4
AX]CSE International Journal of Computer Sciences and Engineering [pen Access

Research Paper Volume-5, Issue-10 E-ISSN: 2347-2693

Hybrid Parallel Programming Using Locks and STM

Ryan Saptarshi Ray ™", Parama Bhaumik ?, Utpal Kumar Ray ®

YDept. of Information Technology, Jadavpur University, Kolkata, India
2 Dept. of Information Technology, Jadavpur University, Kolkata, India
® Dept. of Information Technology, Jadavpur University, Kolkata, India

“Corresponding Author: ryan.ray@rediffmail.com, Tel.: 9831520613
Available online at: www.ijcseonline.org
Received: 17/Sep/2017, Revised: 30/Sep/2017, Accepted: 13/Oct/2017, Published: 30/Oct/2017

Abstract— Software Transactional Memory (STM) is a new alternative approach to locks which solves the problem of synchronization in
parallel programs. In STM users have to identify the critical sections in the program and enclose them within transactions by using
appropriate STM function calls. Then STM automatically by its internal constructs ensures synchronization in the program. This paper shows
how to solve the problem of synchronization in parallel programs by using a hybrid programming approach using both locks and STM. Locks
use pessimistic approach to solve the problem of synchronization in parallel programs. STM uses optimistic approach to solve the problem of
synchronization in parallel programs. Both the optimistic and pessimistic approaches have some advantages and disadvantages. The
disadvantage of optimistic approach is that transactions are aborted when validation cannot be done. This approach works well when there
are no conflicts (hence the term optimistic) but wastes work when there are conflicts. Aborting of transactions is a severe problem when the
transactions are long and interactive. The disadvantage of pessimistic approach is that large number of locks in the program will lead to very
slow execution speed which may cancel out the gains made by solving the problem in parallel. The hybrid approach combines the advantages

of the optimistic and pessimistic approaches removing their disadvantages without any degradation of performance.

Keywords— Multiprocessing, Parallel Processing, Locks, Software Transactional Memory, Hybrid Parallel Programming

l. INTRODUCTION

Ensuring synchronization is a very important problem in
parallel programs. Currently locks are used to solve this
problem. Locks use pessimistic approach. Software
transactional memory (STM) is a promising alternative
approach for parallel computation which does not have most
of the limitations of the locks-based approach. STM uses
optimistic approach. Both the optimistic and pessimistic
approaches have some disadvantages.

In the pessimistic approach it is always assumed that results
will surely be erroneous if multiple threads execute the
critical section simultaneously which may not always be the
case. The more the number of critical sections in a program
the more will be the number of locks. Large number of locks
in the program will lead to very slow execution speed which
may cancel out the gains made by solving the problem in
parallel [1].

The main disadvantage of the optimistic approach is that in
those types of problems where simultaneous execution of
critical sections by multiple threads leads to inconsistency
the same critical sections have to be executed again and
again until the values are consistent. This may lead to drastic
degradation of performance and may overset all the gains
achieved by parallel execution [2].

In this paper we present a hybrid approach using both locks
and STM to solve the problem of synchronization in parallel

© 2017, IJCSE All Rights Reserved

programs. The programming example considered is finding
out the minimum element in an array. It is a small prototype
of a real-life example in which different areas of a database
are accessed in real time in parallel.

In the example which we have used the simultaneous
execution of multiple critical sections by multiple threads
will lead to inconsistency. Thus in this case the use of
pessimistic approach is more advantageous. When the
optimistic approach (STM) was used the transactions were
aborted a large number of times as simultaneous execution of
multiple critical sections by multiple threads was frequently
leading to inconsistency. Thus the same critical sections were
executed again and again. This resulted in large execution
time (24 sec). The disadvantage of optimistic approach is that
transactions are aborted when validation cannot be done.
This approach works well when there are no conflicts (hence
the term optimistic) but wastes work when there are
conflicts. Aborting of transactions is a severe problem when
the transactions are long and interactive [3]. When the
pessimistic approach (locks) was used the execution time
was 5 seconds. In the hybrid approach the pessimistic
approach was used in one half of the array and optimistic
approach in the other half. The execution time was 5
seconds. Thus we can say that the hybrid approach combines
the advantages of the optimistic and pessimistic approaches
removing their disadvantages without any degradation of
performance.

