[4
AXJCSE International Journal of Computer Sciences and Engineering Open Access

Research Paper

Volume-5, Issue-9

E-ISSN: 2347-2693

Evaluation of Clustering Algorithm in Data Mining

Arpit Agrawal

Institute of Engineering and Technology, Devi Ahilya University Indore, Madhya Pradesh

Available online at: www.ijcseonline.org

Received: 12/Aug/2017, Revised: 25/Aug/2017, Accepted: 17/Sep/2017, Published: 30/Sep/2017

Abstract- Text mining is the use of data mining techniques to unstructured text in order to extract important and nontrivial
knowledge. One of the key methods of text mining, or the unsupervised classification of related content into various categories,
is text clustering. The performance of text clustering is being improved in this study. We looked on four areas of the text
clustering algorithms: document representation, document similarity analysis, high dimension reduction, and parallelization.
We suggest a collection of very effective text clustering techniques that focus on the special features of unstructured text
databases. All of the suggested algorithms have undergone thorough performance studies. We contrasted these techniques with
current text clustering algorithms in order to assess their performance.

Keyword- Cluster Algorithm, Data Mining, bisecting k-means, FIHC, CFWS find CFWMS

I. INTRODUCTION

The performance of text clustering is being improved in this
study. We looked on four areas of the text clustering
algorithms: document representation, document similarity
analysis, high dimension reduction, and parallelization. We
suggest a collection of very effective text clustering
techniques that focus on the special features of unstructured
text databases.

Two novel text clustering techniques are first suggested. We
employ a document representation that preserves the
sequential link between words in the documents, in contrast
to the vector space model, which sees documents as a
collection of words. In these two techniques, the size of the
database is condensed by taking into account common word
sequences, and the similarity of two documents is determined
by their shared use of common word sequences. The second
step is the proposal of a text clustering algorithm with feature
selection. This approach does feature selection during
clustering to gradually reduce the high dimension of the
database. A novel statistical dataset that can quantify both
positive and negative term-category dependence is used in
the new feature selection methodology.

Third, a collection of novel text clustering methods built on
the k-means algorithm is created. A new function involving
global information should be used in place of the cosine
function. The recently created neighbour matrix is used by
this new function. The suggested algorithms incorporate a
new technique for choosing initial centroids and a new
heuristic function for choosing a cluster to split. The
message-passing multiprocessor systems are given a new
parallel approach for bisecting k-means.

© 2017, IJCSE All Rights Reserved

Vv
Evaluation &
presentation

knowledg
Data
mining
patterns
Selection &

l transformation

Cleaning &
integration

Flat files

Data base

Fig.1 Clustering in data mining

Theorem 1: If a word wi is a member of a common k-word
sequence, it must also be a member of a frequent k-word set.
A member of a frequent k-word set, on the other hand, is not
always a member of a frequent k-word sequence, where the
order of the k words is important. This is quite simple.

Theorem 2: All of a k-word sequence's kl-word
subsequences are common if a k-word sequence is frequent.
From the definition of the subsequent, it is simple to
demonstrate.

268

International Journal of Computer Sciences and Engineering

This research offered a way for enhancing text clustering
performance. The text clustering algorithms were looked
into.

Il. BACKGROUND TECHNIQUES

Frequent Word Sequences

As a result, a text document d may be represented as d = w1,
w2; w3;::: > in our method, where wl; w2; w3;::: are words
that exist in d. A word set is frequent if its support is at least
the user-specified minimum support, much like a frequent
itemset in the association rule mining of a transaction data set
[1] is frequent. This indicates that this word set is present in
at least the required minimum number (or proportion) of
texts. A common word set with k words in it is known as a
frequent k-word set.

An ordered sequence of two or more words is called a word
sequence. The symbol for S is wl; w2;::: >. In this chapter,
the letters F S stand for a common word combination. For
instance, F S = wl; w2; w3; w4 >, where w2 may not always
come just after wl in a text page. As long as w2 comes after
w1l and there aren't many words in between, there may be
words. If these four words (w1; w2; w3; and w4) exist in the
text document d in the designated order, then the word
sequence is supported. When there are at least the required
minimum number (or percentage) of documents supporting a
word sequence S, it is a F S. Sequences that appear more
than once in the same document are considered as one
instance. As a result, our definition of common word
sequence can better accommodate the differences across
human languages.

