

implement the Mapper and Reducer interfaces to

provide the map and reduce methods. These form

the core of the job.

 Job Configuration - In JobConf describe a

MapReduce job configuration. JobConf is the

primary interface for a user to mention a

MapReduce job to the Hadoop framework for

execution. The framework tries to honestly execute

the job as mentioned by JobConf.

 Task Execution & Environment - The TaskTracker

executes the Mapper/ Reducer task as a child

process in a distinct jvm. After that child-task

inherits the environment of the parent TaskTracker.

The user can describe supplementary options to the

child-jvm via the mapred.

 Job Submission and Monitoring - The Job is the

primary interface by which a user job communicates

with the Resource Manager. Job provides

condescension to submit jobs, track their progress,

access component task reports and logs, and get

MapReduce cluster status details.

 Job Input - In the input format represents the input

identification for a MapReduce job. The MapReduce

framework relies on the input format of the job too.

Again validate the input specification of the job.

After that divide the input file into logical input,

divide instances, each of which is then assigned to a

personal Mapper. Again the RecordReader

implementation used to gather input records from

the logical input, divide for processing by the

Mapper.

 Job Output - In the output format represents the

output identification for a MapReduce job. The

MapReduce framework relies on the output format

http://www.credosystemz.com/training-in-chennai/best-big-data-training-in-chennai/

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 222

of the job too. Again validate the output

specification of the job for example, inspection that

the output directory does not previously alive.

VIII. THE MAPREDUCE PROCEDURES

In this paper, we are discuss about two different MapReduce

procedures firstly the single-job procedure, in which

subdivide of work to tasks is done without taking document

sizes into account and secondly the chain-job procedure, in

which a first job downloads the documents (take the plunge

their sizes) and performs some preparatory entity-mining,

while a second job (chained with the first) sustain the mining

over size-aware division of the contents to produce the

accomplished NEM analysis.

A. Single Job Procedure

In the single-job procedure includes an initial stage that

queries a search engine to receive the hits to be processed and

prefabricate the distribution of tasks, followed by a

subsequent stage of the MapReduce job itself, both shown in

figure 4. Here master node (where the JobTracker executes)

carries out preliminary processing. First, it queries a Web

Search Engine, which comeback a set of titles, URLs, and

snippets [17] etc. Subsequently, the master attempt to

determine the URL content length, in order to preferable

balance the downloading

Figure 4. Single-job design

and processing of the URL contents in the MapReduce job.

Again instate this is to perform an HTTP HEAD request for

each URL earlier to downloading it. These processes again

and again pops the top of the stack and inserts it to the divide

with the least total size, until the stack is empty. When the

assignment of URLs is finished the produced divide are

stored in HDFS. At the subsequent stage of the single-job

procedure a number of mapper tasks are indite on a number

of JVMs hosted by Cloud VMs.

B. Chain Job Procedure

We have evolved a substitute MapReduce procedure that

consists of two chained jobs (Jobs #1 and #2) as shown in

figure 5. The appropriateness behind this design is the

following Job #1 downloads the exhaustive document set and

thus gains exact information [18] about content sizes. Here

upon Job #2 is now capable of performing a size-aware

assignment of the remaining documents to tasks. At the same

moment, we have confidence that most users panegyrize a

quick NEM preview on a sample of the hits before getting the

full-scale analysis. In Job #1 is designed to carry out such a

preview the master node queries the search engine getting the

beginning set of titles, URLs, and snippets. Then, it creates

the beginning divided of the URLs without using any

information about their sizes. Eventual after Job#1 tasks in

the first instance downloading documents while performing

only limited-scale NEM analysis, there is no requirement to

create much tasks than the number of JVM slots

approachable.

Figure 5. Chain-job design

IX. THE MAPREDUCE PERFORMANCE

The MapReduce may not endow the desired performance in

inappreciable use cases, such as the selection scenario. In this

section we describe the most pertinent of these techniques,

like that indexing, data layouts, and co-location, which

purpose at improving data accesses during the Map phase of

selective query process.

A. Indexing

In a plain MapReduce framework, the execution of a job need

that a full scan of the dataset is performed (example for

reading all the records one by one) further if only a small

subset of them is going to be selected. Additionally, all

partitioned generate Map tasks even if some of them do not

contain pertinent data and will not create any intermediate

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 223

data. As well, in the Map phase, all blocks have to be

perfectly

fetched from disk, which insinuate that all attributes of all

records are fetched to main memory without taking into

account which ones the job is fascinated in [19]. This issue

can keep away from if the input data are indexed before the

mapping step takes place. Momentarily, an index is built for

one attribute and consists in a list of various values of that

attribute contained in the indexed data, as well as possible the

positions where these values can be found in the input file.

