
 © 2017, IJCSE All Rights Reserved 268

International Journal of Computer Sciences and Engineering Open Access
Research Paper Volume-5, Issue-9 E-ISSN: 2347-2693

Evaluation of Clustering Algorithm in Data Mining

Arpit Agrawal

Institute of Engineering and Technology, Devi Ahilya University Indore, Madhya Pradesh

Available online at: www.ijcseonline.org

Received: 12/Aug/2017, Revised: 25/Aug/2017, Accepted: 17/Sep/2017, Published: 30/Sep/2017

Abstract- Text mining is the use of data mining techniques to unstructured text in order to extract important and nontrivial

knowledge. One of the key methods of text mining, or the unsupervised classification of related content into various categories,

is text clustering. The performance of text clustering is being improved in this study. We looked on four areas of the text

clustering algorithms: document representation, document similarity analysis, high dimension reduction, and parallelization.

We suggest a collection of very effective text clustering techniques that focus on the special features of unstructured text

databases. All of the suggested algorithms have undergone thorough performance studies. We contrasted these techniques with

current text clustering algorithms in order to assess their performance.

Keyword- Cluster Algorithm, Data Mining, bisecting k-means, FIHC, CFWS find CFWMS

I. INTRODUCTION

The performance of text clustering is being improved in this

study. We looked on four areas of the text clustering

algorithms: document representation, document similarity

analysis, high dimension reduction, and parallelization. We

suggest a collection of very effective text clustering

techniques that focus on the special features of unstructured

text databases.

Two novel text clustering techniques are first suggested. We

employ a document representation that preserves the

sequential link between words in the documents, in contrast

to the vector space model, which sees documents as a

collection of words. In these two techniques, the size of the

database is condensed by taking into account common word

sequences, and the similarity of two documents is determined

by their shared use of common word sequences. The second

step is the proposal of a text clustering algorithm with feature

selection. This approach does feature selection during

clustering to gradually reduce the high dimension of the

database. A novel statistical dataset that can quantify both

positive and negative term-category dependence is used in

the new feature selection methodology.

Third, a collection of novel text clustering methods built on

the k-means algorithm is created. A new function involving

global information should be used in place of the cosine

function. The recently created neighbour matrix is used by

this new function. The suggested algorithms incorporate a

new technique for choosing initial centroids and a new

heuristic function for choosing a cluster to split. The

message-passing multiprocessor systems are given a new

parallel approach for bisecting k-means.

Fig.1 Clustering in data mining

Theorem 1: If a word wi is a member of a common k-word

sequence, it must also be a member of a frequent k-word set.

A member of a frequent k-word set, on the other hand, is not

always a member of a frequent k-word sequence, where the

order of the k words is important. This is quite simple.

Theorem 2: All of a k-word sequence's k1-word

subsequences are common if a k-word sequence is frequent.

From the definition of the subsequent, it is simple to

demonstrate.

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 269

This research offered a way for enhancing text clustering

performance. The text clustering algorithms were looked

into.

II. BACKGROUND TECHNIQUES

Frequent Word Sequences

As a result, a text document d may be represented as d = w1;

w2; w3;::: > in our method, where w1; w2; w3;::: are words

that exist in d. A word set is frequent if its support is at least

the user-specified minimum support, much like a frequent

itemset in the association rule mining of a transaction data set

[1] is frequent. This indicates that this word set is present in

at least the required minimum number (or proportion) of

texts. A common word set with k words in it is known as a

frequent k-word set.

An ordered sequence of two or more words is called a word

sequence. The symbol for S is w1; w2;::: >. In this chapter,

the letters F S stand for a common word combination. For

instance, F S = w1; w2; w3; w4 >, where w2 may not always

come just after w1 in a text page. As long as w2 comes after

w1 and there aren't many words in between, there may be

words. If these four words (w1; w2; w3; and w4) exist in the

text document d in the designated order, then the word

sequence is supported. When there are at least the required

minimum number (or percentage) of documents supporting a

word sequence S, it is a F S. Sequences that appear more

than once in the same document are considered as one

instance. As a result, our definition of common word

sequence can better accommodate the differences across

human languages.