Finding Frequent 2-Word Sets

In this stage, words that are insufficiently frequent to be
included in a frequent k-word sequence for k 2 are eliminated
with the intention of lowering the dimension of the database
(i.e., the number of unique words). This process is easy and
clear-cut. We find the common 2-word sets that meet the
minimal support using an association rule miner. A set WS is
created that contains all of the words in common 2-word sets.
We know that elements of the frequent word sequences of all
lengths k, k 2 must be included in the set WS based on
Theorems 1 and 2.

We eliminate all terms from the papers that are not found in
WS after identifying the frequently occurring 2-word
groupings. The documents that remain after the deletion are
referred to as compact documents.

Building a Generalized Suffix Tree (GST)
Our objective is to identify the database's most common
word sequences. To identify all common word sequences, we

use the suffix tree, a well-known data structure for sequence
pattern matching. Each compact document is viewed as a

© 2017, IJCSE All Rights Reserved

Vol.5(9), Sep 2017, E-ISSN: 2347-2693

collection of words that are individually added to a
generalised suffix tree (GST). Finally, we can discover all of
the common word sequences in this database by compiling
the data kept in all the nodes of this GST.

In reality, a compressed suffix tree for a string S is a list of
S's non-empty suffixes. The suffixes of a group of strings are
combined into a GST, which is a suffix tree. In our situation,
we create a GST out of all the compact documents in the text
database, therefore changes are made to the GST's structure
to suit our requirements. The words "suffix tree" and "GST"
will be used interchangeably throughout the remainder of this
chapter.

A directed, rooted tree is what a suffix tree is. Internal nodes
and suffix nodes are the two different types of nodes. There
are at least two children in every internal node. Each edge is
identified as | and is labelled with a non-empty substring of
the string S. The labels along the path from the root to a
given node, n, are concatenated to form the node's label.
StringL of n, or simply n:stringL, is used to express this
label. Different edges from the same node must have labels
with unique starting words. There is a suffix node with the
label s for each suffix s in the string S. Each suffix node has
a collection of document ids linked with it. If a substring of
a document ends at a node, then the document id is inserted
into the id set of the node.

These document ids are used to check the multiple
occurrences of a sequence in the same document. Node 2's
word sequence is a subsequence of node 1's word sequence,
while node 1's id set is a superset of node 2's. Some of the
information would be lost if we merely found the most
frequent word sequences. The most common word
combinations can serve as a document's content description.
However, a common word combination "boys play" is the
best way to sum up the information in this sample database.
Young boys play is a maximum frequent word sequence that
only covers the first two documents, d1 and d2, and boys
play basketball is another maximal frequent word sequence
that only covers the first two documents, d1 and d3.

Finding all the common word sequences may reveal certain
instances of duplication data, such as the sequences of nodes
6 and 7 in this illustration. If space needs to be saved, we
may merge these two nodes into one without losing any
information by matching their document id sets and word
sequence members. By identifying all common word
sequences, as demonstrated by this example, we may get
some helpful data about the database to use in future
information retrieval and data mining activities.

I1l. PROPOSED TECHNIQUES

The performance of text clustering is being improved in this
study. We looked on four areas of the text clustering

269

International Journal of Computer Sciences and Engineering

algorithms: document representation, document similarity
analysis, high dimension reduction, and parallelization.

We employ a document representation that preserves the
sequential link between words in the documents, in contrast
to the vector space model, which sees documents as a
collection of words. In these two techniques, the size of the
database is condensed by taking into account common word
sequences, and the similarity of two texts is determined by
their shared use of common word sequences.

Finding the frequent word sequences has two steps: finding
frequent 2-word sets first, then finding frequent word
sequences of all length.

Clustering Based on Frequent Word Sequences (CFWS)
Algorithm

Our CFWS algorithm has two steps: building a GST to find
frequent word sequences, then combining clustering
candidates to obtain the final clustering.

Finding Frequent Word Sequences and Collecting the
Cluster Candidates

The technique is used to create a GST for the database.
The minimal support of frequent word sequences is often in
the range; if it were too big, the total number of frequent
words would be quite little, leaving insufficient information
about the original data set in the compact texts that resulted.
Many documents won't be analysed in this situation since
they don't support any common words, and the final
clustering result won't include those papers.

