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Abstract- Text mining is the use of data mining techniques to unstructured text in order to extract important and nontrivial 

knowledge. One of the key methods of text mining, or the unsupervised classification of related content into various categories, 

is text clustering. The performance of text clustering is being improved in this study. We looked on four areas of the text 

clustering algorithms: document representation, document similarity analysis, high dimension reduction, and parallelization. 

We suggest a collection of very effective text clustering techniques that focus on the special features of unstructured text 

databases. All of the suggested algorithms have undergone thorough performance studies. We contrasted these techniques with 

current text clustering algorithms in order to assess their performance. 
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I. INTRODUCTION 

The performance of text clustering is being improved in this 

study. We looked on four areas of the text clustering 

algorithms: document representation, document similarity 

analysis, high dimension reduction, and parallelization. We 

suggest a collection of very effective text clustering 

techniques that focus on the special features of unstructured 

text databases. 

 

Two novel text clustering techniques are first suggested. We 

employ a document representation that preserves the 

sequential link between words in the documents, in contrast 

to the vector space model, which sees documents as a 

collection of words. In these two techniques, the size of the 

database is condensed by taking into account common word 

sequences, and the similarity of two documents is determined 

by their shared use of common word sequences. The second 

step is the proposal of a text clustering algorithm with feature 

selection. This approach does feature selection during 

clustering to gradually reduce the high dimension of the 

database. A novel statistical dataset that can quantify both 

positive and negative term-category dependence is used in 

the new feature selection methodology. 

 

Third, a collection of novel text clustering methods built on 

the k-means algorithm is created. A new function involving 

global information should be used in place of the cosine 

function. The recently created neighbour matrix is used by 

this new function. The suggested algorithms incorporate a 

new technique for choosing initial centroids and a new 

heuristic function for choosing a cluster to split. The 

message-passing multiprocessor systems are given a new 

parallel approach for bisecting k-means. 

 

 
 

Fig.1 Clustering in data mining 
 
Theorem 1: If a word wi is a member of a common k-word 

sequence, it must also be a member of a frequent k-word set. 

A member of a frequent k-word set, on the other hand, is not 

always a member of a frequent k-word sequence, where the 

order of the k words is important. This is quite simple. 

 

Theorem 2: All of a k-word sequence's k1-word 

subsequences are common if a k-word sequence is frequent. 

From the definition of the subsequent, it is simple to 

demonstrate. 
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This research offered a way for enhancing text clustering 

performance. The text clustering algorithms were looked 

into. 

II. BACKGROUND TECHNIQUES 

Frequent Word Sequences  

As a result, a text document d may be represented as d = w1; 

w2; w3;::: > in our method, where w1; w2; w3;::: are words 

that exist in d. A word set is frequent if its support is at least 

the user-specified minimum support, much like a frequent 

itemset in the association rule mining of a transaction data set 

[1] is frequent. This indicates that this word set is present in 

at least the required minimum number (or proportion) of 

texts. A common word set with k words in it is known as a 

frequent k-word set. 

 

An ordered sequence of two or more words is called a word 

sequence.  The symbol for S is w1; w2;::: >. In this chapter, 

the letters F S stand for a common word combination. For 

instance, F S = w1; w2; w3; w4 >, where w2 may not always 

come just after w1 in a text page. As long as w2 comes after 

w1 and there aren't many words in between, there may be 

words. If these four words (w1; w2; w3; and w4) exist in the 

text document d in the designated order, then the word 

sequence is supported. When there are at least the required 

minimum number (or percentage) of documents supporting a 

word sequence S, it is a F S. Sequences that appear more 

than once in the same document are considered as one 

instance. As a result, our definition of common word 

sequence can better accommodate the differences across 

human languages. 