In the ideal case hybrid approach may also lead to

185

International Journal of Computer Sciences and Engineering

further performance improvement. This is because in our
example we have used optimistic approach and pessimistic
approach in one half of the array each. But in the ideal case
optimistic and pessimistic approaches are applied where each
is advantageous. Pessimistic approach is applied in those
portions of the program where simultaneous execution of
multiple critical sections by multiple threads may lead to
inconsistency and optimistic approaches where simultaneous
execution of multiple critical sections by multiple threads
may not lead to inconsistency.

Earlier also hybrid programming was used in different
applications which is described in detail in Section I1 (related
work) [4], [5], [6], [7], [8]. In our work we have used STM
for the optimistic approach. That is we have shown a
combination of locks and STM which has not been used
earlier.

In this paper Section Il finds out minimum element in an
array using locks (pessimistic approach). Section IV finds
out minimum element in an array using STM (optimistic
approach). Section V finds out minimum element in an array
using hybrid approach (combination of optimistic and
pessimistic approaches) using both locks and STM. The
performances of the different approaches are compared.

Il. RELATED WORK

In 1992 Philip S. Yu and Daniel M. Dias published a paper
entitled “Analysis of Hybrid Concurrency Control Schemes

For a High Data Contention Environment” [4]. This paper
developed a hybrid approach for transaction processing in
databases exploiting the property that with sufficient buffer,
data blocks referenced by aborted transactions can continue
to be kept in memory and be available for access during
rerun, thus greatly reducing the abort probability during
rerun. Also in 1992 Sang H. Son and Juhnyoung Lee
published a paper entitled “A New Approach to Real-Time
Transaction Scheduling” [5]. This paper presented new real-
time transaction scheduling algorithms which employed a
hybrid approach. The protocols made use of a new conflict
resolution scheme called dynamic adjustment of serialization
order, which supported priority-driven scheduling, and
avoided unnecessary aborts. Then in 1997 Sung Ho Cho,
JongMin Lee, Chong-Sun Hwang and WonGyu Lee
published a paper entitled “Hybrid Concurrency Control for
Mobile Computing” [6]. This paper proposed a hybrid
concurrency control scheme which alleviated the effects of
frequent disconnections and limitation of bandwidth in
mobile computing environments. In 2003 SungHo Cho
published a paper entitled “A Hybrid Concurrency Control
with Deadlock-free Approach” [7]. This paper suggested an
efficient hybrid concurrency control scheme that used a
deadlock-free approach and ensured that transactions were
re-started at most once. After 2009 Jan Lindstrom published

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

a paper entitled “Hybrid Concurrency Control Method in
Firm Real-Time Databases” [8]. This paper proposed a
concurrency control method where transactions accessed
tables by pessimistic concurrency control, optimistic
concurrency control or nocheck concurrency control based
on application needs.

In our work we have also used hybrid concurrency control to
simultaneously access the elements of an array. The new
thing which our work has done is that for the optimistic
approach we have used STM. That is we have shown a
combination of locks and STM which has not been used
earlier.

I1l. SOLUTION USING LOCKS

Synchronization of multiple threads is the hardest problem
that has to be overcome when writing parallel programs. Two
or more threads can try to access the same locations in
memory. So if careful measures are not taken the results will
be erroneous. If multiple threads try to modify the same
variable(s) at the same time, data can become corrupt.
Nowadays this problem is solved by using locks in parallel
programs.

In programming with locks programmers first have to
identify the critical sections in the program. Critical section
is a block of code that contains variable(s) that may be
accessed simultaneously by two or more threads. Then when
a thread will try to enter a critical section, it has to first
acquire that section's lock. If another thread is already
holding the lock, the former thread must wait until the lock-
holding thread releases the lock, which it does when it leaves
the critical section .