We may utilise these sets directly to acquire the cluster
candidates because the document id sets are kept at the
GST's suffix nodes. The cluster candidates can only be
produced by the tree nodes that represent frequently
occurring word sequences.

IV. COMBINING THE CLUSTER CANDIDATES

The cluster candidate's F S provides a summary of the
contender. For instance, we know that ccl includes the
papers pertaining to the game the boys play as F S1 = "boys
play." But occasionally, we don't require such clusters;
instead, we can be interested in a broader broad subject, like
the popular sports among teens. The relevant cluster
candidates can then be combined in such scenario. Two
clusters that are strongly connected to one another are also
combined using the agglomerative clustering technique. We
employ the k-mismatch notion of sequential patterns instead
of a distance function to gauge the proximity of two cluster
possibilities.

A k-mismatch of p is a jpj-substring of t that matches

© 2017, IJCSE All Rights Reserved

Vol.5(9), Sep 2017, E-ISSN: 2347-2693

(ipj k) characters of p given a pattern p, a text t, and an
independent of the lengths of p and t xed integer k. It
therefore compares p and k mismatches. By creating the GST
of the document collection, we are in the process of
comparing the differences between the frequent word
sequences that were discovered. Insertion, deletion, and
replacement are the three different sorts of mismatches that
can occur between the frequently occurring word sequences
F Siand F Sj. The larger pattern F Sj is created by inserting k
words into the shorter pattern F Si. This process is known as
insertion.

The lengthier pattern F Sj is reduced to the shorter pattern F
Si by eliminating k words from it. The link between two
patterns of equal length, F Si and F Sj, is known as
substitution. For example, F Si becomes F Sj by replacing k
words.

We combine those cluster possibilities with k-mismatched
patterns (frequent word sequences) for a given k. Two cluster
candidates with k-mismatched patterns are thought to cover
related themes. For instance, we may state that the subject
matter covered by the cluster candidate i with F Si = "boys
play"” is similar to the subject matter covered by the cluster
candidate j with F Sj = "play basketball". Therefore, we may
combine them to create a larger cluster that addresses the
question of who plays which game. How ne the overall
clustering would be depends on the parameter k's value. The
nal clusters, which are the nest clusters that may be
discovered from the GST, are the cluster candidates if k is 0.
As k value increases, the topic covered by each cluster of the
nal clustering would be more general.

Some clusters may have excessive document id set overlap
when we combine numerous cluster candidates into clusters.
The range of is obviously [0; 1]: When = 1, these two
clusters share the same collection of documents, however
this does not imply that these two clusters are similar
because this set of documents may cover two different
themes. When = 0, these two clusters are disjunct.

Finally, as they lack a common word sequence, we gather the
papers that do not belong to any cluster. These texts
collectively constitute a cluster, and "other issues" might be
used to describe their subject.

Our text clustering algorithm CFWS is summarized as
follows:

a) Given a collection of text documents D = fd,; dg; ds;
: ¢ ¢ dug, nd the set of frequent 2-word sets of D
with the user-specified minimum support. Obtain
WS, the set of all

b) words, each of which is a member of a frequent 2-
word set.

c¢) Reduce each document di, 1 i n, into a compact

270

International Journal of Computer Sciences and Engineering

document d% by removing every word w from d; if
w2=WS.

d) Insert each compact document into the GST.

e) Using the depth- rst traversing, visit every node in
the GST. If a node j has a frequent word sequence
F S; with the set of document ids Idsj, create a
cluster candidate- cc; [F Sj; Ids; 7.

f) Merge the related cluster candidates into clusters
based on the k-mismatch concept.

g) Combine the overlapping clusters if necessary.

Clustering Based on Frequent Word Meaning Sequences
(CFWMS)

We initially count the number of times each word appears in
the texts before using the CFWS method to locate common
word sequences in the text database. A literal term in text
documents is referenced by a word form in this word form
matching method. The lexicalized idea that a word form may
be used to represent, on the other hand, is referred to as a
word meaning [66]. Synonyms are words that have the same
meaning but are used to convey it in different ways in the
actual world. A set of word forms that are synonyms is
known as a synonym set, or simply synset, and it may be
used to describe the meaning of a word.

