

 © 2017, IJCSE All Rights Reserved 185

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-10 E-ISSN: 2347-2693

Hybrid Parallel Programming Using Locks and STM

Ryan Saptarshi Ray
 1*

, Parama Bhaumik
 2
, Utpal Kumar Ray

3

1*

Dept. of Information Technology, Jadavpur University, Kolkata, India
2
 Dept. of Information Technology, Jadavpur University, Kolkata, India

3
 Dept. of Information Technology, Jadavpur University, Kolkata, India

*Corresponding Author: ryan.ray@rediffmail.com, Tel.: 9831520613

Available online at: www.ijcseonline.org

Received: 17/Sep/2017, Revised: 30/Sep/2017, Accepted: 13/Oct/2017, Published: 30/Oct/2017

Abstract— Software Transactional Memory (STM) is a new alternative approach to locks which solves the problem of synchronization in

parallel programs. In STM users have to identify the critical sections in the program and enclose them within transactions by using

appropriate STM function calls. Then STM automatically by its internal constructs ensures synchronization in the program. This paper shows

how to solve the problem of synchronization in parallel programs by using a hybrid programming approach using both locks and STM. Locks

use pessimistic approach to solve the problem of synchronization in parallel programs. STM uses optimistic approach to solve the problem of

synchronization in parallel programs. Both the optimistic and pessimistic approaches have some advantages and disadvantages. The

disadvantage of optimistic approach is that transactions are aborted when validation cannot be done. This approach works well when there

are no conflicts (hence the term optimistic) but wastes work when there are conflicts. Aborting of transactions is a severe problem when the

transactions are long and interactive. The disadvantage of pessimistic approach is that large number of locks in the program will lead to very

slow execution speed which may cancel out the gains made by solving the problem in parallel. The hybrid approach combines the advantages

of the optimistic and pessimistic approaches removing their disadvantages without any degradation of performance.

Keywords— Multiprocessing, Parallel Processing, Locks, Software Transactional Memory, Hybrid Parallel Programming

I. INTRODUCTION

Ensuring synchronization is a very important problem in

parallel programs. Currently locks are used to solve this

problem. Locks use pessimistic approach. Software

transactional memory (STM) is a promising alternative

approach for parallel computation which does not have most

of the limitations of the locks-based approach. STM uses

optimistic approach. Both the optimistic and pessimistic

approaches have some disadvantages.

In the pessimistic approach it is always assumed that results

will surely be erroneous if multiple threads execute the

critical section simultaneously which may not always be the

case. The more the number of critical sections in a program

the more will be the number of locks. Large number of locks

in the program will lead to very slow execution speed which

may cancel out the gains made by solving the problem in

parallel [1].

The main disadvantage of the optimistic approach is that in

those types of problems where simultaneous execution of

critical sections by multiple threads leads to inconsistency

the same critical sections have to be executed again and

again until the values are consistent. This may lead to drastic

degradation of performance and may overset all the gains

achieved by parallel execution [2].

In this paper we present a hybrid approach using both locks

and STM to solve the problem of synchronization in parallel

programs. The programming example considered is finding

out the minimum element in an array. It is a small prototype

of a real-life example in which different areas of a database

are accessed in real time in parallel.

In the example which we have used the simultaneous

execution of multiple critical sections by multiple threads

will lead to inconsistency. Thus in this case the use of

pessimistic approach is more advantageous. When the

optimistic approach (STM) was used the transactions were

aborted a large number of times as simultaneous execution of

multiple critical sections by multiple threads was frequently

leading to inconsistency. Thus the same critical sections were

executed again and again. This resulted in large execution

time (24 sec). The disadvantage of optimistic approach is that

transactions are aborted when validation cannot be done.

This approach works well when there are no conflicts (hence

the term optimistic) but wastes work when there are

conflicts. Aborting of transactions is a severe problem when

the transactions are long and interactive [3]. When the

pessimistic approach (locks) was used the execution time

was 5 seconds. In the hybrid approach the pessimistic

approach was used in one half of the array and optimistic

approach in the other half. The execution time was 5

seconds. Thus we can say that the hybrid approach combines

the advantages of the optimistic and pessimistic approaches

removing their disadvantages without any degradation of

performance.

