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Abstract— In this paper a new parallel genetic algorithm is proposed to observe efficacy of different strategies for k-graph
coloring problem. In the algorithm we have applied a coarse-grained model of parallelism, along with two new algorithms
for crossover and mutation are represented: FCX and Fmm. these algorithms compared with CEX’s First Fit and Transposi-
tion mutation operators. In our experiments, we observed that different strategies what role have in finding solutions. In

computer simulations of PGA we used DIMACS benchmark.
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L. Introduction

Genetic Algorithms are the most recognized form of evo-
lutionary algorithms. They are being applied successfully to
find acceptable solutions to problems in business, engineer-
ing, and science .GAs are generally able to find good solu-
tions in reasonable amount of time, but as they are applied
to harder and bigger problems there is an increase in the
time required to find adequate solutions. Fortunately, GAs
work with a population of independent solutions, which
makes it feasible to distribute the computational load among
several processors. Indeed, some may say that GAs are
“embarrassingly parallel” programs, and that it is trivial to
make fast parallel GAs [1].

We have applied parallel genetic algorithm to represent a
new algorithm for GCP (graph coloring problem). Graph
coloring problem (GCP) belongs to the class of NP-hard
combinatorial optimizations problems. GCP is defined for
an undirected graph as a problem of assignment of available
colors to graph vertices providing that adjacent vertices are
assigned different colors and the number of colors is mini-
mal [2].

A coloring using at most k colors is called a (proper) k-
coloring. The smallest number of colors needed to color a
graph G is called its chromatic number, y(G). A graph that
can be assigned a (proper) k-coloring is k-colorable, and it
is k-chromatic if its chromatic number is exactly k. A sub-
set of vertices assigned to the same color is called a color
class; every such class forms an independent set. Thus, a k-
coloring is the same as a partition of the vertex set into k
independent sets, and the terms k-partite and k-colorable
have the same meaning.

Problem (k-GCP): Let G=(V,E) be a connected graph where
V is set of vertices (IVI=n), ECVxV is set of edges and
ke N* is a number of colors used. Our target is to find: P:
V—1,2,3,....k (u,veV and [u,v]eE) subject that ¥ (v)# ¥
(w).

There are already different algorithms for crossover oper-
ator, including SPPX, UISX, GPX and CEX [2] which are

Corresponding Author: fardin_e_s@yahoo.com

© 2014, IJCSE All Rights Reserved

applicable to GCP, however as shown in [2] CEX is more
efficient than others finding correct solution.

In this paper two new breeding operators for coloring
chromosomes are proposed: FCX (Find Conflict Crossover)
that is an extended version of CEX (Conflict Elimination
Crossover) [2], and FMM (Find Maximum mutation) in
which conflicts are substituted by randomly chosen color.
The graph coloring instances for feeding our approach are
taken from [7, 8, 9], these instances are presented in DI-
MACS standard format.

1L Genetic Operators for k-GCP

In order to achieve better results, some parameters and
specifications need to be explained. Encoding in genomes,
methods for Genetic Operators, selection function, defining
a proper fitness function, and Migration Topology have
considerable influence on how much the results are optimal.
In this section we try to explain some of these parameters in
our PGA.

II1. Chromosome Representation

The first decision which has direct impact on perfor-
mance is chromosome structure. Assignment representation
and partition representation are widely used for k-GCP. In
assignment representation, each genome is represented as a
vertex assignment array which contains the colors assigned
to the vertices. For instance, value j at index i means that
color C; is assigned to vertex V;. On the other hand, in parti-
tion representation, each genome is represented as a parti-
tion of graph vertices. Every member of a subset in the par-
tition has a same color.
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FPartition represeniation: {1,550} {2,100 {48} {3,6,7}

Assignment representation: =1,2,4,3,1,4,4,3,1,2=>

Fig.1. examples of both representation methods

For example, if value i is a member of subset j in parti-
tion representation, it means that color C; is assigned to ver-
tex V; in the graph [3].

In our algorithm assignment representation is used. Fig.1
shows examples of both representation methods for given
graph.

IV. Find Conflict Crossover

The proposed algorithm works in two phase. In first phase
when two selected chromosomes have unequal conflicts,
CEX algorithm is applied [2]. In second phase when two
selected chromosome have equal conflicts, our algorithm is
applied.