Word meanings convey a document's subject matter more
effectively than word forms do. We provide a brand-new
technique called Clustering based on Frequent Word
Meaning Sequences (CFWMS), which employs frequent
word meaning sequences as the evaluation of the proximity
of texts in order to enhance the quality of clustering.

The word meanings that the word forms in the texts first
express are translated in CFWMS. Each text document is
then viewed as a series of word meanings after conversion. A
text document d, for instance, can be seen as as d =< SS ;
SS,; SSs; 1 1@ >. If more than a predetermined number (or
percentage) of papers include a word meaning sequence, it is
deemed common.

Finding the appropriate word meaning that a word form
represents in a certain lexical context is not a simple
challenge because most words have numerous word
meanings. To anticipate the actual word meaning, our system
uses a meaning union (MU), which is a union of synset
connections. You can consider a synset connection to be its
own meaning union.

For instance, there is a meaning union M U = fSS; ! SS,
; SS3 1 SS,40, where SS;=fboxg, SS, =fcontainerg, SS;=fbox,
logeg, and SS, =fcompartmentg. We anticipate that the
genuine word meaning conveyed by the word form "box" in
this text is one of the synsets in M U.

© 2017, IJCSE All Rights Reserved

Vol.5(9), Sep 2017, E-ISSN: 2347-2693

We will describe how to find the meaning unions. In this
manner, a document d can be represented by meaning unions
asd’=<MU;; MU, MUyj;:::>. following conversion.
Similarly, FM S=<M U ;; M U, ; ::: > might be used to
express a common word meaning sequence.

CFWMS Algorithm

There are three stages in our CFWMS algorithm: Finding
common word meaning sequences and gathering cluster
candidates are the first two steps in preprocessing texts to
create meaning unions from word forms. The third step is
merging cluster candidates to create the final clusters.

Document Preprocessing Using Word-Net

The transformation of word forms into meaning unions using
an ontology is the most crucial step in the preparation of
texts. We used Word-Net, an online lexical reference system,
as an ontology.

We remove stop words but do not stem when converting
word forms into word meanings. Only nouns, verbs,
adjectives, and adverbs are included in Word-Net. We
concentrate just on nouns and verbs and eliminate all
adjectives and adverbs from the texts since they are more
crucial in reflecting the substance of documents and also
primarily make up the frequent word meaning sequences. We
retain the word forms in the papers that do not have entries in
Word-Net since they may include particular information
about the documents.

There must be two conversion passes for each document. For
each word and verb in the text, the meaning union (MU) is
first extracted from Word-Net. From the most to the least
commonly used, Word-Net's synsets indicate a word form's
several word meanings. We choose the first two synsets
containing the word form for each noun and verb. One direct
hypernym synset is also obtained for each synset that is
chosen. If there is just one synset in the word form, one
inherited hypernym synset is also retrieved. Every word form
therefore has its own meaning union, which includes at least
one synset connection.

For example, a document d; =< wj; W,; Wi > can be
converted to a sequence of meaning unions as d%,=<MU,;
MU MU ;3> where MU ; =fSS,1SS;; SS 1 SS; g, MU
2= fSS3 ! SSg, SSg ! Sslo g, MU 3= fSSl ! SSs) SSZ ! SSgg

We aim to lessen the amount of distinct meaning unions in
the transformed document during the second pass.
comparable word meanings may be expressed by comparable
word forms in one text. As a result, if two or more meaning
unions share a synset, we replace them with a single meaning
union that has a merged synset connection. In this instance,
the frequency of the synsets in the document determines the

271

International Journal of Computer Sciences and Engineering

order of replacement. To that end, each synset's occurrences
in the document's meaning unions are counted, and a list of
synsets and the meaning unions they support is produced.

Combining the Cluster Candidates

The themes covered by such papers are described by a cluster
candidate's frequent word meaning sequences. The k-
mismatch idea employed in the CFWS method is not
necessary when combining the cluster candidates. The
rationale is because since word meanings rather than word
forms were employed, the cluster candidates that we
discovered are sufficiently generic. As in CFWS, all that has
to be done is to look at the overlap between cluster
candidates.