In the ideal case hybrid approach may also lead to

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 186

further performance improvement. This is because in our

example we have used optimistic approach and pessimistic

approach in one half of the array each. But in the ideal case

optimistic and pessimistic approaches are applied where each

is advantageous. Pessimistic approach is applied in those

portions of the program where simultaneous execution of

multiple critical sections by multiple threads may lead to

inconsistency and optimistic approaches where simultaneous

execution of multiple critical sections by multiple threads

may not lead to inconsistency.

Earlier also hybrid programming was used in different

applications which is described in detail in Section II (related

work) [4], [5], [6], [7], [8]. In our work we have used STM

for the optimistic approach. That is we have shown a

combination of locks and STM which has not been used

earlier.

In this paper Section III finds out minimum element in an

array using locks (pessimistic approach). Section IV finds

out minimum element in an array using STM (optimistic

approach). Section V finds out minimum element in an array

using hybrid approach (combination of optimistic and

pessimistic approaches) using both locks and STM. The

performances of the different approaches are compared.

II. RELATED WORK

In 1992 Philip S. Yu and Daniel M. Dias published a paper

entitled “Analysis of Hybrid Concurrency Control Schemes

For a High Data Contention Environment” [4]. This paper

developed a hybrid approach for transaction processing in

databases exploiting the property that with sufficient buffer,

data blocks referenced by aborted transactions can continue

to be kept in memory and be available for access during

rerun, thus greatly reducing the abort probability during

rerun. Also in 1992 Sang H. Son and Juhnyoung Lee

published a paper entitled “A New Approach to Real-Time

Transaction Scheduling” [5]. This paper presented new real-

time transaction scheduling algorithms which employed a

hybrid approach. The protocols made use of a new conflict

resolution scheme called dynamic adjustment of serialization

order, which supported priority-driven scheduling, and

avoided unnecessary aborts. Then in 1997 Sung Ho Cho,

JongMin Lee, Chong-Sun Hwang and WonGyu Lee

published a paper entitled “Hybrid Concurrency Control for

Mobile Computing” [6]. This paper proposed a hybrid

concurrency control scheme which alleviated the effects of

frequent disconnections and limitation of bandwidth in

mobile computing environments. In 2003 SungHo Cho

published a paper entitled “A Hybrid Concurrency Control

with Deadlock-free Approach” [7]. This paper suggested an

efficient hybrid concurrency control scheme that used a

deadlock-free approach and ensured that transactions were

re-started at most once. After 2009 Jan Lindstrom published

a paper entitled “Hybrid Concurrency Control Method in

Firm Real-Time Databases” [8]. This paper proposed a

concurrency control method where transactions accessed

tables by pessimistic concurrency control, optimistic

concurrency control or nocheck concurrency control based

on application needs.

In our work we have also used hybrid concurrency control to

simultaneously access the elements of an array. The new

thing which our work has done is that for the optimistic

approach we have used STM. That is we have shown a

combination of locks and STM which has not been used

earlier.

III. SOLUTION USING LOCKS

Synchronization of multiple threads is the hardest problem

that has to be overcome when writing parallel programs. Two

or more threads can try to access the same locations in

memory. So if careful measures are not taken the results will

be erroneous. If multiple threads try to modify the same

variable(s) at the same time, data can become corrupt.

Nowadays this problem is solved by using locks in parallel

programs.

In programming with locks programmers first have to

identify the critical sections in the program. Critical section

is a block of code that contains variable(s) that may be

accessed simultaneously by two or more threads. Then when

a thread will try to enter a critical section, it has to first

acquire that section's lock. If another thread is already

holding the lock, the former thread must wait until the lock-

holding thread releases the lock, which it does when it leaves

the critical section .