This type of approach is called pessimistic approach. In this
approach it is always assumed that results will surely be
erroneous if multiple threads execute the critical section
simultaneously which may not always be the case. The more
the number of critical sections in a program the more will be
the number of locks. Large number of locks in the program
will lead to very slow execution speed which may cancel out
the gains made by solving the problem in parallel.

However a significant advantage of the pessimistic approach
is that it ensures that the same critical section never has to be
executed again and again which may be the case with
optimistic approach. This approach is advantageous in
situations where really simultaneous execution of critical
sections by multiple threads leads to erroneous results.

The following code shows a parallel program using threads
and locks which finds out the minimum element in an array.
Thus pessimistic approach is used to solve the problem of
synchronization in the program.

186

International Journal of Computer Sciences and Engineering

#include<stdlib.h>
#include<stdio.h>
#include<pthread.h>
#include<sys/time.h>
#include<time.h>

#define ARRAY_SIZE 100000000
#define NUM_THREAD 2
unsigned long n=ARRAY_SIZE;
unsigned char arrfARRAY_SIZE],global_min=255;
void *thread_search_minl1();
unsigned char
local_min_array[NUM_THREAD],global_min_lock check=
255;
pthread_mutex_t
mutex1=PTHREAD_MUTEX_INITIALIZER;
main(int argc,char ** argv)
{
pthread_mutex_init(&mutex1,NULL);
pthread_t tid[NUM_THREAD];
inti,k,p;
struct timeval ini_tv,final_tv;
intarg_to_be passed[NUM_THREAD];
arr[0]=8;
arr[1]=16;
arr[2]=3;
arr[3]=5;
arr[4]=23;
arr[5]=7;
printf("Enter number of times code is to be executed\n");
scanf("%d",&p);
gettimeofday(&ini_tv,NULL);
for(k=0;k<p;k++)

global_min=arr[0];

for(i=0;i<NUM_THREAD:;i++)

{

arg_to_be_passed][i]=i;

pthread_create(&tid[i], NULL,thread_search_minl,&arg_t
0_be_passed[i]);

}
for(i=0;i<NUM_THREAD;i++)

{
pthread_join(tid[i],NULL);
}

}

gettimeofday(&final_tv,NULL);

printf("\nTotal Time Taken = %ld\n", final_tv.tv_sec -
ini_tv.tv_sec);

return O;

void *thread_search_min1(int * num_ptr)

{

unsigned long j;
unsigned char byte_under_stm;

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

int num,*number_ptr;

number_ptr=num_ptr;

num=*number_ptr;

local_min_array[num]=255;

for((G=(((num*n)/NUM_THREAD)));j<(((hum+1)*n)/NU
M_THREAD);j++)

{

pthread_mutex_lock(&mutex1);

if(arr[j]<global_min)

global_min=arr[j];

}

pthread_mutex_unlock(&mutex1);

}

pthread_exit(0);
}

The following statements in the code are used for thread
creation:

for(i=0;i<NUM_THREAD;i++)

{

arg_to_be_passed[i]=i;
pthread_create(&tid[i],NULL,thread_search_minl,&arg _to_
be_passed[i]);

}

The following statements ensure that even if any thread
completes its execution early it has to wait for completion of
all the other threads.

for(i=0;i<NUM_THREAD;i++)

{
pthread_join(tid[i], NULL);
}

In the thread function the critical section of the program is
the portion where the array elements are accessed and the
global variable global_min is being updated. It is enclosed
using locks in the following fashion:

for((j5=(((num*n)/NUM_THREAD)));j<(((num+1)*n)/NU
M_THREAD);j++)
{
pthread_mutex_lock(&mutex1);
if(arr[j]<global_min)
{
global_min=arr[j];

pthread_mutex_unlock(&mutex1);

}

The lock calls which have been used in the program are
described below:-

187

International Journal of Computer Sciences and Engineering

pthread _mutex_init(&mutex1,NULL)- It is used for lock
initialization.

pthread_mutex_lock(&mutex1)- It is used for locking. Any
thread which wants to access the critical section has to first
acquire the lock on mutex1.

pthread_mutex_unlock(&mutex1)- It is used for
unlocking.