V. EXPERIMENTAL ASSESSMENT

We assess the effectiveness of our text clustering method in
terms of the accuracy of clustering and the scalability of
finding common word sequences. On a SuSE Linux
computer with a Celeron 500 MHz processor and 384 MB of
RAM, we implemented our method in C++.

V1. DATA SETS

Two sets of data are used for the performance assessment.
One group consists of typical text document sets, which are
frequently seen in studies on text clustering. They differ in
terms of document size, cluster size, number of classes,
database dimension, and dispersion of documents. To
evaluate how well our algorithms performed on common text
texts, we selected this collection of data sets.

The test data sets' documents have all been pre-classified into
one or more categories. The accuracy of each clustering
method is assessed using this information, which is
concealed throughout the clustering procedures.

Evaluation of the Finding Frequent Word Sequences

We assessed the scalability of our strategy for locating
common word sequences. Finding frequently occurring 2-
word sets is the first phase of the mining process, followed
by creating and traversing the GST. In this approach, we can
identify frequent 2-word sets using any frequent itemset
mining technique. We used the Apriori method, the most
representative frequent itemset mining algorithm, in our
experiment. There have been several other frequent itemset
mining techniques developed, however their effectiveness in
locating frequent 2-itemsets isn't very different. The minimal
support level affects Apriori's effectiveness. The runtime of
Apriori grows when there are more frequent itemsets when
the minimum support is reduced.

© 2017, IJCSE All Rights Reserved

Vol.5(9), Sep 2017, E-ISSN: 2347-2693

Comparison of CFWS and CFWMS with Other
Algorithms

We also used bisecting k-means and FIHC on the
identical data sets to compare them to our CFWS and
CFWMS. In comparison to k-means and agglomerative
hierarchical clustering algorithms, bisecting k-means has
been shown to consistently yield a better grouping outcome.
Because FIHC employs frequent word sets like CFWS, it
was chosen. We did not independently implement the
bisecting k-means and FIHC algorithms in order to conduct a
fair comparison. Before they were employed in our
experiments, data sets underwent preprocessing. First, the
stop words must be taken out of the texts. The words are then
stemmed using the Porter's su x-stripping method [59] for the
CFWS, bisecting k-means, and FIHC algorithms. Stemming
is crucial since it may get rid of the little differences between
words with the same meaning. We transformed word forms
into word meanings for CFWMS using the WordNet
ontology. As a result, the text database's dimension is further
shrunk.

Table 1 shows the F-measures of four algorithms:
bisecting k-means, FIHC, CFWS find CFWMS.

Table 1: F-measures of the clustering algorithms

Data Bisecting)i~ cpws cRWMS
Set k-means

Rel 0.606 0.506 0651 0721
Re2 0677 0.74 0.79 0.79
Re3 0.675 0.39 0703 0701
Cel 043 0.506 0.541 0.55
Ce2 0.466 0.46 0.48 0.48
Ce3 0489 0.515 0.54 0.604
Sel 0611 0.664 0705 0711
Se2 0529 0.461 0.689 0.71
Se3 0716 0.759 0.8 0.806

The purity values for the four clustering techniques are
displayed in Table 2.

Table 2: Purity values of the clustering algorithms

Data Bisecting

FIHC CFWS CFWMS
Set k-means
Rel 0.622 0.527 0.749 0.751
Re2 0.796 0.652 0.679 0.81
Re3 0.777 0.444 0.504 0.675
Cel 0.64 0.605 0.62 0.635
Ce2 0.69 0.585 0.601 0.637
Ce3 0.79 0.692 0.702 0.775
Sel 0.62 0.66 0.703 0.803
Se2 0.695 0.563 0.714 0.789
Se3 0.837 0.84 0.851 0.852
Se3 0.837 0.84 0.851 0.852
272

International Journal of Computer Sciences and Engineering

In the CFWMS, the degree of similarity across documents is
determined by the frequency of word meaning sequences.
Our CFWMS algorithm effectively captures the word
meanings given by various word forms. Additionally, the
common word meaning sequences Serve as a representation
of the themes addressed in ordinary text publications.