This type of approach is called pessimistic approach. In this

approach it is always assumed that results will surely be

erroneous if multiple threads execute the critical section

simultaneously which may not always be the case. The more

the number of critical sections in a program the more will be

the number of locks. Large number of locks in the program

will lead to very slow execution speed which may cancel out

the gains made by solving the problem in parallel.

However a significant advantage of the pessimistic approach

is that it ensures that the same critical section never has to be

executed again and again which may be the case with

optimistic approach. This approach is advantageous in

situations where really simultaneous execution of critical

sections by multiple threads leads to erroneous results.

The following code shows a parallel program using threads

and locks which finds out the minimum element in an array.

Thus pessimistic approach is used to solve the problem of

synchronization in the program.

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 187

#include<stdlib.h>

#include<stdio.h>

#include<pthread.h>

#include<sys/time.h>

#include<time.h>

#define ARRAY_SIZE 100000000

#define NUM_THREAD 2

unsigned long n=ARRAY_SIZE;

unsigned char arr[ARRAY_SIZE],global_min=255;

void *thread_search_min1();

unsigned char

local_min_array[NUM_THREAD],global_min_lock_check=

255;

pthread_mutex_t

mutex1=PTHREAD_MUTEX_INITIALIZER;

main(int argc,char ** argv)

{

pthread_mutex_init(&mutex1,NULL);

pthread_t tid[NUM_THREAD];

int i,k,p;

struct timeval ini_tv,final_tv;

int arg_to_be_passed[NUM_THREAD];

arr[0]=8;

arr[1]=16;

arr[2]=3;

arr[3]=5;

arr[4]=23;

arr[5]=7;

printf("Enter number of times code is to be executed\n");

scanf("%d",&p);

gettimeofday(&ini_tv,NULL);

for(k=0;k<p;k++)

{

global_min=arr[0];

for(i=0;i<NUM_THREAD;i++)

{

arg_to_be_passed[i]=i;

pthread_create(&tid[i],NULL,thread_search_min1,&arg_t

o_be_passed[i]);

}

for(i=0;i<NUM_THREAD;i++)

{

pthread_join(tid[i],NULL);

}

}

gettimeofday(&final_tv,NULL);

 printf("\nTotal Time Taken = %ld\n", final_tv.tv_sec -

ini_tv.tv_sec);

return 0;

}

void *thread_search_min1(int * num_ptr)

{

unsigned long j;

unsigned char byte_under_stm;

int num,*number_ptr;

number_ptr=num_ptr;

num=*number_ptr;

local_min_array[num]=255;

for((j=(((num*n)/NUM_THREAD)));j<(((num+1)*n)/NU

M_THREAD);j++)

{

pthread_mutex_lock(&mutex1);

 if(arr[j]<global_min)

 {

 global_min= arr[j];

 }

 pthread_mutex_unlock(&mutex1);

}

pthread_exit(0);

}

The following statements in the code are used for thread

creation:

for(i=0;i<NUM_THREAD;i++)

{

arg_to_be_passed[i]=i;

pthread_create(&tid[i],NULL,thread_search_min1,&arg_to_

be_passed[i]);

}

The following statements ensure that even if any thread

completes its execution early it has to wait for completion of

all the other threads.

for(i=0;i<NUM_THREAD;i++)

{

pthread_join(tid[i],NULL);

}

In the thread function the critical section of the program is

the portion where the array elements are accessed and the

global variable global_min is being updated. It is enclosed

using locks in the following fashion:

for((j=(((num*n)/NUM_THREAD)));j<(((num+1)*n)/NU

M_THREAD);j++)

{

pthread_mutex_lock(&mutex1);

 if(arr[j]<global_min)

 {

 global_min= arr[j];

 }

 pthread_mutex_unlock(&mutex1);

}

The lock calls which have been used in the program are

described below:-

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 188

pthread_mutex_init(&mutex1,NULL)- It is used for lock

initialization.

pthread_mutex_lock(&mutex1)- It is used for locking. Any

thread which wants to access the critical section has to first

acquire the lock on mutex1.

pthread_mutex_unlock(&mutex1)- It is used for

unlocking.