 

Finding Frequent 2-Word Sets  

 

In this stage, words that are insufficiently frequent to be 

included in a frequent k-word sequence for k 2 are eliminated 

with the intention of lowering the dimension of the database 

(i.e., the number of unique words). This process is easy and 

clear-cut. We find the common 2-word sets that meet the 

minimal support using an association rule miner. A set WS is 

created that contains all of the words in common 2-word sets. 

We know that elements of the frequent word sequences of all 

lengths k, k 2 must be included in the set WS based on 

Theorems 1 and 2. 

 

We eliminate all terms from the papers that are not found in 

WS after identifying the frequently occurring 2-word 

groupings. The documents that remain after the deletion are 

referred to as compact documents. 

 

Building a Generalized Suffix Tree (GST)  

 

Our objective is to identify the database's most common 

word sequences. To identify all common word sequences, we 

use the suffix tree, a well-known data structure for sequence 

pattern matching. Each compact document is viewed as a 

collection of words that are individually added to a 

generalised suffix tree (GST). Finally, we can discover all of 

the common word sequences in this database by compiling 

the data kept in all the nodes of this GST. 

 

In reality, a compressed suffix tree for a string S is a list of 

S's non-empty suffixes. The suffixes of a group of strings are 

combined into a GST, which is a suffix tree. In our situation, 

we create a GST out of all the compact documents in the text 

database, therefore changes are made to the GST's structure 

to suit our requirements. The words "suffix tree" and "GST" 

will be used interchangeably throughout the remainder of this 

chapter. 

 

A directed, rooted tree is what a suffix tree is. Internal nodes 

and suffix nodes are the two different types of nodes. There 

are at least two children in every internal node. Each edge is 

identified as l and is labelled with a non-empty substring of 

the string S. The labels along the path from the root to a 

given node, n, are concatenated to form the node's label. 

StringL of n, or simply n:stringL, is used to express this 

label. Different edges from the same node must have labels 

with unique starting words. There is a suffix node with the 

label s for each suffix s in the string S. Each suffix node has 

a collection of document ids linked with it.  If a substring of 

a document ends at a node, then the document id is inserted 

into the id set of the node.  

 

These document ids are used to check the multiple 

occurrences of a sequence in the same document.  Node 2's 

word sequence is a subsequence of node 1's word sequence, 

while node 1's id set is a superset of node 2's. Some of the 

information would be lost if we merely found the most 

frequent word sequences. The most common word 

combinations can serve as a document's content description. 

However, a common word combination "boys play" is the 

best way to sum up the information in this sample database. 

Young boys play is a maximum frequent word sequence that 

only covers the first two documents, d1 and d2, and boys 

play basketball is another maximal frequent word sequence 

that only covers the first two documents, d1 and d3. 

 

Finding all the common word sequences may reveal certain 

instances of duplication data, such as the sequences of nodes 

6 and 7 in this illustration. If space needs to be saved, we 

may merge these two nodes into one without losing any 

information by matching their document id sets and word 

sequence members. By identifying all common word 

sequences, as demonstrated by this example, we may get 

some helpful data about the database to use in future 

information retrieval and data mining activities. 

 

III. PROPOSED TECHNIQUES 

The performance of text clustering is being improved in this 

study. We looked on four areas of the text clustering 
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algorithms: document representation, document similarity 

analysis, high dimension reduction, and parallelization. 

 

We employ a document representation that preserves the 

sequential link between words in the documents, in contrast 

to the vector space model, which sees documents as a 

collection of words. In these two techniques, the size of the 

database is condensed by taking into account common word 

sequences, and the similarity of two texts is determined by 

their shared use of common word sequences. 

 

Finding the frequent word sequences has two steps: finding 

frequent 2-word sets first, then finding frequent word 

sequences of all length. 

 

Clustering Based on Frequent Word Sequences (CFWS) 

Algorithm  

 

Our CFWS algorithm has two steps: building a GST to find 

frequent word sequences, then combining clustering 

candidates to obtain the final clustering. 