Finding Frequent 2-Word Sets

In this stage, words that are insufficiently frequent to be

included in a frequent k-word sequence for k 2 are eliminated

with the intention of lowering the dimension of the database

(i.e., the number of unique words). This process is easy and

clear-cut. We find the common 2-word sets that meet the

minimal support using an association rule miner. A set WS is

created that contains all of the words in common 2-word sets.

We know that elements of the frequent word sequences of all

lengths k, k 2 must be included in the set WS based on

Theorems 1 and 2.

We eliminate all terms from the papers that are not found in

WS after identifying the frequently occurring 2-word

groupings. The documents that remain after the deletion are

referred to as compact documents.

Building a Generalized Suffix Tree (GST)

Our objective is to identify the database's most common

word sequences. To identify all common word sequences, we

use the suffix tree, a well-known data structure for sequence

pattern matching. Each compact document is viewed as a

collection of words that are individually added to a

generalised suffix tree (GST). Finally, we can discover all of

the common word sequences in this database by compiling

the data kept in all the nodes of this GST.

In reality, a compressed suffix tree for a string S is a list of

S's non-empty suffixes. The suffixes of a group of strings are

combined into a GST, which is a suffix tree. In our situation,

we create a GST out of all the compact documents in the text

database, therefore changes are made to the GST's structure

to suit our requirements. The words "suffix tree" and "GST"

will be used interchangeably throughout the remainder of this

chapter.

A directed, rooted tree is what a suffix tree is. Internal nodes

and suffix nodes are the two different types of nodes. There

are at least two children in every internal node. Each edge is

identified as l and is labelled with a non-empty substring of

the string S. The labels along the path from the root to a

given node, n, are concatenated to form the node's label.

StringL of n, or simply n:stringL, is used to express this

label. Different edges from the same node must have labels

with unique starting words. There is a suffix node with the

label s for each suffix s in the string S. Each suffix node has

a collection of document ids linked with it. If a substring of

a document ends at a node, then the document id is inserted

into the id set of the node.

These document ids are used to check the multiple

occurrences of a sequence in the same document. Node 2's

word sequence is a subsequence of node 1's word sequence,

while node 1's id set is a superset of node 2's. Some of the

information would be lost if we merely found the most

frequent word sequences. The most common word

combinations can serve as a document's content description.

However, a common word combination "boys play" is the

best way to sum up the information in this sample database.

Young boys play is a maximum frequent word sequence that

only covers the first two documents, d1 and d2, and boys

play basketball is another maximal frequent word sequence

that only covers the first two documents, d1 and d3.

Finding all the common word sequences may reveal certain

instances of duplication data, such as the sequences of nodes

6 and 7 in this illustration. If space needs to be saved, we

may merge these two nodes into one without losing any

information by matching their document id sets and word

sequence members. By identifying all common word

sequences, as demonstrated by this example, we may get

some helpful data about the database to use in future

information retrieval and data mining activities.

III. PROPOSED TECHNIQUES

The performance of text clustering is being improved in this

study. We looked on four areas of the text clustering

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 270

algorithms: document representation, document similarity

analysis, high dimension reduction, and parallelization.

We employ a document representation that preserves the

sequential link between words in the documents, in contrast

to the vector space model, which sees documents as a

collection of words. In these two techniques, the size of the

database is condensed by taking into account common word

sequences, and the similarity of two texts is determined by

their shared use of common word sequences.

Finding the frequent word sequences has two steps: finding

frequent 2-word sets first, then finding frequent word

sequences of all length.

Clustering Based on Frequent Word Sequences (CFWS)

Algorithm

Our CFWS algorithm has two steps: building a GST to find

frequent word sequences, then combining clustering

candidates to obtain the final clustering.

Finding Frequent Word Sequences and Collecting the

Cluster Candidates

The technique is used to create a GST for the database.

The minimal support of frequent word sequences is often in

the range; if it were too big, the total number of frequent

words would be quite little, leaving insufficient information

about the original data set in the compact texts that resulted.