In this program the critical region is enclosed within locks.

So the code faces no synchronization problems.

IV. SOLUTION USING STM

STM can also be used to solve the synchronization problem.

In case of STM also the programmer has to first identify the

critical section of the program and then has to enclose it

within a transaction. But the difference with locks is that

STM uses optimistic approach for synchronization.

Optimistic approach means that STM allows multiple threads

to execute the critical section at the same time. After the

executions are over the values of the edited variables are

checked to see if the values are consistent. If the values are

inconsistent then the critical sections of the threads are

executed again. Optimistic approach is advantageous and

very suitable for those problems where execution of critical

sections by multiple threads simultaneously does not lead to

any inconsistency. In those cases due to parallel execution of

critical sections by multiple threads execution times improve

considerably.

But the main disadvantage of the optimistic approach is that

in those types of problems where simultaneous execution of

critical sections by multiple threads leads to inconsistency

the same critical sections have to be executed again and

again until the values are consistent. This may lead to drastic

degradation of performance and may overset all the gains

achieved by parallel execution.

Some code snippets of solution of the parallel program to

find out minimum element in an array using pthreads and

STM are shown below. The overall structure of the code is

same as that of the code using locks shown in Section III.

The only difference is instead of locks STM is used in the

code for synchronization. The extra header files which must

be declared are:-

#include <stm.h>

#include<atomic_ops.h>

The following macros must also be declared.

#define RO 1

#define RW 0

#define START(id, ro) { stm_tx_attr_t _a = {id,

ro}; sigjmp_buf *_e = stm_start(&_a); if (_e != NULL)

sigsetjmp(*_e, 0)

#define LOAD(addr) stm_load((stm_word_t

*)addr)

#define STORE(addr, value) stm_store((stm_word_t

*)addr, (stm_word_t)value)

#define COMMIT stm_commit(); }

All the operations in the main function must be enclosed

within the statements stm_init() and stm_exit().

In the thread function the critical section is identified and

enclosed within a transaction in the following manner:

for((j=(((num*n)/NUM_THREAD)));j<(((num+1)*n)/NU

M_THREAD);j++)

{

START(0,RW);

byte_under_stm=(unsigned char)LOAD(&global_min);

if(arr[j]< byte_under_stm)

{

byte_under_stm=arr[j];

}

STORE(&global_min, byte_under_stm);

COMMIT;

}

The STM functions and calls which have been used in the

program are described below:

stm_init initializes the TinySTM library at the outset. It must

be called from the main thread before accessing any other

functions of the TinySTM library.

stm_init_thread initializes each thread that performs

transactions. Each thread that performs transactional

operations should call it once before it calls any other

function of the TinySTM library. In this program the thread

function thread_search_min1 calls it.

stm_exit is the corresponding shutdown function for

stm_init. It is used to clean up the TinySTM library. It should

be called once from the main thread after all transactional

threads have completed execution.

stm_exit_thread is the corresponding shutdown function for

stm_init_thread. It is used to clean up the transactional

thread. It should be called once from each thread that

performs transactional operations upon exit. In this program

it is used to clean up the thread function

thread_search_min1.

START(0,RW) starts a transaction. In this program the

thread function thread_search_min1 uses it.

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 189

COMMIT closes a transaction. In this program the thread

function thread_search_min1 uses it.

byte_under_stm=(unsigned char) LOAD(&global_min);

is used to store the value of global_min in byte_under_stm.

In this program the thread function thread_search_min1

uses it.

STORE(&global_min,byte_under_stm); is used to store

the value of byte_under_stm in global_min. In this program

the thread function thread_search_min1 uses it.

In this program the critical section is enclosed within a

transaction using TinySTM which is a type of STM. So the

program faces no synchronization problem.

V. SOLUTION USING HYBRID APPROACH

In this paper we have developed and demonstrated a hybrid

approach using locks and STM which is a combination of the

optimistic and pessimistic approaches to solve the problem of

synchronization in parallel programs. The hybrid approach

combines the advantages of the optimistic and pessimistic

approaches and does not suffer from their disadvantages.