In this program the critical region is enclosed within locks.
So the code faces no synchronization problems.

IV. SOLUTION USING STM

STM can also be used to solve the synchronization problem.
In case of STM also the programmer has to first identify the
critical section of the program and then has to enclose it
within a transaction. But the difference with locks is that
STM uses optimistic approach for synchronization.

Optimistic approach means that STM allows multiple threads
to execute the critical section at the same time. After the
executions are over the values of the edited variables are
checked to see if the values are consistent. If the values are
inconsistent then the critical sections of the threads are
executed again. Optimistic approach is advantageous and
very suitable for those problems where execution of critical
sections by multiple threads simultaneously does not lead to
any inconsistency. In those cases due to parallel execution of
critical sections by multiple threads execution times improve
considerably.

But the main disadvantage of the optimistic approach is that
in those types of problems where simultaneous execution of
critical sections by multiple threads leads to inconsistency
the same critical sections have to be executed again and
again until the values are consistent. This may lead to drastic
degradation of performance and may overset all the gains
achieved by parallel execution.

Some code snippets of solution of the parallel program to
find out minimum element in an array using pthreads and
STM are shown below. The overall structure of the code is
same as that of the code using locks shown in Section III.
The only difference is instead of locks STM is used in the
code for synchronization. The extra header files which must
be declared are:-

#include <stm.h>
#include<atomic_ops.h>

The following macros must also be declared.

#define RO 1

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

#define RW 0
#define START(id, ro) {stm_tx_attr t_a={id,
ro}; sigjmp_buf *_e = stm_start(& a); if (_e '= NULL)
sigsetjmp(*_e, 0)
#define LOAD(addr) stm_load((stm_word_t
*)addr)
#define STORE(addr, value) stm_store((stm_word_t
*)addr, (stm_word_t)value)
#define COMMIT stm_commit(); }

All the operations in the main function must be enclosed
within the statements stm_init() and stm_exit().

In the thread function the critical section is identified and
enclosed within a transaction in the following manner:

for((j5=(((num*n)/NUM_THREAD)));j<(((num+1)*n)/NU
M_THREAD);j++)

{

START(0,RW);

byte_under_stm=(unsigned char)LOAD(&global_min);

if(arr[j]< byte_under_stm)

{

byte_under_stm=arrl[j];

}

STORE(&global_min, byte_under_stm);

COMMIT;

}

The STM functions and calls which have been used in the
program are described below:

stm_init initializes the TinySTM library at the outset. It must
be called from the main thread before accessing any other
functions of the TinySTM library.

stm_init_thread initializes each thread that performs
transactions. Each thread that performs transactional
operations should call it once before it calls any other
function of the TinySTM library. In this program the thread
function thread_search_min1 calls it.

stm_exit is the corresponding shutdown function for
stm_init. It is used to clean up the TinySTM library. It should
be called once from the main thread after all transactional
threads have completed execution.

stm_exit_thread is the corresponding shutdown function for
stm_init_thread. It is used to clean up the transactional
thread. It should be called once from each thread that
performs transactional operations upon exit. In this program
it is wused to «clean wup the thread function
thread_search_minl.

START(0,RW) starts a transaction. In this program the
thread function thread_search_min1 uses it.

188

International Journal of Computer Sciences and Engineering

COMMIT closes a transaction. In this program the thread
function thread_search_min1 uses it.

byte _under_stm=(unsigned char) LOAD(&global_min);
is used to store the value of global_min in byte_under_stm.
In this program the thread function thread_search_minl
uses it.

STORE(&global_min,byte_under_stm); is used to store
the value of byte_under_stm in global_min. In this program
the thread function thread_search_minl uses it.

In this program the critical section is enclosed within a
transaction using TinySTM which is a type of STM. So the
program faces no synchronization problem.

V. SOLUTION USING HYBRID APPROACH

In this paper we have developed and demonstrated a hybrid
approach using locks and STM which is a combination of the
optimistic and pessimistic approaches to solve the problem of
synchronization in parallel programs. The hybrid approach
combines the advantages of the optimistic and pessimistic
approaches and does not suffer from their disadvantages.