Many documents won't be analysed in this situation since

they don't support any common words, and the final

clustering result won't include those papers.

We may utilise these sets directly to acquire the cluster

candidates because the document id sets are kept at the

GST's suffix nodes. The cluster candidates can only be

produced by the tree nodes that represent frequently

occurring word sequences.

IV. COMBINING THE CLUSTER CANDIDATES

The cluster candidate's F S provides a summary of the

contender. For instance, we know that cc1 includes the

papers pertaining to the game the boys play as F S1 = "boys

play." But occasionally, we don't require such clusters;

instead, we can be interested in a broader broad subject, like

the popular sports among teens. The relevant cluster

candidates can then be combined in such scenario. Two

clusters that are strongly connected to one another are also

combined using the agglomerative clustering technique. We

employ the k-mismatch notion of sequential patterns instead

of a distance function to gauge the proximity of two cluster

possibilities.

A k-mismatch of p is a jpj-substring of t that matches

(jpj k) characters of p given a pattern p, a text t, and an

independent of the lengths of p and t xed integer k. It

therefore compares p and k mismatches. By creating the GST

of the document collection, we are in the process of

comparing the differences between the frequent word

sequences that were discovered. Insertion, deletion, and

replacement are the three different sorts of mismatches that

can occur between the frequently occurring word sequences

F Si and F Sj. The larger pattern F Sj is created by inserting k

words into the shorter pattern F Si. This process is known as

insertion.

The lengthier pattern F Sj is reduced to the shorter pattern F

Si by eliminating k words from it. The link between two

patterns of equal length, F Si and F Sj, is known as

substitution. For example, F Si becomes F Sj by replacing k

words.

We combine those cluster possibilities with k-mismatched

patterns (frequent word sequences) for a given k. Two cluster

candidates with k-mismatched patterns are thought to cover

related themes. For instance, we may state that the subject

matter covered by the cluster candidate i with F Si = "boys

play" is similar to the subject matter covered by the cluster

candidate j with F Sj = "play basketball". Therefore, we may

combine them to create a larger cluster that addresses the

question of who plays which game. How ne the overall

clustering would be depends on the parameter k's value. The

nal clusters, which are the nest clusters that may be

discovered from the GST, are the cluster candidates if k is 0.

As k value increases, the topic covered by each cluster of the

nal clustering would be more general.

Some clusters may have excessive document id set overlap

when we combine numerous cluster candidates into clusters.

The range of is obviously [0; 1]: When = 1, these two

clusters share the same collection of documents, however

this does not imply that these two clusters are similar

because this set of documents may cover two different

themes. When = 0, these two clusters are disjunct.

Finally, as they lack a common word sequence, we gather the

papers that do not belong to any cluster. These texts

collectively constitute a cluster, and "other issues" might be

used to describe their subject.

Our text clustering algorithm CFWS is summarized as

follows:

a) Given a collection of text documents D = fd1; d2; d3;
: : : dng, nd the set of frequent 2-word sets of D
with the user-specified minimum support. Obtain
WS, the set of all

b) words, each of which is a member of a frequent 2-
word set.

c) Reduce each document di, 1 i n, into a compact

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 271

document d0
i by removing every word w from di if

w 2= WS.
d) Insert each compact document into the GST.
e) Using the depth- rst traversing, visit every node in

the GST. If a node j has a frequent word sequence
F Sj with the set of document ids Idsj , create a
cluster candidate- ccj [F Sj ; Idsj].

f) Merge the related cluster candidates into clusters
based on the k-mismatch concept.

g) Combine the overlapping clusters if necessary.

Clustering Based on Frequent Word Meaning Sequences

(CFWMS)

We initially count the number of times each word appears in

the texts before using the CFWS method to locate common

word sequences in the text database. A literal term in text

documents is referenced by a word form in this word form

matching method. The lexicalized idea that a word form may

be used to represent, on the other hand, is referred to as a

word meaning [66]. Synonyms are words that have the same

meaning but are used to convey it in different ways in the

actual world. A set of word forms that are synonyms is

known as a synonym set, or simply synset, and it may be

used to describe the meaning of a word.