The problem we have considered here is finding out

minimum element in an array. This is a small prototype of a

real-life example in which multiple parts of the same

database are accessed and modified simultaneously in real

time. In our example we have ensured that the elements of

one half of the array are accessed in parallel using optimistic

approach and the other half using pessimistic approach. The

program is shown below. The overall structure of the code is

same as that of the code in Section III. The only difference is

that the hybrid approach is used in the program.

#include<stdlib.h>

#include<stdio.h>

#include<pthread.h>

#include<sys/time.h>

#include<time.h>

#include<atomic_ops.h>

#include<stm.h>

#define RO 1

#define RW 0

#define START(id, ro) { stm_tx_attr_t _a = {id,

ro}; sigjmp_buf *_e = stm_start(&_a); if (_e != NULL)

sigsetjmp(*_e, 0)

#define LOAD(addr) stm_load((stm_word_t

*)addr)

#define UNITLOAD(addr, timestamp)

stm_unit_load((stm_word_t *)addr, (stm_word_t

*)timestamp)

#define STORE(addr, value) stm_store((stm_word_t

*)addr, (stm_word_t)value)

#define UNITSTORE(addr, value, timestamp)

stm_unit_store((stm_word_t *)addr, (stm_word_t)value,

(stm_word_t *)timestamp)

#define COMMIT stm_commit(); }

#define ARRAY_SIZE 100000000

#define NUM_THREAD 2

unsigned long n=ARRAY_SIZE;

unsigned char arr[ARRAY_SIZE],global_min=255;

void *thread_search_min1();

unsigned char

local_min_array[NUM_THREAD],global_min_lock_check=

255;

pthread_mutex_t

mutex1=PTHREAD_MUTEX_INITIALIZER;

main(int argc,char ** argv)

{

stm_init();

pthread_mutex_init(&mutex1,NULL);

pthread_t tid[NUM_THREAD];

int i,k,p;

struct timeval ini_tv,final_tv;

int arg_to_be_passed[NUM_THREAD];

arr[0]=8;

arr[1]=16;

arr[2]=3;

arr[3]=5;

arr[4]=23;

arr[5]=7;

printf("Enter number of times code is to be executed\n");

scanf("%d",&p);

gettimeofday(&ini_tv,NULL);

for(k=0;k<p;k++)

{

global_min=arr[0];

for(i=0;i<NUM_THREAD;i++)

{

arg_to_be_passed[i]=i;

pthread_create(&tid[i],NULL,thread_search_min1,&arg_t

o_be_passed[i]);

}

for(i=0;i<NUM_THREAD;i++)

{

pthread_join(tid[i],NULL);

}

}

gettimeofday(&final_tv,NULL);

 printf("\nTotal Time Taken = %ld\n", final_tv.tv_sec -

ini_tv.tv_sec);

return 0;

stm_exit();

}

void *thread_search_min1(int * num_ptr)

{

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 190

unsigned long j;

unsigned char byte_under_stm;

int num,*number_ptr;

number_ptr=num_ptr;

num=*number_ptr;

local_min_array[num]=255;

stm_init_thread();

for((j=(((num*n)/NUM_THREAD)));j<(((num+1)*n)/NU

M_THREAD);j++)

{

if(j<(n/2))

{

START(0,RW);

byte_under_stm=(unsigned char)LOAD(&global_min);

if(arr[j]< byte_under_stm)

{

byte_under_stm=arr[j];

}

STORE(&global_min, byte_under_stm);

COMMIT;

}

else

{

pthread_mutex_lock(&mutex1);

 if(arr[j]<global_min)

 {

 global_min= arr[j];

 }

 pthread_mutex_unlock(&mutex1);

}

}

stm_exit_thread();

pthread_exit(0);

}

In the above code in the thread function the critical section is

the portion where the array elements are accessed and the

global variable global_min is being updated. One half of the

array elements are accessed using STM (optimistic approach)

and the other half using locks (pessimistic approach) in the

following manner.

