
 © 2014, IJCSE All Rights Reserved  138

    International Journal of Computer Sciences and Engineering International Journal of Computer Sciences and Engineering International Journal of Computer Sciences and Engineering International Journal of Computer Sciences and Engineering      Open Access 
Research Paper  Volume-2, Issue-5 E-ISSN: 2347-2693

Efficacy of Different Strategies in Graph Coloring with Parallel 

Genetic Algorithms 

Fardin Esmaeeli Sangari
1*

, Mehrdad Nabahat
2

1*,2 
Sama technical and vocational training college,

 
Islamic Azad University, Urmia branch, Urmia, Iran 

m_nteach2009@yahoo.com
2

, mdin_e_s@yahoo.corfa
 1*

www.ijcseonline.org
Received: 01/04/2014    Revised: 16 /04/2014   Accepted: 12/05/ 2014    Published: 31 /05/2014 

Abstract— In this paper a new parallel genetic algorithm is proposed to observe efficacy of different strategies for k-graph 

coloring problem. In the algorithm we have applied a coarse-grained model of parallelism, along with two new algorithms 

for crossover and mutation are represented: FCX and Fmm. these algorithms compared with CEX’s First Fit and Transposi-

tion mutation operators. In our experiments, we observed that different strategies what role have in finding solutions. In 

computer simulations of PGA we used DIMACS benchmark. 
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I. Introduction

Genetic Algorithms are the most recognized form of evo-

lutionary algorithms. They are being applied successfully to 

find acceptable solutions to problems in business, engineer-

ing, and science .GAs are generally able to find good solu-

tions in reasonable amount of time, but as they are applied 

to harder and bigger problems there is an increase in the 

time required to find adequate solutions. Fortunately, GAs 

work with a population of independent solutions, which 

makes it feasible to distribute the computational load among 

several processors. Indeed, some may say that GAs are 

“embarrassingly parallel” programs, and that it is trivial to 

make fast parallel GAs [1]. 

We have applied parallel genetic algorithm to represent a 

new algorithm for GCP (graph coloring problem). Graph 

coloring problem (GCP) belongs to the class of NP–hard 

combinatorial optimizations problems. GCP is defined for 

an undirected graph as a problem of assignment of available 

colors to graph vertices providing that adjacent vertices are 

assigned different colors and the number of colors is mini-

mal [2]. 

A coloring using at most k colors is called a (proper) k-

coloring. The smallest number of colors needed to color a 

graph G is called its chromatic number, χ(G). A graph that 

can be assigned a (proper) k-coloring is k-colorable, and it 

is k-chromatic if its chromatic number is exactly k. A sub-

set of vertices assigned to the same color is called a color 

class; every such class forms an independent set. Thus, a k-

coloring is the same as a partition of the vertex set into k 

independent sets, and the terms k-partite and k-colorable 

have the same meaning. 

Problem (k-GCP): Let G=(V,E) be a connected graph where 

V is set of vertices (|V|=n), E⊆V×V is set of edges and 

k∈N
+
 is a number of colors used. Our target is to find: Ψ: 

V→1,2,3,…,k (u,v∈V and [u,v]∈E) subject that Ψ (v)≠ Ψ 

(u).  

There are already different algorithms for crossover oper-

ator, including SPPX, UISX, GPX and CEX [2] which are 

applicable to GCP, however as shown in [2] CEX is more 

efficient than others finding correct solution. 

In this paper two new breeding operators for coloring 

chromosomes are proposed: FCX (Find Conflict Crossover) 

that is an extended version of CEX (Conflict Elimination 

Crossover) [2], and FMM (Find Maximum mutation) in 

which conflicts are substituted by randomly chosen color. 

The graph coloring instances for feeding our approach are 

taken from [7, 8, 9], these instances are presented in DI-

MACS standard format. 

II. Genetic Operators for k-GCP

In order to achieve better results, some parameters and 

specifications need to be explained. Encoding in genomes, 

methods for Genetic Operators, selection function, defining 

a proper fitness function, and Migration Topology have 

considerable influence on how much the results are optimal. 

In this section we try to explain some of these parameters in 

our PGA. 

III. Chromosome Representation

The first decision which has direct impact on perfor-

mance is chromosome structure. Assignment representation 

and partition representation are widely used for k-GCP. In 

assignment representation, each genome is represented as a 

vertex assignment array which contains the colors assigned 

to the vertices. For instance, value j at index i means that 

color Cj is assigned to vertex Vi. On the other hand, in parti-

tion representation, each genome is represented as a parti-

tion of graph vertices. Every member of a subset in the par-

tition has a same color.  
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For example, if value i is a member of subset j in parti-

tion representation, it means that color Cj is assigned to ver-

tex Vi in the graph [3]. 