Word meanings convey a document's subject matter more

effectively than word forms do. We provide a brand-new

technique called Clustering based on Frequent Word

Meaning Sequences (CFWMS), which employs frequent

word meaning sequences as the evaluation of the proximity

of texts in order to enhance the quality of clustering.

The word meanings that the word forms in the texts first

express are translated in CFWMS. Each text document is

then viewed as a series of word meanings after conversion. A

text document d, for instance, can be seen as as d =< SS 1;

SS2; SS3 ; : : : >. If more than a predetermined number (or

percentage) of papers include a word meaning sequence, it is

deemed common.

Finding the appropriate word meaning that a word form

represents in a certain lexical context is not a simple

challenge because most words have numerous word

meanings. To anticipate the actual word meaning, our system

uses a meaning union (MU), which is a union of synset

connections. You can consider a synset connection to be its

own meaning union.

For instance, there is a meaning union M U = fSS1 ! SS2

; SS3 ! SS4g, where SS1=fboxg, SS2 =fcontainerg, SS3=fbox,

logeg, and SS4 =fcompartmentg. We anticipate that the

genuine word meaning conveyed by the word form "box" in

this text is one of the synsets in M U.

We will describe how to find the meaning unions. In this

manner, a document d can be represented by meaning unions

as d
0
 =< M U 1 ; M U 2; M U 3; : : : >. following conversion.

Similarly, F M S =< M U 1; M U 2 ; : : : > might be used to

express a common word meaning sequence.

CFWMS Algorithm

There are three stages in our CFWMS algorithm: Finding

common word meaning sequences and gathering cluster

candidates are the first two steps in preprocessing texts to

create meaning unions from word forms. The third step is

merging cluster candidates to create the final clusters.

Document Preprocessing Using Word-Net

The transformation of word forms into meaning unions using

an ontology is the most crucial step in the preparation of

texts. We used Word-Net, an online lexical reference system,

as an ontology.

We remove stop words but do not stem when converting

word forms into word meanings. Only nouns, verbs,

adjectives, and adverbs are included in Word-Net. We

concentrate just on nouns and verbs and eliminate all

adjectives and adverbs from the texts since they are more

crucial in reflecting the substance of documents and also

primarily make up the frequent word meaning sequences. We

retain the word forms in the papers that do not have entries in

Word-Net since they may include particular information

about the documents.

There must be two conversion passes for each document. For

each word and verb in the text, the meaning union (MU) is

first extracted from Word-Net. From the most to the least

commonly used, Word-Net's synsets indicate a word form's

several word meanings. We choose the first two synsets

containing the word form for each noun and verb. One direct

hypernym synset is also obtained for each synset that is

chosen. If there is just one synset in the word form, one

inherited hypernym synset is also retrieved. Every word form

therefore has its own meaning union, which includes at least

one synset connection.

For example, a document d1 =< w1; w2; w3 > can be

converted to a sequence of meaning unions as d
0
1 =< M U 1 ;

M U 2; M U 3 >, where M U 1 = fSS4 ! SS5 ; SS6 ! SS7 g, M U

2 = fSS3 ! SS8; SS9 ! SS10 g, M U 3 = fSS1 ! SS5 ; SS2 ! SS3g.

We aim to lessen the amount of distinct meaning unions in

the transformed document during the second pass.

comparable word meanings may be expressed by comparable

word forms in one text. As a result, if two or more meaning

unions share a synset, we replace them with a single meaning

union that has a merged synset connection. In this instance,

the frequency of the synsets in the document determines the

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 272

order of replacement. To that end, each synset's occurrences

in the document's meaning unions are counted, and a list of

synsets and the meaning unions they support is produced.

Combining the Cluster Candidates

The themes covered by such papers are described by a cluster

candidate's frequent word meaning sequences. The k-

mismatch idea employed in the CFWS method is not

necessary when combining the cluster candidates. The

rationale is because since word meanings rather than word

forms were employed, the cluster candidates that we

discovered are sufficiently generic. As in CFWS, all that has

to be done is to look at the overlap between cluster

candidates.