for((j=(((num*n)/NUM_THREAD)));j<(((num+1)*n)/NU

M_THREAD);j++)

{

if(j<(n/2))

{

START(0,RW);

byte_under_stm=(unsigned char)LOAD(&global_min);

if(arr[j]< byte_under_stm)

{

byte_under_stm=arr[j];

}

STORE(&global_min, byte_under_stm);

COMMIT;

}

else

{

pthread_mutex_lock(&mutex1);

 if(arr[j]<global_min)

 {

 global_min= arr[j];

 }

 pthread_mutex_unlock(&mutex1);

}

}

VI. PERFORMANCE COMPARISON OF

OPTIMISTIC, PESSIMISTIC AND HYBRID

APPROACHES

The execution times for the different approaches are

shown in the table below (Table 1).

Table 1. Execution Times for the different approaches

Locks (seconds)

(Pessimistic

Approach)

STM (seconds)

(Optimistic

Approach)

Locks + STM

(seconds) (Hybrid

Approach)

5 24 5

From the above table (Table 1) we can see that the execution

time of the programs in case of locks and the hybrid

approach was 5 seconds and in case of STM was 24 seconds.

So we can say that the hybrid approach removes the

disadvantages of the optimistic and pessimistic approaches

and combines their advantages without any degradation of

performance.

In our work we have divided the array into 2 equal parts and

have applied optimistic approach in one part and pessimistic

approach in the other. In the ideal case hybrid approach may

also lead to performance improvement as optimistic and

pessimistic approaches are applied where each is

advantageous. Pessimistic approach is applied in those

portions of the program where simultaneous execution of

multiple critical sections by multiple threads may lead to

inconsistency and optimistic approaches where simultaneous

execution of multiple critical sections by multiple threads

may not lead to inconsistency.

VII. SYSTEM SPECIFICATIONS

The specifications of the system in which we compiled and

executed the codes are given below:

SYSTEM DESCRIPTION

1. Hardware Configuration

Model Name: Intel® Xeon ® CPU E5645 2.40 GHz

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 191

Number of CPU cores: 6

Total Memory Space: 4.008 GB

Cache: 12288KB

2. Operating System

Fedora 11

3. Software Configuration

1) The language used in the programs is C.

2) gcc compiler version 4.4.0.

VIII. CONCLUSION AND FURTHER WORK

In this paper we have first shown how to solve the problem

of synchronization in parallel programs using optimistic

approach (STM) and pessimistic approach (locks). Then we

have developed and demonstrated a hybrid approach which

removes the disadvantages of the optimistic and pessimistic

approaches and combines their advantages without any

degradation of performance. The problem considered in this

paper is finding out minimum element in an array. It is a

small prototype of a real life example in which multiple parts

of a database are accessed and edited simultaneously in real

time.

In our work we have divided the array into 2 equal parts and

have applied optimistic approach in one part and pessimistic

approach in the other. In the ideal case hybrid approach may

also lead to performance improvement as optimistic and

pessimistic approaches are applied where each is

advantageous. Pessimistic approach is applied in those

portions of the program where simultaneous execution of

multiple critical sections by multiple threads may lead to

inconsistency and optimistic approach where simultaneous

execution of multiple critical sections by multiple threads

may not lead to inconsistency. We are considering doing

further work in this area.

REFERENCES

[1] Ryan Saptarshi Ray,“STM:Lock-Free Synchronization”, Special

Issue of IJCCT, ISSN (ONLINE): 2231 – 0371, ISSN (PRINT):

0975 – 7449, Volume- 3, Issue-2, pp. 19-25, February 2012

[2] Ryan Saptarshi Ray and Utpal Kumar Ray, “Writing Lock-Free

Code”, In the Proceedings of International Conference on

Computer Science and Engineering(ICCSE),Kolkata, pp. 19-25,

24
th
 March 2012

[3] Pascal Felber, Christof Fetzer, Torvald Riegel, “Dynamic

Performance Tuning of Word-Based Software Transactional

Memory” In the Proceedings of the 13th ACM SIGPLAN

Symposium on Principles and practice of parallel programming,

pp. 237-246 ,2008

[4] Philip S.Yu, Daniel M. Dias, “Analysis of Hybrid Concurrency

Control Schemes For a High Data Contention Environment”,

IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING,Volume-18, Issue-2, pp. 118-129, 1992

