
 © 2014, IJCSE All Rights Reserved 138

 International Journal of Computer Sciences and Engineering International Journal of Computer Sciences and Engineering International Journal of Computer Sciences and Engineering International Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-2, Issue-5 E-ISSN: 2347-2693

Efficacy of Different Strategies in Graph Coloring with Parallel

Genetic Algorithms

Fardin Esmaeeli Sangari
1*

, Mehrdad Nabahat
2

1*,2
Sama technical and vocational training college,

Islamic Azad University, Urmia branch, Urmia, Iran

m_nteach2009@yahoo.com
2

, mdin_e_s@yahoo.corfa
 1*

www.ijcseonline.org
Received: 01/04/2014 Revised: 16 /04/2014 Accepted: 12/05/ 2014 Published: 31 /05/2014

Abstract— In this paper a new parallel genetic algorithm is proposed to observe efficacy of different strategies for k-graph

coloring problem. In the algorithm we have applied a coarse-grained model of parallelism, along with two new algorithms

for crossover and mutation are represented: FCX and Fmm. these algorithms compared with CEX’s First Fit and Transposi-

tion mutation operators. In our experiments, we observed that different strategies what role have in finding solutions. In

computer simulations of PGA we used DIMACS benchmark.

Keywords— Graph Coloring Problem, Migration Model, Migration Strategy, Parallel Genetic Algorithm

I. Introduction

Genetic Algorithms are the most recognized form of evo-

lutionary algorithms. They are being applied successfully to

find acceptable solutions to problems in business, engineer-

ing, and science .GAs are generally able to find good solu-

tions in reasonable amount of time, but as they are applied

to harder and bigger problems there is an increase in the

time required to find adequate solutions. Fortunately, GAs

work with a population of independent solutions, which

makes it feasible to distribute the computational load among

several processors. Indeed, some may say that GAs are

“embarrassingly parallel” programs, and that it is trivial to

make fast parallel GAs [1].

We have applied parallel genetic algorithm to represent a

new algorithm for GCP (graph coloring problem). Graph

coloring problem (GCP) belongs to the class of NP–hard

combinatorial optimizations problems. GCP is defined for

an undirected graph as a problem of assignment of available

colors to graph vertices providing that adjacent vertices are

assigned different colors and the number of colors is mini-

mal [2].

A coloring using at most k colors is called a (proper) k-

coloring. The smallest number of colors needed to color a

graph G is called its chromatic number, χ(G). A graph that

can be assigned a (proper) k-coloring is k-colorable, and it

is k-chromatic if its chromatic number is exactly k. A sub-

set of vertices assigned to the same color is called a color

class; every such class forms an independent set. Thus, a k-

coloring is the same as a partition of the vertex set into k

independent sets, and the terms k-partite and k-colorable

have the same meaning.

Problem (k-GCP): Let G=(V,E) be a connected graph where

V is set of vertices (|V|=n), E⊆V×V is set of edges and

k∈N
+
 is a number of colors used. Our target is to find: Ψ:

V→1,2,3,…,k (u,v∈V and [u,v]∈E) subject that Ψ (v)≠ Ψ

(u).

There are already different algorithms for crossover oper-

ator, including SPPX, UISX, GPX and CEX [2] which are

applicable to GCP, however as shown in [2] CEX is more

efficient than others finding correct solution.

In this paper two new breeding operators for coloring

chromosomes are proposed: FCX (Find Conflict Crossover)

that is an extended version of CEX (Conflict Elimination

Crossover) [2], and FMM (Find Maximum mutation) in

which conflicts are substituted by randomly chosen color.

The graph coloring instances for feeding our approach are

taken from [7, 8, 9], these instances are presented in DI-

MACS standard format.

II. Genetic Operators for k-GCP

In order to achieve better results, some parameters and

specifications need to be explained. Encoding in genomes,

methods for Genetic Operators, selection function, defining

a proper fitness function, and Migration Topology have

considerable influence on how much the results are optimal.

In this section we try to explain some of these parameters in

our PGA.

III. Chromosome Representation

The first decision which has direct impact on perfor-

mance is chromosome structure. Assignment representation

and partition representation are widely used for k-GCP. In

assignment representation, each genome is represented as a

vertex assignment array which contains the colors assigned

to the vertices. For instance, value j at index i means that

color Cj is assigned to vertex Vi. On the other hand, in parti-

tion representation, each genome is represented as a parti-

tion of graph vertices. Every member of a subset in the par-

tition has a same color.

Corresponding Author: fardin_e_s@yahoo.com

 International Journal of Computer Sciences and Engineering Vol.-2(5), PP(138-141) May 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 139

For example, if value i is a member of subset j in parti-

tion representation, it means that color Cj is assigned to ver-

tex Vi in the graph [3].

In our algorithm assignment representation is used. Fig.1

shows examples of both representation methods for given

graph.

IV. Find Conflict Crossover

The proposed algorithm works in two phase. In first phase

when two selected chromosomes have unequal conflicts,

CEX algorithm is applied [2]. In second phase when two

selected chromosome have equal conflicts, our algorithm is

applied.