The problem we have considered here is finding out
minimum element in an array. This is a small prototype of a
real-life example in which multiple parts of the same
database are accessed and modified simultaneously in real
time. In our example we have ensured that the elements of
one half of the array are accessed in parallel using optimistic
approach and the other half using pessimistic approach. The
program is shown below. The overall structure of the code is
same as that of the code in Section I1l. The only difference is
that the hybrid approach is used in the program.

#include<stdlib.h>
#include<stdio.h>
#include<pthread.h>
#include<sys/time.h>
#include<time.h>
#include<atomic_ops.h>
#include<stm.h>

#define RO 1

#define RW 0

#define START(id, ro) { stm_tx_attr t _a = {id,
ro}; sigjmp_buf * e = stm_start(&_a); if (_e !'= NULL)
sigsetjmp(*_e, 0)

#define LOAD(addr) stm_load((stm_word_t

*)addr)
#define UNITLOAD(addr, timestamp)
stm_unit_load((stm_word_t *)addr, (stm_word_t

*)timestamp)

#define STORE(addr, value) stm_store((stm_word_t

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

*)addr, (stm_word_t)value)
#define UNITSTORE(addr,
stm_unit_store((stm_word_t *)addr,
(stm_word_t *)timestamp)
#define COMMIT

value, timestamp)
(stm_word_t)value,

stm_commit(); }

#define ARRAY_SIZE 100000000
#define NUM_THREAD 2
unsigned long n=ARRAY _SIZE;
unsigned char arrffARRAY _SIZE],global_min=255;
void *thread_search_min1();
unsigned char
local_min_array[NUM_THREAD],global_min_lock check=
255;
pthread_mutex_t
mutex1=PTHREAD_MUTEX_INITIALIZER;
main(int argc,char ** argv)
{
stm_init();
pthread_mutex_init(&mutex1,NULL);
pthread_t tid[NUM_THREAD];
inti,k,p;
struct timeval ini_tv,final_tv;
intarg_to_be passed[NUM_THREAD];
arr[0]=8;
arr[1]=16;
arr[2]=3;
arr[3]=5;
arr[4]=23,;
arr[5]=7;
printf("Enter number of times code is to be executed\n");
scanf("%d",&p);
gettimeofday(&ini_tv,NULL);
for(k=0;k<p;k++)

global_min=arr[0];

for(i=0;i<NUM_THREAD:;i++)

{

arg_to_be_passed[i]=i;

pthread_create(&tid[i], NULL,thread_search_minl,&arg_t
0_be passed[i]);

}

for(i=0;i<NUM_THREAD;i++)

{

pthread_join(tid[i],NULL);

¥

}

gettimeofday(&final_tv,NULL);

printf("\nTotal Time Taken = %Ild\n", final_tv.tv_sec -
ini_tv.tv_sec);

return O;

stm_exit();

void *thread_search_min1(int * num_ptr)

{

189

International Journal of Computer Sciences and Engineering

unsigned long j;

unsigned char byte_under_stm;

int num,*number_ptr;

number_ptr=num_ptr;

num=*number_ptr;

local_min_array[num]=255;

stm_init_thread();

for((G=(((num*n)/NUM_THREAD)));j<(((num+1)*n)/NU
M_THREAD);j++)

{
if(j<(n/2))
{

START(0,RW);
byte_under_stm=(unsigned char)LOAD(&global_min);
if(arr[j]< byte_under_stm)
{
byte under_stm=arr][j];
}
STORE(&global_min, byte_under_stm);
COMMIT;
}
else
{
pthread_mutex_lock(&mutex1);
if(arr[jJ<global_min)
{

global_min=arr[j];
}

pthread_mutex_unlock(&mutex1);

¥
¥

stm_exit_thread();
pthread_exit(0);
}

In the above code in the thread function the critical section is
the portion where the array elements are accessed and the
global variable global_min is being updated. One half of the
array elements are accessed using STM (optimistic approach)
and the other half using locks (pessimistic approach) in the
following manner.

for((G=(((num*n)/NUM_THREAD)));j<(((num+1)*n)/NU
M_THREAD);j++)