V. EXPERIMENTAL ASSESSMENT

We assess the effectiveness of our text clustering method in

terms of the accuracy of clustering and the scalability of

finding common word sequences. On a SuSE Linux

computer with a Celeron 500 MHz processor and 384 MB of

RAM, we implemented our method in C++.

VI. DATA SETS

Two sets of data are used for the performance assessment.

One group consists of typical text document sets, which are

frequently seen in studies on text clustering. They differ in

terms of document size, cluster size, number of classes,

database dimension, and dispersion of documents. To

evaluate how well our algorithms performed on common text

texts, we selected this collection of data sets.

The test data sets' documents have all been pre-classified into

one or more categories. The accuracy of each clustering

method is assessed using this information, which is

concealed throughout the clustering procedures.

Evaluation of the Finding Frequent Word Sequences

We assessed the scalability of our strategy for locating

common word sequences. Finding frequently occurring 2-

word sets is the first phase of the mining process, followed

by creating and traversing the GST. In this approach, we can

identify frequent 2-word sets using any frequent itemset

mining technique. We used the Apriori method, the most

representative frequent itemset mining algorithm, in our

experiment. There have been several other frequent itemset

mining techniques developed, however their effectiveness in

locating frequent 2-itemsets isn't very different. The minimal

support level affects Apriori's effectiveness. The runtime of

Apriori grows when there are more frequent itemsets when

the minimum support is reduced.

Comparison of CFWS and CFWMS with Other

Algorithms

We also used bisecting k-means and FIHC on the

identical data sets to compare them to our CFWS and

CFWMS. In comparison to k-means and agglomerative

hierarchical clustering algorithms, bisecting k-means has

been shown to consistently yield a better grouping outcome.

Because FIHC employs frequent word sets like CFWS, it

was chosen. We did not independently implement the

bisecting k-means and FIHC algorithms in order to conduct a

fair comparison. Before they were employed in our

experiments, data sets underwent preprocessing. First, the

stop words must be taken out of the texts. The words are then

stemmed using the Porter's su x-stripping method [59] for the

CFWS, bisecting k-means, and FIHC algorithms. Stemming

is crucial since it may get rid of the little differences between

words with the same meaning. We transformed word forms

into word meanings for CFWMS using the WordNet

ontology. As a result, the text database's dimension is further

shrunk.

Table 1 shows the F-measures of four algorithms:

bisecting k-means, FIHC, CFWS find CFWMS.

Table 1: F-measures of the clustering algorithms

Data

Set

Bisecting

k-means
FIHC CFWS CFWMS

Re1 0.606 0.506 0.651 0.721

Re2 0.677 0.74 0.79 0.79

Re3 0.675 0.39 0.703 0.701

Ce1 0.43 0.506 0.541 0.55

Ce2 0.466 0.46 0.48 0.48

Ce3 0.489 0.515 0.54 0.604

Se1 0.611 0.664 0.705 0.711

Se2 0.529 0.461 0.689 0.71

Se3 0.716 0.759 0.8 0.806

The purity values for the four clustering techniques are

displayed in Table 2.

Table 2: Purity values of the clustering algorithms

Data

Set

Bisecting

k-means
FIHC CFWS CFWMS

Re1 0.622 0.527 0.749 0.751

Re2 0.796 0.652 0.679 0.81

Re3 0.777 0.444 0.504 0.675

Ce1 0.64 0.605 0.62 0.635

Ce2 0.69 0.585 0.601 0.637

Ce3 0.79 0.692 0.702 0.775

Se1 0.62 0.66 0.703 0.803

Se2 0.695 0.563 0.714 0.789

Se3 0.837 0.84 0.851 0.852

Se3 0.837 0.84 0.851 0.852

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 273

In the CFWMS, the degree of similarity across documents is

determined by the frequency of word meaning sequences.

Our CFWMS algorithm effectively captures the word

meanings given by various word forms. Additionally, the

common word meaning sequences serve as a representation

of the themes addressed in ordinary text publications.