In our algorithm assignment representation is used. Fig.1 

shows examples of both representation methods for given 

graph.  

IV. Find Conflict Crossover 

The proposed algorithm works in two phase. In first phase 

when two selected chromosomes have unequal conflicts, 

CEX algorithm is applied [2]. In second phase when two 

selected chromosome have equal conflicts, our algorithm is 

applied. 

However, as our experiments show just in 40% of crossover 

operations CEX is called and rest of operations use FCX. 

(See Fig.2 and Fig.3)  

 

Procedure coloring-crossover: 

Begin 

Create first population randomly; 

Evaluate fitness of chromosomes; 

Repeat  

  Select two parents; 

If num.Ofconflict [par.1] =  

num.Ofconflict [par.2] 

         Call FCX; 

Crossover Else 

                   Call CEX; 

  End if; 

  If (threshold) 

          Call FMM; 

  If (convergence is not acceptable) 

          Call FMM; 

 Until condition is satisfied;  

End. 

 

 

 

Procedure:  FCX (par1, par2, child1, child2) 

Begin 

   Chromosomes_length=V; 

   For (i=1; i<=chromosomes_length; i++) 

 Exchange the conflict places in par1 and par2 

 And replaces in child1 and child2; 

   End for;  

End. 

  

Example 1 

Two parents represent different 4-coloring of a graph with 

10 vertices i.e. sequences par1=<1,2,4,3,1,4,4,3,1,2> and 

par2=<1,3,4,3,2,4,1,2,1,2>. Vertices with color conflicts are 

marked bold and underlined. As example1 shows both par1 

and par2 have 6 vertices with feasible colors and 4 vertices 

with color conflicts. Replacing the vertices with color con-

flicts in par1 by vertices with color conflicts in other parent, 

we obtain the following two chromosomes: 

child1=<3,2,3,3,1,4,1,3,1,2> and 

child2=<1,1,4,4,2,4,1,2,4,2>. It is observed that obtained 

chromosomes represent now two different 4-coloring of the 

given graph and the number of color conflicts is now re-

duced to 3 in child1 and reduced to 0 in child2 chromo-

somes (No conflicts in child2). (See Fig.1) 

V. Conflict Elimination Crossover 

In conflict–based crossovers for GCP, an assignment rep-

resentation of coloring is used and offspring try to copy 

conflict–free colors from their parents. 

Conflict Elimination Crossover (CEX) reveals some simi-

larity to the classical crossover. Each parental chromosome 

is partitioned into two blocks. The first block consists of 

conflict–free nodes while the second block is built of the 

remaining nodes that break the coloring rules. The last 

block in both chromosomes is then replaced by correspond-

ing colors taken from the other parent. This recombination 

scheme provides inheritance of all good properties of one 

parent and gives the second parent a chance to reduce the 

number of existing conflicts. However, if a chromosome 

represents a feasible coloring the recombination mechanism 

is not working. Therefore, the recombination must be com-

bined with an efficient mutation mechanism. The operator 

CEX is almost as simple and easy to implement as the clas-

sical crossover (see Fig.4) [2]. 
 

Procedure: CEX (p,r,s,t) 

Begin 

       s = r; 

      t = p; 

      Copy conflict-free vertices 
p

cfV  from p to s; 

     Copy conflict-free vertices 
r

cfV  from r to t; 

End 

 

 

 

Fig.3. the recombination operator FCX 

Fig.2. the main body of algorithm 

 
Fig.4. The recombination operator CEX. 

Fig.1. examples of both representation methods 
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Example 2 

Two parents represent different 5-colorings of a graph with 

10 vertices i.e. sequences p=<5,2,3,4,1,4,2,5,1,3>, and 

r=<1,4,5,2,3,3,5,4,2,5>. Vertices with color conflicts are 

marked by bold fonts. Thus, the chromosome p has 6 verti-

ces with feasible colors and 4 vertices with color conflicts 

while the chromosome r has 7 vertices with feasible colors 

and 3 vertices with color conflicts. Replacing the vertices 

with color conflicts by vertices taken from the other parent 

we obtain the following two chromosomes: 

s=<5,2,5,2,1,3,2,5,1,5> and t=<1,4,3,2,3,3,2,4,2,3>. It is 

observed that obtained chromosomes represent now two 

different 4-colorings of the given and the number of color 

conflicts is now reduced to 2 in each chromosome [4]. (See 

Fig.5) 

VI. Mutation Operators 

Transposition is a classical type of mutation that exchange 

colors of two randomly selected vertices in the assignment 

representation. The second mutation operator called First Fit 

is designed for colorings in partition representation and is 

well suited for GCP. In the First Fit mutation one block of 

the partition is selected at random and propagate this block 

vertices to others using heuristic First Fit such that assign-

ment of vertices to other blocks remain them conflict–free. 