However, as our experiments show just in 40% of crossover

operations CEX is called and rest of operations use FCX.

(See Fig.2 and Fig.3)

Procedure coloring-crossover:

Begin

Create first population randomly;

Evaluate fitness of chromosomes;

Repeat

 Select two parents;

If num.Ofconflict [par.1] =

num.Ofconflict [par.2]

 Call FCX;

Crossover Else

 Call CEX;

 End if;

 If (threshold)

 Call FMM;

 If (convergence is not acceptable)

 Call FMM;

 Until condition is satisfied;

End.

Procedure: FCX (par1, par2, child1, child2)

Begin

 Chromosomes_length=V;

 For (i=1; i<=chromosomes_length; i++)

 Exchange the conflict places in par1 and par2

 And replaces in child1 and child2;

 End for;

End.

Example 1

Two parents represent different 4-coloring of a graph with

10 vertices i.e. sequences par1=<1,2,4,3,1,4,4,3,1,2> and

par2=<1,3,4,3,2,4,1,2,1,2>. Vertices with color conflicts are

marked bold and underlined. As example1 shows both par1

and par2 have 6 vertices with feasible colors and 4 vertices

with color conflicts. Replacing the vertices with color con-

flicts in par1 by vertices with color conflicts in other parent,

we obtain the following two chromosomes:

child1=<3,2,3,3,1,4,1,3,1,2> and

child2=<1,1,4,4,2,4,1,2,4,2>. It is observed that obtained

chromosomes represent now two different 4-coloring of the

given graph and the number of color conflicts is now re-

duced to 3 in child1 and reduced to 0 in child2 chromo-

somes (No conflicts in child2). (See Fig.1)

V. Conflict Elimination Crossover

In conflict–based crossovers for GCP, an assignment rep-

resentation of coloring is used and offspring try to copy

conflict–free colors from their parents.

Conflict Elimination Crossover (CEX) reveals some simi-

larity to the classical crossover. Each parental chromosome

is partitioned into two blocks. The first block consists of

conflict–free nodes while the second block is built of the

remaining nodes that break the coloring rules. The last

block in both chromosomes is then replaced by correspond-

ing colors taken from the other parent. This recombination

scheme provides inheritance of all good properties of one

parent and gives the second parent a chance to reduce the

number of existing conflicts. However, if a chromosome

represents a feasible coloring the recombination mechanism

is not working. Therefore, the recombination must be com-

bined with an efficient mutation mechanism. The operator

CEX is almost as simple and easy to implement as the clas-

sical crossover (see Fig.4) [2].

Procedure: CEX (p,r,s,t)

Begin

 s = r;

 t = p;

 Copy conflict-free vertices
p

cfV from p to s;

 Copy conflict-free vertices
r

cfV from r to t;

End

Fig.3. the recombination operator FCX

Fig.2. the main body of algorithm

Fig.4. The recombination operator CEX.

Fig.1. examples of both representation methods

 International Journal of Computer Sciences and Engineering Vol.-2(5), PP(138-141) May 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 140

Example 2

Two parents represent different 5-colorings of a graph with

10 vertices i.e. sequences p=<5,2,3,4,1,4,2,5,1,3>, and

r=<1,4,5,2,3,3,5,4,2,5>. Vertices with color conflicts are

marked by bold fonts. Thus, the chromosome p has 6 verti-

ces with feasible colors and 4 vertices with color conflicts

while the chromosome r has 7 vertices with feasible colors

and 3 vertices with color conflicts. Replacing the vertices

with color conflicts by vertices taken from the other parent

we obtain the following two chromosomes:

s=<5,2,5,2,1,3,2,5,1,5> and t=<1,4,3,2,3,3,2,4,2,3>. It is

observed that obtained chromosomes represent now two

different 4-colorings of the given and the number of color

conflicts is now reduced to 2 in each chromosome [4]. (See

Fig.5)

VI. Mutation Operators

Transposition is a classical type of mutation that exchange

colors of two randomly selected vertices in the assignment

representation. The second mutation operator called First Fit

is designed for colorings in partition representation and is

well suited for GCP. In the First Fit mutation one block of

the partition is selected at random and propagate this block

vertices to others using heuristic First Fit such that assign-

ment of vertices to other blocks remain them conflict–free.

Thus, as a result of the First Fit mutation the color assign-

ment is partially rearranged and the number of partition

blocks is often reduced by one [4].