However, as our experiments show just in 40% of crossover
operations CEX is called and rest of operations use FCX.
(See Fig.2 and Fig.3)

Procedure coloring-crossover:
Begin
Create first population randomly;
Evaluate fitness of chromosomes;
Repeat
( Select two parents;
If num.Ofconflict [par.1] =
num.Ofconflict [par.2]
Call FCX;
Crossover Else
Call CEX;
End if;
If (threshold)
\ Call FMM;
If (convergence is not acceptable)
Call FMM;
Until condition is satisfied;

End.

Fig.2. the main body of algorithm
Procedure: FCX (parl, par2, childl, child2)
Begin

Chromosomes_length=V;
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For (i=1; i<=chromosomes_length; i++)
Exchange the conflict places in parl and par2
And replaces in child1 and child2;
End for;
End.

Fig.3. the recombination operator FCX

Example 1

Two parents represent different 4-coloring of a graph with
10 vertices i.e. sequences parl=<1,2.4,3,1,4,4,3,1,2> and
par2=<1,3,4,3,2,4,1,2,1,2>. Vertices with color conflicts are
marked bold and underlined. As examplel shows both parl
and par2 have 6 vertices with feasible colors and 4 vertices
with color conflicts. Replacing the vertices with color con-
flicts in parl by vertices with color conflicts in other parent,
we  obtain the following two  chromosomes:
child1=<3,2,3,3,1,4,1,3,1,2> and
child2=<1,1,4,4,2,4,1,2,4,2>. It is observed that obtained
chromosomes represent now two different 4-coloring of the
given graph and the number of color conflicts is now re-
duced to 3 in childl and reduced to O in child2 chromo-
somes (No conflicts in child2). (See Fig.1)

V. Conflict Elimination Crossover

In conflict-based crossovers for GCP, an assignment rep-
resentation of coloring is used and offspring try to copy
conflict—free colors from their parents.

Conlflict Elimination Crossover (CEX) reveals some simi-
larity to the classical crossover. Each parental chromosome
is partitioned into two blocks. The first block consists of
conflict—free nodes while the second block is built of the
remaining nodes that break the coloring rules. The last
block in both chromosomes is then replaced by correspond-
ing colors taken from the other parent. This recombination
scheme provides inheritance of all good properties of one
parent and gives the second parent a chance to reduce the
number of existing conflicts. However, if a chromosome
represents a feasible coloring the recombination mechanism
is not working. Therefore, the recombination must be com-
bined with an efficient mutation mechanism. The operator
CEX is almost as simple and easy to implement as the clas-
sical crossover (see Fig.4) [2].

Procedure: CEX (p,1,s,t)
Begin

s=r;

t=p;

. . p
Copy conflict-free vertices V¢ from p to s;

Copy conflict-free vertices Vc; fromrtot;
End

Fig.4. The recombination operator CEX.
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Fig.5. An illustration of CEX crossover (see Example 2)

Example 2

Two parents represent different 5-colorings of a graph with
10 vertices i.e. sequences p=<5,2,3.4,1,4,2,5,1,3>, and
r=<1,4,5,2,3,3,5,4,2,5>. Vertices with color conflicts are
marked by bold fonts. Thus, the chromosome p has 6 verti-
ces with feasible colors and 4 vertices with color conflicts
while the chromosome r has 7 vertices with feasible colors
and 3 vertices with color conflicts. Replacing the vertices
with color conflicts by vertices taken from the other parent
we  obtain the following two  chromosomes:
$=<5,2,5,2,1,3,2,5,1,5> and t=<1,4,3,2,3,3,2,4,23>. It is
observed that obtained chromosomes represent now two
different 4-colorings of the given and the number of color
conflicts is now reduced to 2 in each chromosome [4]. (See
Fig.5)

VL Mutation Operators

Transposition is a classical type of mutation that exchange
colors of two randomly selected vertices in the assignment
representation. The second mutation operator called First Fit
is designed for colorings in partition representation and is
well suited for GCP. In the First Fit mutation one block of
the partition is selected at random and propagate this block
vertices to others using heuristic First Fit such that assign-
ment of vertices to other blocks remain them conflict—free.
Thus, as a result of the First Fit mutation the color assign-
ment is partially rearranged and the number of partition
blocks is often reduced by one [4].