 Record Level Indexing

Commonly, this access requires having the index inside each

partition, which is then used at query time to select the

applicable records from the partition, instead of reading the

entire partition record by record [20].

.

 Split Level Indexing

It has been attention that the execution time of a query

depends on the number of waves of Map tasks that are

executed, which in turn depends on the number of processed

partition [21]. Additionally, the time to process a partition is

dominated by the I/O time for reading its dataplus the

overhead of commencement the Map task to process it.

 Block Level Indexing

In this case where the partition is comprised of several

blocks, one can create block-level indexes. All blocks

contain several records, these indexes have the potential to

bring meaningful time savings, in pursuance of to the

monitoring [21] block-level indexes map attributes values to

blocks that contain at least one record with that attributes

value. By means of these indexes, when processing a

partition, the applicable blocks are loaded and processed,

whereas the blocks familiar not to match the selection

specification are omitted.

B. Data Layout

The storage unit of HDFS consists in a fixed-size (generically

64MB to 96MB) block of data. Actually, the way the data are

arranged within this block of data can much affect the

repercussion times of the system. Now we call this inner

organization of blocks the data layout. We now familiarize

four various data layouts that may be applied on MapReduce.

 Row Oriented

When utilization this layout all fields of one record are stored

sequentially in the file, and several records are placed

contiguously in the disk blocks. This layout endows rapidly

data loading in many cases, the data to be stored is endow

row-by-row, that means one entire record at a time. In Row-

based systems are designed to adroitly process queries where

several columns of a record required to be processed at the

same time, the entire row can be brought back with a single

access to the disk.

 Column Oriented

When utilization this layout, datasets are vertically split by

column, each column is stored independently and accessed

only when the corresponding attribute is required. In this

layout is well favorable for read operations that accessed a

mini number of columns, since columns that are not

applicable for the intended output are not read. As an

outcome, record reconstruction may need network transfers to

access the needed columns from various storage nodes.

 Column Groups

In this layout consists in organizing all columns of a dataset

in various groups of columns. The various column groups

may have overlapping columns. The data within each column

group is not connected to any particular data layout. It seems

stored in a row or column-oriented way. A benefit of column

groups is that it can keep away from the overhead of record

reconstruction if a query desire an existing amalgamation of

columns.

 PAX

In this hybrid layout combines the [22] benefit of both row-

oriented and column-oriented layouts. Every field of a record

is on the same block as the row-oriented layout, make

provision for low cost of record reconstruction. In spite of,

within each disk page containing the block, PAX uses mini

pages to group every values affiliation to each column.

X. MAPREDUCE SCHEDULING ALGORITHMS

In this section, we describe briefly scheduling algorithms is

one of the most critical dimensions of MapReduce. There are

many algorithms to address these matters with different

techniques and outlook. Now a few of them get attention to

improve data locality and few of them implements to provide

synchronization processing.

A. Fair Scheduling Algorithm

The Fair scheduling is a method of assigning resources to

jobs such that all jobs get on usual, an identical share of

resources over time. Meanwhile a single job running, that job

uses the entire cluster. When additional jobs are submitted

tasks slots that free up are assigned to the recent jobs, because

each job gets approximately the same amount of CPU time.

Dissimilar the lapse Hadoop scheduler, which forms a queue

of jobs, this lets, short jobs finish in pertinent time while not

starving long jobs. It is also a simple way to [23] share a

cluster between several of the others. The Fair Scheduler

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 224

algorithm can range the number of concurrent running jobs

[24] per user and per pool. This can be advantageous when a

user must submit hundreds of jobs at one time, or to make

sure that intermediate data does not fill up disk space on a

cluster when too many simultaneous jobs are running.

B. Hadoop On Demand (HOD) Scheduling Algorithm

In this Hadoop On Demand (HOD) Scheduling Algorithm is

a system for provisioning and managing unconstrained

Hadoop MapReduce and Hadoop Distributed File System

(HDFS) example on a shared cluster of nodes. These

algorithms make it convenient for administrators and users to

quickly setup and use Hadoop. The HOD is also a very

advantageous tool for Hadoop developers and testers who

requirement to share a physical cluster for testing their own

Hadoop versions [23]. The HOD utilization the torque

resource manager to do node allocation. In the allocated

nodes, it can start Hadoop MapReduce and HDFS daemons.

It automatically originates the convenient configuration files

(Hadoop-site.xml) for the Hadoop daemons and client. This

algorithm also has the ability to distribute Hadoop to the

nodes in the virtual cluster that it allocates.