Thus, as a result of the First Fit mutation the color assign-

ment is partially rearranged and the number of partition 

blocks is often reduced by one [4]. 

But we proposed a new algorithm for mutation operator that 

is called Fmm (Find maximum mutation) in which algo-

rithm selects a chromosome randomly then finds node with 

biggest conflict on chromosome and tries to change that 

with random color. (See Fig. 5) 

Procedure: Fmm (chromosomes) 

Begin  

 Select parent randomly; 

 X=Find index with biggest conflict in parent; 

Change the parent’s Xth index color with-       ran-

dom color; 

 Child=parent; 

Return child; 

End 

 

VII. Evaluation And Selection Function 

We have used function (1) for evaluating chromosome’s 

quality: 

∑
∈

+=
Ev)(u,

1v),conflict(uPen(c)  , 

• C is a solution, 

• Pen(c) is evaluation function for a solution (Note: big-

ger value for Pen(c) means less quality solution) 

• Conflict is a penalty function for pairs of vertices con-

nected by an edge (u,v)∈E: Conflict(u,v) = 2 when c(u) 

= c(v), and Conflict(u,v) = 0, otherwise.       

For selection function, the tournament selection has been 

applied. This method has been used widely in PGA. How-

ever in our selection method each chromosome allowed to 

attend in competition just once, so that all chromosomes in 

population have equal chance of being selected. Equation 

(2) is our fitness function.  

)(

1

cPen
Fitness =  

VIII. Migration Model Of Parallel Genetic Algorithm 

There are several ways to parallelize GA, and the parallel 

GA (PGA) has been developed and successfully applied to 

optimize practical problems. According to the nature of the 

population structure and recombination mechanisms used, 

PGA can be classified into four categories: single-

population master–slave PGA, coarse-grained PGA, fine-

grained PGA and hierarchical hybrids [5]. 

The coarse-grained parallel GA is very popular and widely 

used. In a coarse-grained PGA the entire population is di-

vided into several sub-populations. Each sub-population 

runs a conventional GA independently and concurrently on 

their “island”. After several epochs, some individuals mi-

grate from one sub- population to another according to a 

migration topology (see Fig.6). 

 

 

The individuals that emigrate from an island may be select-

ed at random, or they may be selected among the best indi-

viduals in an island. Similarly, migrants may replace ran-

dom individuals at the receiving island, or they may replace 

the worst individuals [6].   

Fig.5. An illustration of CEX crossover (see Example 2) 

Fig.7. Migration topology 

  

Fig 6. The recombination operator Fmm 

  

(1) 

(2) 
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IX. Experimental Results 

We have used four DIMACS graph coloring benchmarks 

from [7] to apply our experiments. In our PGA coarse-

grained model is implemented. In our program different 

migration strategies are applied. Prepared results are com-

puted using Intel Pentium 2.2GHz with 512MB memory. 

The following parameters were applied in our algorithm:  

Population size=90, number of generations=2000, number 

of Island=3, number of migrants=5, migration interval=15, 

crossover probability=0.6, mutation probability for First 

Fit and Transposition=0.1. Experiments include comparing 

performance of both FCX and CEX crossover operators; it 

also examines efficiency of First Fit, Transposition and 

Fmm mutation operators. However, Fmm’s mutation proba-

bility is dynamically changes based on algorithm conver-

gence. All experiments were repeated 10 times. Fig.8 Indic-

ative the generation numbers at the four different strategies 

that the first solutions have reached (Note in Fig.7, X-axis 

shows average of generation iteration and Y-axis shows 

different strategies). 

 

 

 

 

 

 

 

 

X. Conclusion 

In this paper, a new PGA algorithm is proposed to observe 

efficacy of different strategies for k-graph coloring problem 

(k-GCP). A new crossover and mutation algorithm called 

FCX and Fmm designed in a way that successfully could 

find more correct answers in reasonable time for different 

strategies. As described before, applying FCX in case of 

equal conflicts makes convergence more rapid, in addition, 

using coarse-grained model for implementation along with a 

proper migration fraction and interval influences our results.        
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Fig.8. Number of generations to find the first solution in 

different strategies 