But we proposed a new algorithm for mutation operator that
is called Fmm (Find maximum mutation) in which algo-
rithm selects a chromosome randomly then finds node with
biggest conflict on chromosome and tries to change that
with random color. (See Fig. 5)

Procedure: Fmm (chromosomes)

Begin
Select parent randomly;
X=Find index with biggest conflict in parent;
Change the parent’s Xth index color with-
dom color;
Child=parent;

Return child;

End

ran-

Fig 6. The recombination operator Fmm

VILI. Evaluation And Selection Function
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We have used function (1) for evaluating chromosome’s
quality:

Pen(c) = Z conflict(u ,v) +1 » (D

(u,v)eE
e Cis a solution,

e Pen(c) is evaluation function for a solution (Note: big-
ger value for Pen(c) means less quality solution)

e Conflict is a penalty function for pairs of vertices con-
nected by an edge (u,v)e E: Conflict(u,v) = 2 when c(u)
= ¢(v), and Conflict(u,v) = 0, otherwise.

For selection function, the tournament selection has been
applied. This method has been used widely in PGA. How-
ever in our selection method each chromosome allowed to
attend in competition just once, so that all chromosomes in
population have equal chance of being selected. Equation
(2) is our fitness function.

Fitness = ! 2
Pen(c)

VIIIL. Migration Model Of Parallel Genetic Algorithm

There are several ways to parallelize GA, and the parallel
GA (PGA) has been developed and successfully applied to
optimize practical problems. According to the nature of the
population structure and recombination mechanisms used,
PGA can be classified into four categories: single-
population master—slave PGA, coarse-grained PGA, fine-
grained PGA and hierarchical hybrids [5].

The coarse-grained parallel GA is very popular and widely
used. In a coarse-grained PGA the entire population is di-
vided into several sub-populations. Each sub-population
runs a conventional GA independently and concurrently on
their “island”. After several epochs, some individuals mi-
grate from one sub- population to another according to a
migration topology (see Fig.6).

Fig.7. Migration topology

The individuals that emigrate from an island may be select-
ed at random, or they may be selected among the best indi-
viduals in an island. Similarly, migrants may replace ran-
dom individuals at the receiving island, or they may replace
the worst individuals [6].
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IX. Experimental Results

We have used four DIMACS graph coloring benchmarks
from [7] to apply our experiments. In our PGA coarse-
grained model is implemented. In our program different
migration strategies are applied. Prepared results are com-
puted using Intel Pentium 2.2GHz with 512MB memory.
The following parameters were applied in our algorithm:

Population size=90, number of generations=2000, number
of Island=3, number of migrants=>5, migration interval=15,
crossover probability=0.6, mutation probability for First
Fit and Transposition=0.1. Experiments include comparing
performance of both FCX and CEX crossover operators; it
also examines efficiency of First Fit, Transposition and
Fmm mutation operators. However, Fmm’s mutation proba-
bility is dynamically changes based on algorithm conver-
gence. All experiments were repeated 10 times. Fig.8 Indic-
ative the generation numbers at the four different strategies
that the first solutions have reached (Note in Fig.7, X-axis
shows average of generation iteration and Y-axis shows
different strategies).

ANNA(4 _island)
25
20 20
5”7
®
g = X
(U]
E 10 WCEXT
g mCEX_F
< s
0
BTOR BTCW ATOR RTOW
HUCK(4_island)
8
2
Jid
g W FCX
(U]
= mCEX_ T
g WCEX_F
<
BTOR BTC W ATOR RTOW
MILES250(4_island)
¢
S
®
g HECX
U
6]
pe mCEX T
g mCEX_F
8
BTOR BTOW RTOR RTOW
@

Q]C S E ©2014, IICSE All Rights Reserved

Vol.-2(5), PP(138-141) May 2014, E-ISSN: 2347-2693

MYCIEL6(4_island)

30

25

20

15

10

AVG. 0f Generation.

BTOR BTOW RTOR

Fig.8. Number of generations to find the first solution in
different strategies

X. Conclusion

In this paper, a new PGA algorithm is proposed to observe
efficacy of different strategies for k-graph coloring problem
(k-GCP). A new crossover and mutation algorithm called
FCX and Fmm designed in a way that successfully could
find more correct answers in reasonable time for different
strategies. As described before, applying FCX in case of
equal conflicts makes convergence more rapid, in addition,
using coarse-grained model for implementation along with a
proper migration fraction and interval influences our results.
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