[5] Sang H. Son, Junhyoung Lee, “A New Approach to Real-Time

Transaction Scheduling”, In the Proceedings of the Fourth

Euromicro workshop on Real-Time Systems, pp. 177-182, June

1992

[6] Sung Ho Cho, JongMin Lee, Chong-sun Hwang, WonGyu Lee,

“Hybrid Concurrency Control for Mobile Computing” In the

Proceedings of High Performance Computing on the Information

Superhighway, pp. 478-483, April 1997

[7] SungHo Cho, “A Hybrid Concurrency Control with Deadlock-free

Approach”, In the Proceedings of the International Conference on

Computational Science and Its Applications, pp. 517-524, 2003

[8] Jan Lindstrom, “Hybrid Concurrency Control Method in Firm

Real-Time Databases”

[9] Debendranath Das, Ryan Saptarshi Ray, Utpal Kumar Ray,

“Implementation and Consistency Issues in Distributed Shared

Memory”, International Journal of Computer Sciences and

Engineering (IJCSE) E-ISSN:2347-2693 Volume- 4, Issue-12, pp

125-131, 2016

Authors Profile

Ryan Saptarshi Ray received the degree of

B.E. in I.T. from School of Information

Technology, West Bengal University of

Technology, India in 2007. He received the

degree of M.E. in Software Engineering from

Jadavpur University, India in 2012. Currently

he is PhD Scholar in the Department of

Information Technology, Jadavpur University,

India. He was employed as Programmer

Analyst from 2007 to 2009 in Cognizant Technology Solutions. He

has published 2 papers in International Conferences, 9 papers in

International Journals and also a book titled “Software

Transactional Memory: An Alternative to Locks” by LAP

LAMBERT ACADEMIC PUBLISHING, GERMANY in 2012 co-

authored with Utpal Kumar Ray.

Parama Bhaumik received B.Sc
Phy(Hons.), B.Tech and M.Tech in Computer
Science & Engineering from Calcutta
University, India in 1996,1999 and 2002
respectively. She has done her Ph.D in
Engineering from Jadavpur University, India
in 2009. Currently she is working as
Associate Professor in the Department of
Information Technology, Jadavpur
University, India. She has more than 32 research publications in
Journals of repute, Book chapters and International Conferences.

Utpal Kumar Ray received the degree of

B.E. in Electronics and Telecommunication

Engineering in 1984 from Jadavpur

University, India and the degree of M.Tech in

Elecrical Engineering from Indian Institute of

Technology, Kanpur in 1986. He was

employed in different capacities in WIPRO

INFOTECH LTD., Bangalore, India; WIPRO INFOTECH LTD.,

Bangalore, India, Client: TANDEM COMPUTERS, Austin, Texas,

USA; HCL America, Sunnyvale, California, USA, Clent:

HEWLETT PACKARD, Cupertino, California, USA; HCL

 International Journal of Computer Sciences and Engineering Vol.5(10), Oct 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 192

Consulting, Gurgaon, India; HCL America, Sunnyvale, California,

USA; RAVEL SOFTWARE INC., San Jose, California, USA;

STRATUS COMPUTERS, San Jose, California, USA; AUSPEX

SYSTEMS, Santa Clara, California, USA and Sun Micro System,

Menlo Park, California, USA for varying periods of duration from

1986 to 2002. From 2003 he is working as Assistant Professor in

the Department of Information Technology, Jadavpur University,

India. He has published 22 papers in different conferences and

journals. He has also published a book titled “Software

Transactional Memory: An Alternative to Locks” by LAP

LAMBERT ACADEMIC PUBLISHING, GERMANY in 2012 co-

authored with Ryan Saptarshi Ray.