CFWS outperforms bisecting k-means and FIHC for the
search query results (Sel, Se2, and Se3). The performance
outcomes can be explained by the special qualities of certain
document sets. These document sets were found in a search
engine's retrieval lists for user queries. For each query, we
carried out the retrieval using the Lemur Toolkit's
straightforward TFIDF retrieval model. Compared to
conventional text documents, the documents produced from
this retrieval technique are more likely to share words. In
other words, compared to ordinary document sets, the
subjects covered by this kind of document sets are
significantly more closely related. Our CFWS method can
perform better for these kinds of data sets since it can cluster
the documents into much smaller groups. The rationale is
because by identifying common word sequences in the
papers, our computer can detect subtle changes across
subtopics. Our CFWS technique helps online search engines
to give users more precise search results by grouping the
retrieved content. Purity data demonstrate that CFWMS may
enhance the clustering quality for both common text
documents and search query results.

VII.CONCLUSION

CFWS, which stands for Clustering based on Frequent Word
Sequences, is a brand-new text document clustering
technique that we initially introduced in this paper. Unlike
the conventional vector space model, our approach makes
use of the document's word order. The themes addressed by
the documents may be very effectively represented by
frequent word sequences found from the document
collection, and documents with the same frequent word
sequences are grouped together in our technique. Next, we
presented CFWMS, which stands for Clustering based on
Frequent Word Meaning Sequences, as a brand-new text
document clustering technique. Utilising common word
meaning sequences to gauge how closely related papers are
to one another, CFWMS improved CFWS. More accurately
than frequent word sequences, frequent word meaning
sequences can capture the subjects of texts. We preprocessed
the papers using the WordNet ontology's synonyms,
hyponyms, and hypernyms in order to identify common word
meaning sequences. On the majority of our test data sets,
CFWMS is more accurate than CFWS. According to the
findings of our experiments, CFWS outperforms alternative
clustering algorithms in terms of accuracy, particularly when
it comes to the ne clustering of documents belonging to the
same category, which is a highly helpful characteristic for
contemporary online search engines.

© 2017, IJCSE All Rights Reserved

Vol.5(9), Sep 2017, E-ISSN: 2347-2693

VIIl. REFERENCES

[1] Mohammed J. Zaki. Scalable algorithms for association
mining. IEEE Trans. on Knowl. and Data Eng., 12(3):pp
372-390, 2000.

[2] P. Agrawal, O. Benjelloun, A. Das Sarma, C. Hayworth,
S. Nabar, T. Sugihara, and J. Widom. "Trio: A system
for data, uncertainty, and lineage". In Proc. Int. Conf. on
Very Large Databases, 2006.

[3] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, Minneapolis, MN, 1994.

[4] T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and A.
Zifle. Probabilistic frequent itemset mining in uncertain
databases. In In Proc. 15th ACM SIGKDD Conf. on
Knowledge Discovery and Data Mining, Paris, France,
20009.

[5] C. C. Aggrawal and P. S. Yu, \Finding Generalized
Projected Clusters in High Dimensional Spaces," Proc.
of ACM SIGMOD Int'l Conf. on Management of Data,
2000, pp. 70{81.

[6] J. Allan, \HARD Track Overview in TREC 2003 High
Accuracy Retrieval from Documents,”Proc. of the 12th
Text Retrieval Conference, 2003, pp. 24{37.

[71 M. R. Anderberg, Cluster Analysis for Applications,
Academic Press, 1973.

[8] DPVVGO06] Nele Dexters, Paul W. Purdom, and Dirk Van
Gucht. A probability analysis for candidate-based
frequent itemset algorithms. In SAC ’06: Proceedings of
the 2006 ACM symposium on Applied computing, New
York, NY, USA, 2006. ACM, pp541-545.

[9] Gregory Buehrer, Srinivasan Parthasarathy, and Amol
Ghoting. Out-ofcore frequent pattern mining on a
commodity pc. In KDD ’06: Proceedings of the 12th
ACM SIGKDD international conference on Knowledge
discovery and data mining, New York, NY, USA, 2006,
pp 86-95.

[10] Toon Calders. Deducing bounds on the frequency of
itemsets. In EDBT Workshop DTDM Database
Techniques in Data Mining, 2002.

273