 

Finding Frequent Word Sequences and Collecting the 

Cluster Candidates  

 

The technique is used to create a GST for the database. 

The minimal support of frequent word sequences is often in 

the range; if it were too big, the total number of frequent 

words would be quite little, leaving insufficient information 

about the original data set in the compact texts that resulted. 

Many documents won't be analysed in this situation since 

they don't support any common words, and the final 

clustering result won't include those papers. 

  

We may utilise these sets directly to acquire the cluster 

candidates because the document id sets are kept at the 

GST's suffix nodes. The cluster candidates can only be 

produced by the tree nodes that represent frequently 

occurring word sequences. 

 

IV. COMBINING THE CLUSTER CANDIDATES  

The cluster candidate's F S provides a summary of the 

contender. For instance, we know that cc1 includes the 

papers pertaining to the game the boys play as F S1 = "boys 

play." But occasionally, we don't require such clusters; 

instead, we can be interested in a broader broad subject, like 

the popular sports among teens. The relevant cluster 

candidates can then be combined in such scenario. Two 

clusters that are strongly connected to one another are also 

combined using the agglomerative clustering technique. We 

employ the k-mismatch notion of sequential patterns instead 

of a distance function to gauge the proximity of two cluster 

possibilities. 

 

A k-mismatch of p is a jpj-substring of t that matches 

(jpj k) characters of p given a pattern p, a text t, and an 

independent of the lengths of p and t xed integer k. It 

therefore compares p and k mismatches. By creating the GST 

of the document collection, we are in the process of 

comparing the differences between the frequent word 

sequences that were discovered. Insertion, deletion, and 

replacement are the three different sorts of mismatches that 

can occur between the frequently occurring word sequences 

F Si and F Sj. The larger pattern F Sj is created by inserting k 

words into the shorter pattern F Si. This process is known as 

insertion.  

 

The lengthier pattern F Sj is reduced to the shorter pattern F 

Si by eliminating k words from it. The link between two 

patterns of equal length, F Si and F Sj, is known as 

substitution. For example, F Si becomes F Sj by replacing k 

words.  

 

We combine those cluster possibilities with k-mismatched 

patterns (frequent word sequences) for a given k. Two cluster 

candidates with k-mismatched patterns are thought to cover 

related themes. For instance, we may state that the subject 

matter covered by the cluster candidate i with F Si = "boys 

play" is similar to the subject matter covered by the cluster 

candidate j with F Sj = "play basketball". Therefore, we may 

combine them to create a larger cluster that addresses the 

question of who plays which game. How ne the overall 

clustering would be depends on the parameter k's value. The 

nal clusters, which are the nest clusters that may be 

discovered from the GST, are the cluster candidates if k is 0.  

As k value increases, the topic covered by each cluster of the 

nal clustering would be more general. 

 

Some clusters may have excessive document id set overlap 

when we combine numerous cluster candidates into clusters.  

The range of is obviously [0; 1]: When = 1, these two 

clusters share the same collection of documents, however 

this does not imply that these two clusters are similar 

because this set of documents may cover two different 

themes. When = 0, these two clusters are disjunct. 

 

Finally, as they lack a common word sequence, we gather the 

papers that do not belong to any cluster. These texts 

collectively constitute a cluster, and "other issues" might be 

used to describe their subject. 

 

Our text clustering algorithm CFWS is summarized as 

follows: 

 

a) Given a collection of text documents D = fd1; d2; d3; 
: : : dng, nd the set of frequent 2-word sets of D 
with the user-specified minimum support. Obtain 
WS, the set of all  

b) words, each of which is a member of a frequent 2-
word set.  

c) Reduce each document di, 1 i n, into a compact 
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document d0
i by removing every word w from di if 

w 2= WS.  
d) Insert each compact document into the GST.  
e) Using the depth-  rst traversing, visit every node in 

the GST. If a node j has a frequent word sequence  
F Sj   with the set of document ids Idsj ,  create a 
cluster candidate- ccj [F Sj ; Idsj ]. 

f) Merge the related cluster candidates into clusters 
based on the k-mismatch concept.  

g) Combine the overlapping clusters if necessary.  