But we proposed a new algorithm for mutation operator that

is called Fmm (Find maximum mutation) in which algo-

rithm selects a chromosome randomly then finds node with

biggest conflict on chromosome and tries to change that

with random color. (See Fig. 5)

Procedure: Fmm (chromosomes)

Begin

 Select parent randomly;

 X=Find index with biggest conflict in parent;

Change the parent’s Xth index color with- ran-

dom color;

 Child=parent;

Return child;

End

VII. Evaluation And Selection Function

We have used function (1) for evaluating chromosome’s

quality:

∑
∈

+=
Ev)(u,

1v),conflict(uPen(c) ,

• C is a solution,

• Pen(c) is evaluation function for a solution (Note: big-

ger value for Pen(c) means less quality solution)

• Conflict is a penalty function for pairs of vertices con-

nected by an edge (u,v)∈E: Conflict(u,v) = 2 when c(u)

= c(v), and Conflict(u,v) = 0, otherwise.

For selection function, the tournament selection has been

applied. This method has been used widely in PGA. How-

ever in our selection method each chromosome allowed to

attend in competition just once, so that all chromosomes in

population have equal chance of being selected. Equation

(2) is our fitness function.

)(

1

cPen
Fitness =

VIII. Migration Model Of Parallel Genetic Algorithm

There are several ways to parallelize GA, and the parallel

GA (PGA) has been developed and successfully applied to

optimize practical problems. According to the nature of the

population structure and recombination mechanisms used,

PGA can be classified into four categories: single-

population master–slave PGA, coarse-grained PGA, fine-

grained PGA and hierarchical hybrids [5].

The coarse-grained parallel GA is very popular and widely

used. In a coarse-grained PGA the entire population is di-

vided into several sub-populations. Each sub-population

runs a conventional GA independently and concurrently on

their “island”. After several epochs, some individuals mi-

grate from one sub- population to another according to a

migration topology (see Fig.6).

The individuals that emigrate from an island may be select-

ed at random, or they may be selected among the best indi-

viduals in an island. Similarly, migrants may replace ran-

dom individuals at the receiving island, or they may replace

the worst individuals [6].

Fig.5. An illustration of CEX crossover (see Example 2)

Fig.7. Migration topology

Fig 6. The recombination operator Fmm

(1)

(2)

 International Journal of Computer Sciences and Engineering Vol.-2(5), PP(138-141) May 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 141

IX. Experimental Results

We have used four DIMACS graph coloring benchmarks

from [7] to apply our experiments. In our PGA coarse-

grained model is implemented. In our program different

migration strategies are applied. Prepared results are com-

puted using Intel Pentium 2.2GHz with 512MB memory.

The following parameters were applied in our algorithm:

Population size=90, number of generations=2000, number

of Island=3, number of migrants=5, migration interval=15,

crossover probability=0.6, mutation probability for First

Fit and Transposition=0.1. Experiments include comparing

performance of both FCX and CEX crossover operators; it

also examines efficiency of First Fit, Transposition and

Fmm mutation operators. However, Fmm’s mutation proba-

bility is dynamically changes based on algorithm conver-

gence. All experiments were repeated 10 times. Fig.8 Indic-

ative the generation numbers at the four different strategies

that the first solutions have reached (Note in Fig.7, X-axis

shows average of generation iteration and Y-axis shows

different strategies).

X. Conclusion

In this paper, a new PGA algorithm is proposed to observe

efficacy of different strategies for k-graph coloring problem

(k-GCP). A new crossover and mutation algorithm called

FCX and Fmm designed in a way that successfully could

find more correct answers in reasonable time for different

strategies. As described before, applying FCX in case of

equal conflicts makes convergence more rapid, in addition,

using coarse-grained model for implementation along with a

proper migration fraction and interval influences our results.

References

[1] Erick Cantu-Paz David E. Goldberg, “Efficient parallel genetic algo-

rithms: theory and practice”, J. Computer Methods in Applied Me-

chanic and Engineering. 186, 2000, pp.221-238

[2] Zbigniew Kokosinski, Marcin Kolodziej, Krzysztof Kwarciany, “Par-

allel Genetic Algorithm for Graph Coloring Problem”, ICCS 2004,
LNCS 3036, pp. 215–222

[3] Saeed Amizadeh, Farzad Rastegar, Caro Lucas, “Incorporating Heu-
ristics In Evolutionary Optimization”, J. Intelligent Information

Technology Computing, Vol.1, No.2, 2006, pp. 259-270

[4] Zbigniew Kokosinski, Krzysztof Kwarciany, Marcin Kolodziej, “Ef-

ficient Graph Coloring With Parallel Genetic Algorithms”, J. Compu-

ting and Informatics, Vol. 24, 2005, pp. 1001-1025

[5] Z.G. Wang, Y.S. Wong, M. Rahman, "Development of a parallel

optimization method based on genetic simulated annealing algo-

rithm", J. Parallel Computing, Vol. 31 ,2005, pp. 839–857

[6] Erick Cantu-Paz, "Migration Policies, takeover Times in parallel

genetic algorithms", Department of computer science and Illinois

Genetic Algorithm Laboratory, 1999

[7] http://mat.gsia.cmu.edu/COLOR/instances.html

[8] ftp://dimacs.rutgers.edu/pub/challenge/graph/benchmarks/

[9] http://mat.gsia.cmu.edu/COLORING03/

Fig.8. Number of generations to find the first solution in

different strategies