CFWS outperforms bisecting k-means and FIHC for the

search query results (Se1, Se2, and Se3). The performance

outcomes can be explained by the special qualities of certain

document sets. These document sets were found in a search

engine's retrieval lists for user queries. For each query, we

carried out the retrieval using the Lemur Toolkit's

straightforward TFIDF retrieval model. Compared to

conventional text documents, the documents produced from

this retrieval technique are more likely to share words. In

other words, compared to ordinary document sets, the

subjects covered by this kind of document sets are

significantly more closely related. Our CFWS method can

perform better for these kinds of data sets since it can cluster

the documents into much smaller groups. The rationale is

because by identifying common word sequences in the

papers, our computer can detect subtle changes across

subtopics. Our CFWS technique helps online search engines

to give users more precise search results by grouping the

retrieved content. Purity data demonstrate that CFWMS may

enhance the clustering quality for both common text

documents and search query results.

VII. CONCLUSION

CFWS, which stands for Clustering based on Frequent Word

Sequences, is a brand-new text document clustering

technique that we initially introduced in this paper. Unlike

the conventional vector space model, our approach makes

use of the document's word order. The themes addressed by

the documents may be very effectively represented by

frequent word sequences found from the document

collection, and documents with the same frequent word

sequences are grouped together in our technique. Next, we

presented CFWMS, which stands for Clustering based on

Frequent Word Meaning Sequences, as a brand-new text

document clustering technique. Utilising common word

meaning sequences to gauge how closely related papers are

to one another, CFWMS improved CFWS. More accurately

than frequent word sequences, frequent word meaning

sequences can capture the subjects of texts. We preprocessed

the papers using the WordNet ontology's synonyms,

hyponyms, and hypernyms in order to identify common word

meaning sequences. On the majority of our test data sets,

CFWMS is more accurate than CFWS. According to the

findings of our experiments, CFWS outperforms alternative

clustering algorithms in terms of accuracy, particularly when

it comes to the ne clustering of documents belonging to the

same category, which is a highly helpful characteristic for

contemporary online search engines.

VIII. REFERENCES

[1] Mohammed J. Zaki. Scalable algorithms for association

mining. IEEE Trans. on Knowl. and Data Eng., 12(3):pp

372–390, 2000.

 [2] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth,

S. Nabar, T. Sugihara, and J. Widom. "Trio: A system

for data, uncertainty, and lineage". In Proc. Int. Conf. on

Very Large Databases, 2006.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining

association rules. In Proc. ACM SIGMOD Int. Conf. on

Management of Data, Minneapolis, MN, 1994.

[4] T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and A.

Züfle. Probabilistic frequent itemset mining in uncertain

databases. In In Proc. 15th ACM SIGKDD Conf. on

Knowledge Discovery and Data Mining, Paris, France,

2009.

[5] C. C. Aggrawal and P. S. Yu, \Finding Generalized

Projected Clusters in High Dimensional Spaces," Proc.

of ACM SIGMOD Int'l Conf. on Management of Data,

2000, pp. 70{81.

[6] J. Allan, \HARD Track Overview in TREC 2003 High

Accuracy Retrieval from Documents,"Proc. of the 12th

Text Retrieval Conference, 2003, pp. 24{37.

[7] M. R. Anderberg, Cluster Analysis for Applications,

Academic Press, 1973.

[8] DPVG06] Nele Dexters, Paul W. Purdom, and Dirk Van

Gucht. A probability analysis for candidate-based

frequent itemset algorithms. In SAC ’06: Proceedings of

the 2006 ACM symposium on Applied computing, New

York, NY, USA, 2006. ACM, pp541–545.

[9] Gregory Buehrer, Srinivasan Parthasarathy, and Amol

Ghoting. Out-ofcore frequent pattern mining on a

commodity pc. In KDD ’06: Proceedings of the 12th

ACM SIGKDD international conference on Knowledge

discovery and data mining, New York, NY, USA, 2006,

pp 86–95.

[10] Toon Calders. Deducing bounds on the frequency of

itemsets. In EDBT Workshop DTDM Database

Techniques in Data Mining, 2002.