 

Clustering Based on Frequent Word Meaning Sequences 

(CFWMS)  

 

We initially count the number of times each word appears in 

the texts before using the CFWS method to locate common 

word sequences in the text database. A literal term in text 

documents is referenced by a word form in this word form 

matching method. The lexicalized idea that a word form may 

be used to represent, on the other hand, is referred to as a 

word meaning [66]. Synonyms are words that have the same 

meaning but are used to convey it in different ways in the 

actual world. A set of word forms that are synonyms is 

known as a synonym set, or simply synset, and it may be 

used to describe the meaning of a word. 

Word meanings convey a document's subject matter more 

effectively than word forms do. We provide a brand-new 

technique called Clustering based on Frequent Word 

Meaning Sequences (CFWMS), which employs frequent 

word meaning sequences as the evaluation of the proximity 

of texts in order to enhance the quality of clustering. 

 

The word meanings that the word forms in the texts first 

express are translated in CFWMS. Each text document is 

then viewed as a series of word meanings after conversion. A 

text document d, for instance, can be seen as as d =< SS 1; 

SS2; SS3 ; : : : >. If more than a predetermined number (or 

percentage) of papers include a word meaning sequence, it is 

deemed common.  

 

Finding the appropriate word meaning that a word form 

represents in a certain lexical context is not a simple 

challenge because most words have numerous word 

meanings. To anticipate the actual word meaning, our system 

uses a meaning union (MU), which is a union of synset 

connections. You can consider a synset connection to be its 

own meaning union.  

For instance, there is a meaning union M U = fSS1 ! SS2 

; SS3 ! SS4g, where SS1=fboxg, SS2 =fcontainerg, SS3=fbox, 

logeg, and SS4 =fcompartmentg.  We anticipate that the 

genuine word meaning conveyed by the word form "box" in 

this text is one of the synsets in M U.  

 

We will describe how to find the meaning unions. In this 

manner, a document d can be represented by meaning unions 

as d
0
 =< M U 1 ; M U 2; M U 3; : : : >. following conversion. 

Similarly, F M S =< M U 1; M U 2 ; : : : > might be used to 

express a common word meaning sequence. 

 

CFWMS Algorithm  

 

There are three stages in our CFWMS algorithm: Finding 

common word meaning sequences and gathering cluster 

candidates are the first two steps in preprocessing texts to 

create meaning unions from word forms. The third step is 

merging cluster candidates to create the final clusters. 

 

Document Preprocessing Using Word-Net  

 

The transformation of word forms into meaning unions using 

an ontology is the most crucial step in the preparation of 

texts. We used Word-Net, an online lexical reference system, 

as an ontology.   

 

We remove stop words but do not stem when converting 

word forms into word meanings. Only nouns, verbs, 

adjectives, and adverbs are included in Word-Net. We 

concentrate just on nouns and verbs and eliminate all 

adjectives and adverbs from the texts since they are more 

crucial in reflecting the substance of documents and also 

primarily make up the frequent word meaning sequences. We 

retain the word forms in the papers that do not have entries in 

Word-Net since they may include particular information 

about the documents. 

 

There must be two conversion passes for each document. For 

each word and verb in the text, the meaning union (MU) is 

first extracted from Word-Net. From the most to the least 

commonly used, Word-Net's synsets indicate a word form's 

several word meanings. We choose the first two synsets 

containing the word form for each noun and verb. One direct 

hypernym synset is also obtained for each synset that is 

chosen. If there is just one synset in the word form, one 

inherited hypernym synset is also retrieved. Every word form 

therefore has its own meaning union, which includes at least 

one synset connection.    