{
if(j<(n/2))

{

START(0,RW);

byte_under_stm=(unsigned char)LOAD(&global_min);
if(arr[j]< byte_under_stm)

{

byte_under_stm=arr[j];

}

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

STORE(&global_min, byte_under_stm);
COMMIT;
}

else

{

pthread_mutex_lock(&mutex1);
if(arr[jl<global_min)
{

global_min=arr[j];

pthread_mutex_unlock(&mutex1);

}
}

VI. PERFORMANCE COMPARISON OF
OPTIMISTIC, PESSIMISTIC AND HYBRID
APPROACHES

The execution times for the different approaches are
shown in the table below (Table 1).

Table 1. Execution Times for the different approaches

Locks (seconds) | STM (seconds) | Locks + STM
(Pessimistic (Optimistic (seconds) (Hybrid
Approach) Approach) Approach)

5 24 5

From the above table (Table 1) we can see that the execution
time of the programs in case of locks and the hybrid
approach was 5 seconds and in case of STM was 24 seconds.
So we can say that the hybrid approach removes the
disadvantages of the optimistic and pessimistic approaches
and combines their advantages without any degradation of
performance.

In our work we have divided the array into 2 equal parts and
have applied optimistic approach in one part and pessimistic
approach in the other. In the ideal case hybrid approach may
also lead to performance improvement as optimistic and
pessimistic approaches are applied where each is
advantageous. Pessimistic approach is applied in those
portions of the program where simultaneous execution of
multiple critical sections by multiple threads may lead to
inconsistency and optimistic approaches where simultaneous
execution of multiple critical sections by multiple threads
may not lead to inconsistency.

VIl. SYSTEM SPECIFICATIONS

The specifications of the system in which we compiled and
executed the codes are given below:

SYSTEM DESCRIPTION

1. Hardware Configuration
Model Name: Intel® Xeon ® CPU E5645 2.40 GHz

190

International Journal of Computer Sciences and Engineering

Number of CPU cores: 6
Total Memory Space: 4.008 GB
Cache: 12288KB

2. Operating System
Fedora 11

3. Software Configuration
1) The language used in the programs is C.
2) gcc compiler version 4.4.0.

VIIl. CONCLUSION AND FURTHER WORK

In this paper we have first shown how to solve the problem
of synchronization in parallel programs using optimistic
approach (STM) and pessimistic approach (locks). Then we
have developed and demonstrated a hybrid approach which
removes the disadvantages of the optimistic and pessimistic
approaches and combines their advantages without any
degradation of performance. The problem considered in this
paper is finding out minimum element in an array. It is a
small prototype of a real life example in which multiple parts
of a database are accessed and edited simultaneously in real
time.

In our work we have divided the array into 2 equal parts and
have applied optimistic approach in one part and pessimistic
approach in the other. In the ideal case hybrid approach may
also lead to performance improvement as optimistic and
pessimistic approaches are applied where each is
advantageous. Pessimistic approach is applied in those
portions of the program where simultaneous execution of
multiple critical sections by multiple threads may lead to
inconsistency and optimistic approach where simultaneous
execution of multiple critical sections by multiple threads
may not lead to inconsistency. We are considering doing
further work in this area.

REFERENCES

[1] Ryan Saptarshi Ray,“STM:Lock-Free Synchronization”, Special
Issue of IJCCT, ISSN (ONLINE): 2231 — 0371, ISSN (PRINT):
0975 — 7449, Volume- 3, Issue-2, pp. 19-25, February 2012

[21 Ryan Saptarshi Ray and Utpal Kumar Ray, “Writing Lock-Free
Code”, In the Proceedings of International Conference on
Computer Science and Engineering(ICCSE),Kolkata, pp. 19-25,
24" March 2012

[3] Pascal Felber, Christof Fetzer, Torvald Riegel, “Dynamic
Performance Tuning of Word-Based Software Transactional
Memory” In the Proceedings of the 13th ACM SIGPLAN
Symposium on Principles and practice of parallel programming,
pp. 237-246 ,2008