C. Capacity Scheduler Algorithm

In this algorithm contrive to run Hadoop Map-Reduce as a

shared, multi-tenant cluster in an operational affable manner

while maximizing the throughput and the usage of the cluster

while running Map-Reduce applications. This algorithm to

allow sharing a huge cluster while giving every company a

minimum capacity promise. The central idea is that the

available resources [25, 23] in the Hadoop Map-Reduce

cluster segregates among multiple organizations who

collectively fund the cluster based on computing necessity.

There is an added gain that a company can access any excess

competence now being used by others. This endow elasticity

for the company in a cost-effective manner.

D. Center-of-Gravity Reduce Scheduler Algorithm

The Center-of-Gravity reduce scheduler algorithm to work

designing a locality-aware, skew-aware alleviate task

scheduler for reduction MapReduce network traffic [26]. The

proposed scheduler algorithm attempts to schedule every

alleviate the task at its center-of-gravity node laid down [27]

by the network locations. Regarding scheduling reducers at

their center-of-gravity nodes, they argue for reduce network

traffic, which may possibly allow more MapReduce jobs to

stick together on the same system [28].

XI. CONCLUSION

In the real world, data processing and storage approaches are

facing many challenges in meeting the persistently increasing

insistence of big data. Thus, it becomes greatly challenging to

operate on the enormous data. In the Big data area,

MapReduce is one of the key approaches used for nursing

giant data sets. MapReduce was introduced to extricate

volumetric data, computational problems, and in particular

designed to run on commodity hardware and its based on

divide and conquer principles. This is because of its

appreciable flexibility, which allows automatic parallelization

and execution on a huge-scale cluster with more than

thousands of nodes. In this paper, presents MapReduce

concepts, footstep of MapReduce, execution of MapReduce,

MapReduce framework and its components, we also highlight

the MapReduce user interfaces. Finally, we investigated the

procedures, performance, scheduling algorithms in

MapReduce. These surveys aim to provide an extensive

overview and big-picture to readers of this exciting area.

REFERENCES

[1]. Kim, G.-H., Trimi, S., & Chung, J.-H. (2014). Big-data

applications in the government sector. Communicationsof the

ACM, 57(3), pp 78–85.

[2]. Dr. Yusuf Perwej, “An Experiential Study of the Big Data,” for

published in the International Transaction of Electrical and

Computer Engineers System (ITECES), USA, ISSN (Print): 2373-

1273 ISSN (Online): 2373-1281, Vol. 4, No. 1, page 14-25, March

2017, DOI:10.12691/iteces-4-1-3.

[3]. R. Murugesh, I. Meenatchi, "A Study Using PI on: Sorting

Structured Big Data In Distributed Environment Using Apache

Hadoop MapReduce", International Journal of Computer Sciences

and Engineering, Vol.2, Issue.8, pp.35-38, 2014.

[4]. “Apache Hadoop,” Apache. [Online]. Available:

http://hadoop.apache.org/. [Accessed: 18-Feb-2015].

[5]. M. Khan, P. M. Ashton, M. Li, G. A. Taylor, I. Pisica, and J. Liu,

“Parallel Detrended Fluctuation Analysis for Fast Event Detection

on Massive PMU Data,” Smart Grid, IEEE Trans., vol. 6, no. 1, pp.

360–368, Jan. 2015.

[6]. K. Parimala1 G. Rajkumar, A. Ruba, S. Vijayalakshmi,

"Challenges and Opportunities with Big Data", International

Journal of Scientific Research in Computer Science and

Engineering, Vol.5, Issue.5, pp.16-20, 2017.

[7]. Lee, D., Kim, J.-S., & Maeng, S. “Large-scale incremental

processing with MapReduce”, Future Generation Computer

Systems, 36, pp 66–79, (2014), doi:10.1016/j.future.2013.09.010.

[8]. M. Khan, M. Li, P. Ashton, G. Taylor, and J. Liu, “Big data

analytics on PMU measurements,” in Fuzzy Systems and

Knowledge Discovery (FSKD), 2014 11th International

Conference on, 2014, pp. pp 715–719.

[9]. Qi, C., Cheng, L., & Zhen, X. (2014). Improving mapreduce

performance using smart speculative execution strategy. IEEE

Transactions on Computers, Vol. 63(4), pp 954–967.

Doi:10.1109/TC.2013.15.

[10]. J. Kwon, K. Park, D. Lee, S. Lee, PSR: Pre-computing Solutions in

RDBMS for Fast Web services Composition Search, in:

Proceedings of the 2nd International Conference on Web Services,

Salt Lake City, Utah, USA, ICWS 2007, pp. 808-815.

[11]. Yan, F., Cherkasova, L., Zhang, Z., & Smirni, E. (2014).