 

For example, a document d1 =< w1; w2; w3 > can be 

converted to a sequence of meaning unions as d
0
1 =< M U 1 ; 

M U 2; M U 3 >, where M U 1 = fSS4 ! SS5 ; SS6 ! SS7 g, M U 

2 = fSS3 ! SS8; SS9 ! SS10 g, M U 3 = fSS1 ! SS5 ; SS2 ! SS3g. 

 

We aim to lessen the amount of distinct meaning unions in 

the transformed document during the second pass. 

comparable word meanings may be expressed by comparable 

word forms in one text. As a result, if two or more meaning 

unions share a synset, we replace them with a single meaning 

union that has a merged synset connection. In this instance, 

the frequency of the synsets in the document determines the 
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order of replacement. To that end, each synset's occurrences 

in the document's meaning unions are counted, and a list of 

synsets and the meaning unions they support is produced. 

 

Combining the Cluster Candidates  

The themes covered by such papers are described by a cluster 

candidate's frequent word meaning sequences. The k-

mismatch idea employed in the CFWS method is not 

necessary when combining the cluster candidates. The 

rationale is because since word meanings rather than word 

forms were employed, the cluster candidates that we 

discovered are sufficiently generic. As in CFWS, all that has 

to be done is to look at the overlap between cluster 

candidates. 

 

V. EXPERIMENTAL ASSESSMENT 

We assess the effectiveness of our text clustering method in 

terms of the accuracy of clustering and the scalability of 

finding common word sequences. On a SuSE Linux 

computer with a Celeron 500 MHz processor and 384 MB of 

RAM, we implemented our method in C++. 

 

VI. DATA SETS  

Two sets of data are used for the performance assessment. 

One group consists of typical text document sets, which are 

frequently seen in studies on text clustering. They differ in 

terms of document size, cluster size, number of classes, 

database dimension, and dispersion of documents. To 

evaluate how well our algorithms performed on common text 

texts, we selected this collection of data sets.  

 

The test data sets' documents have all been pre-classified into 

one or more categories. The accuracy of each clustering 

method is assessed using this information, which is 

concealed throughout the clustering procedures.  

 

Evaluation of the Finding Frequent Word Sequences  

 

We assessed the scalability of our strategy for locating 

common word sequences. Finding frequently occurring 2-

word sets is the first phase of the mining process, followed 

by creating and traversing the GST. In this approach, we can 

identify frequent 2-word sets using any frequent itemset 

mining technique. We used the Apriori method, the most 

representative frequent itemset mining algorithm, in our 

experiment. There have been several other frequent itemset 

mining techniques developed, however their effectiveness in 

locating frequent 2-itemsets isn't very different. The minimal 

support level affects Apriori's effectiveness. The runtime of 

Apriori grows when there are more frequent itemsets when 

the minimum support is reduced. 

 

 

 

Comparison of CFWS and CFWMS with Other 

Algorithms  

 

We also used bisecting k-means and FIHC on the 

identical data sets to compare them to our CFWS and 

CFWMS. In comparison to k-means and agglomerative 

hierarchical clustering algorithms, bisecting k-means has 

been shown to consistently yield a better grouping outcome. 

Because FIHC employs frequent word sets like CFWS, it 

was chosen. We did not independently implement the 

bisecting k-means and FIHC algorithms in order to conduct a 

fair comparison. Before they were employed in our 

experiments, data sets underwent preprocessing. First, the 

stop words must be taken out of the texts. The words are then 

stemmed using the Porter's su x-stripping method [59] for the 

CFWS, bisecting k-means, and FIHC algorithms. Stemming 

is crucial since it may get rid of the little differences between 

words with the same meaning. We transformed word forms 

into word meanings for CFWMS using the WordNet 

ontology. As a result, the text database's dimension is further 

shrunk.  

 

Table 1 shows the F-measures of four algorithms: 

bisecting k-means, FIHC, CFWS find CFWMS.  