[4] Philip S.Yu, Daniel M. Dias, “Analysis of Hybrid Concurrency
Control Schemes For a High Data Contention Environment”,

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

IEEE TRANSACTIONS ON SOFTWARE
ENGINEERING,Volume-18, Issue-2, pp. 118-129, 1992

[5] Sang H. Son, Junhyoung Lee, “A New Approach to Real-Time
Transaction Scheduling”, In the Proceedings of the Fourth
Euromicro workshop on Real-Time Systems, pp. 177-182, June
1992

[6] Sung Ho Cho, JongMin Lee, Chong-sun Hwang, WonGyu Lee,
“Hybrid Concurrency Control for Mobile Computing” In the
Proceedings of High Performance Computing on the Information
Superhighway, pp. 478-483, April 1997

[71 SungHo Cho, “A Hybrid Concurrency Control with Deadlock-free
Approach”, In the Proceedings of the International Conference on
Computational Science and Its Applications, pp. 517-524, 2003

[8] Jan Lindstrom, “Hybrid Concurrency Control Method in Firm
Real-Time Databases”

[9] Debendranath Das, Ryan Saptarshi Ray, Utpal Kumar Ray,
“Implementation and Consistency Issues in Distributed Shared
Memory”, International Journal of Computer Sciences and
Engineering (IJCSE) E-ISSN:2347-2693 Volume- 4, Issue-12, pp
125-131, 2016

Authors Profile

Ryan Saptarshi Ray received the degree of
B.E. in LT. from School of Information
Technology, West Bengal University of
Technology, India in 2007. He received the
degree of M.E. in Software Engineering from
Jadavpur University, India in 2012. Currently
he is PhD Scholar in the Department of
Information Technology, Jadavpur University,
India. He was employed as Programmer
Analyst from 2007 to 2009 in Cognizant Technology Solutions. He
has published 2 papers in International Conferences, 9 papers in
International Journals and also a book titled “Software
Transactional Memory: An Alternative to Locks” by LAP
LAMBERT ACADEMIC PUBLISHING, GERMANY in 2012 co-
authored with Utpal Kumar Ray.

Parama Bhaumik received B.Sc
Phy(Hons.), B.Tech and M.Tech in Computer
Science & Engineering from Calcutta
University, India in 1996,1999 and 2002
respectively. She has done her Ph.D in
Engineering from Jadavpur University, India . (S
in 2009. Currently she is working as | Ay
Associate Professor in the Department of % 7 &
Information Technology, Jadavpur :)
University, India. She has more than 32 research publications in
Journals of repute, Book chapters and International Conferences.

Utpal Kumar Ray received the degree of
B.E. in Electronics and Telecommunication
Engineering in 1984 from Jadavpur
University, India and the degree of M.Tech in
Elecrical Engineering from Indian Institute of
Technology, Kanpur in 1986. He was
employed in different capacities in WIPRO
INFOTECH LTD., Bangalore, India; WIPRO INFOTECH LTD.,
Bangalore, India, Cllent TANDEM COMPUTERS, Austin, Texas,

USA; HCL America, Sunnyvale, California, USA, Clent:
HEWLETT PACKARD, Cupertino, California, USA, HCL
191

International Journal of Computer Sciences and Engineering

Consulting, Gurgaon, India; HCL America, Sunnyvale, California,
USA; RAVEL SOFTWARE INC., San Jose, California, USA;
STRATUS COMPUTERS, San Jose, California, USA; AUSPEX
SYSTEMS, Santa Clara, California, USA and Sun Micro System,
Menlo Park, California, USA for varying periods of duration from
1986 to 2002. From 2003 he is working as Assistant Professor in
the Department of Information Technology, Jadavpur University,
India. He has published 22 papers in different conferences and
journals. He has also published a book titled “Software
Transactional Memory: An Alternative to Locks” by LAP
LAMBERT ACADEMIC PUBLISHING, GERMANY in 2012 co-
authored with Ryan Saptarshi Ray.

© 2017, IJCSE All Rights Reserved

Vol.5(10), Oct 2017, E-ISSN: 2347-2693

192