Heterogeneous cores for mapreduce processing: Opportunity or

challenge? Paper presented at the proceedings of IEEE/IFIP

NOMS.

[12]. Chen, R., & Chen, H. , Tiled-MapReduce: Efficient and flexible

MapReduce processing on multicore with tiling. ACM

Transactions on Architecture and Code Optimization (TACO),

Volume 10 Issue 1, April 2013, pp 3.

[13]. Dean, J. & S. Ghemawat (2004). Mapreduce: simpli_ed data

processing on large clusters. In Proceedings of the 6th conference

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 225

on Symposium on Opearting Systems Design & Imple-mentation -

Volume 6, OSDI'04, Berkeley, CA, USA, pp. 10-10. USENIX

Association.

[14]. Lee, K.-H., Y.-J. Lee, H. Choi, Y. D. Chung, & B. Moon “Parallel

data processing with mapreduce: a survey”, SIGMOD Rec. vol 40

(4), pp 11-20. (2012).

[15]. S. Sakr, A. Liu, A. Fayoumi, "The family of mapreduce and large-

scale data processing systems", ACM Computing Surveys, vol. 46,

no. 1, pp. 1-44, 2013.

[16]. Q. He, Q. Tan, X. Ma, Z. Shi, "The high-activity parallel

implementation of data preprocessing based on MapReduce", Proc.

of the 5th International Conference on Rough Set and Knowledge

Technology, 2010.

[17]. Google developers: Web metrics - size and number of resources,”

https:// developers.google.com/speed/articles/web-metrics,

accessed: 11/04/2013.

[18]. Mapreduce:Chainingjobs,http://developer.yahoo.com / hadoop/

tutorial/ module4.html#chaining, accessed: 11/04/2013.

[19]. Richter, S., J.-A. Quian_e-Ruiz, S. Schuh, & J. Dittrich. “Towards

zero-overhead adaptive indexing in hadoop”, (2012), CoRR

abs/1212.3480.

[20]. Dittrich, J., J.-A. Quian_e-Ruiz, A. Jindal, Y. Kargin, V. Setty, &

J. Schad (2010, September). Hadoop++: making a yellow elephant

run like a cheetah (without it even noticing). Proc. VLDB

Endow.vol 3 (1-2), 515-529.

[21]. Eltabakh, M. Y., F. Ozcan, Y. Sismanis, P. J. Haas, H. Pirahesh, &

J. Vondrak (2013). Eagleeyed elephant: Split-oriented indexing in

hadoop. In Proceedings of the 16th International Conference on

Extending Database Technology, EDBT '13, New York, NY, USA,

pp. 89-100. ACM.

[22]. Ailamaki, A., D. J. DeWitt, M. D. Hill, & M. Skounakis (2001).

Weaving relations for cache performance. In Proceedings of the

27th International Conference on Very Large Data Bases, VLDB

'01, San Francisco, CA, USA, pp. 169-180. Morgan Kaufmann

Publishers Inc.

[23]. https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html

[24]. Xingwu Zheng, Zhou Zhou, Xu Yang, Zhiling Lan, Jia Wang,

"Exploring Plan-Based Scheduling for Large-Scale Computing

Systems", Cluster Computing (CLUSTER) 2016 IEEE International

Conference on, pp. 259-268, 2016, ISSN 2168-9253.

[25]. Y. Tao Y, Q. Zhang, L. Shi and P. Chen, “ Job scheduling

optimization for multi-user MapReduce clusters ”, In: The fourth

international symposium on parallel architectures, algorithms and

programming. IEEE; 2011. pp 213–17.

[26]. Nikolaos D. Doulamis, Panagiotis Kokkinos, Emmanouel

Varvarigos, "Resource Selection for Tasks with Time Requirements

Using Spectral Clustering", Computers IEEE Transactions on, vol.

63, pp. 461-474, 2014, ISSN 0018-9340.

[27]. Mohammad Hammoud, M. Suhail Rehman, Majd F. Sakr, "Center-

of-Gravity Reduce Task Scheduling to Lower MapReduce Network

Traffic", IEEE, 2012, pp.49–58. doi:10.1109/CLOUD.2012.92

[28]. P. Nguyen, T. Simon, M. Halem, D. Chapman and Q. Le, “ A

hybrid scheduling algorithm for data intensive workloads in

aMapReduce environment”, In: Proceedings of the 2012 IEEE/

ACM fifth international conference on utility and cloud computing.

Washington, DC, USA: IEEE computer society; UCC'12, 2012, pp

161-168.

https://hadoop.apache.org/docs/r1.2.1/fair_scheduler.html