 

Table 1: F-measures of the clustering algorithms 

Data 

Set 

Bisecting 

k-means 
FIHC CFWS CFWMS 

Re1 0.606 0.506 0.651 0.721 

Re2 0.677 0.74 0.79 0.79 

Re3 0.675 0.39 0.703 0.701 

Ce1 0.43 0.506 0.541 0.55 

Ce2 0.466 0.46 0.48 0.48 

Ce3 0.489 0.515 0.54 0.604 

Se1 0.611 0.664 0.705 0.711 

Se2 0.529 0.461 0.689 0.71 

Se3 0.716 0.759 0.8 0.806 

 

The purity values for the four clustering techniques are 

displayed in Table 2.   

 

Table 2: Purity values of the clustering algorithms 

Data 

Set 

Bisecting 

k-means 
FIHC CFWS CFWMS 

Re1 0.622 0.527 0.749 0.751 

Re2 0.796 0.652 0.679 0.81 

Re3 0.777 0.444 0.504 0.675 

Ce1 0.64 0.605 0.62 0.635 

Ce2 0.69 0.585 0.601 0.637 

Ce3 0.79 0.692 0.702 0.775 

Se1 0.62 0.66 0.703 0.803 

Se2 0.695 0.563 0.714 0.789 

Se3 0.837 0.84 0.851 0.852 

Se3 0.837 0.84 0.851 0.852 
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In the CFWMS, the degree of similarity across documents is 

determined by the frequency of word meaning sequences. 

Our CFWMS algorithm effectively captures the word 

meanings given by various word forms. Additionally, the 

common word meaning sequences serve as a representation 

of the themes addressed in ordinary text publications. 

 

CFWS outperforms bisecting k-means and FIHC for the 

search query results (Se1, Se2, and Se3). The performance 

outcomes can be explained by the special qualities of certain 

document sets. These document sets were found in a search 

engine's retrieval lists for user queries. For each query, we 

carried out the retrieval using the Lemur Toolkit's 

straightforward TFIDF retrieval model. Compared to 

conventional text documents, the documents produced from 

this retrieval technique are more likely to share words. In 

other words, compared to ordinary document sets, the 

subjects covered by this kind of document sets are 

significantly more closely related.  Our CFWS method can 

perform better for these kinds of data sets since it can cluster 

the documents into much smaller groups. The rationale is 

because by identifying common word sequences in the 

papers, our computer can detect subtle changes across 

subtopics. Our CFWS technique helps online search engines 

to give users more precise search results by grouping the 

retrieved content. Purity data demonstrate that CFWMS may 

enhance the clustering quality for both common text 

documents and search query results. 

 

VII. CONCLUSION 

CFWS, which stands for Clustering based on Frequent Word 

Sequences, is a brand-new text document clustering 

technique that we initially introduced in this paper. Unlike 

the conventional vector space model, our approach makes 

use of the document's word order. The themes addressed by 

the documents may be very effectively represented by 

frequent word sequences found from the document 

collection, and documents with the same frequent word 

sequences are grouped together in our technique. Next, we 

presented CFWMS, which stands for Clustering based on 

Frequent Word Meaning Sequences, as a brand-new text 

document clustering technique. Utilising common word 

meaning sequences to gauge how closely related papers are 

to one another, CFWMS improved CFWS. More accurately 

than frequent word sequences, frequent word meaning 

sequences can capture the subjects of texts. We preprocessed 

the papers using the WordNet ontology's synonyms, 

hyponyms, and hypernyms in order to identify common word 

meaning sequences. On the majority of our test data sets, 

CFWMS is more accurate than CFWS. According to the 

findings of our experiments, CFWS outperforms alternative 

clustering algorithms in terms of accuracy, particularly when 

it comes to the ne clustering of documents belonging to the 

same category, which is a highly helpful characteristic for 

contemporary online search engines. 
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