
 © 2017, IJCSE All Rights Reserved 244

International Journal of Computer Sciences and Engineering Open Access

Review Paper Volume-5, Issue-9 E-ISSN: 2347-2693

Analysis of Applications of Object Orientation to Software Engineering,

Data Warehousing and Teaching Methodologies

Biswajit Saha 1, Debaprasad Mukherjee
 2*

1Dept. CSE, Dr. B.C Roy Engineering College, Maulana Abul Kalam Azad University of Technology, Kolkata, India
2Dept. CSE and IT, Dr. B.C Roy Engineering College, Maulana Abul Kalam Azad University of Technology, Kolkata, India

*Corresponding Author: mdebaprasad@gmail.com

Available online at: www.ijcseonline.org

Received: 07/Aug/2017, Revised: 18/Aug/2017, Accepted: 14/Sep/2017, Published: 30/Sep/2017

Abstract- Object oriented software engineering concepts are one of the most popular methods in the information technology

industry and academia as well as in many other forms of engineering design. Software engineering is a field of engineering that

came into existence owing to the various problems that developers of software faced while developing software projects. This

paper analyzes some of the most important technological innovations in object oriented software engineering in recent times.

The advancements in Object technologies that have been analyzed here include module coupling metrics, software up

gradation, layered reusability, monitors, attribute objects, global software development contexts, software testing, recursive

types, coupled and co-evolving classes, query-able source codes, meta-model for generating design alternatives, programming

micro-worlds, design pattern detection, object schema migration, functional verification, work system theory, and state chart

diagrams. From our analysis we predict further advancements in object technologies towards game development, metrics for

software design analysis, addition to fundamental Object oriented programming language features and distributed software

engineering.

Keywords: Object orientation, Software engineering, Data warehousing, Teaching methodologies.

I. INTRODUCTION

The object-oriented approach focuses on objects that

represent abstract or concrete things of the real world. These

objects are first defined by their character and their

properties which are represented by their internal structure

and their attributes (data). The behaviour of these objects is

described by methods (functionality). Objects form a capsule

which combines the character to the respective behaviour.

Objects should enable programmers to map a real problem

and its proposed software solution on a one-to-one basis, an

object's procedures can access and often modify the data

fields of the object with which they are associated (objects

have a notion of "this" or "self").There is significant

diversity of OOP languages, but the most popular ones are

class-based, meaning that objects are instances of classes,

which typically also determine their type. Many of the most

widely used programming languages are multi-paradigm

programming languages that support object-oriented

programming to a greater or lesser degree, typically in

combination with imperative, procedural programming.

Significant object-oriented languages include Java, C++, C#,

Python, PHP, Ruby, Perl, Delphi, Objective-C, Swift,

Common Lisp, and Smalltalk.

Object-oriented programming techniques do not

necessarily depend on object-oriented programming

languages. However, the efficiency of object-oriented

programming depends directly on how object-oriented

language techniques are implemented in the system kernel.

Object-oriented tools allow one to create object-oriented

programs in object-oriented languages. They allow to model

and store development objects and the

relationships between them. The object-orientation

modeling of a software system is the most important, most

time-consuming, and most difficult requirement for attaining

the above goals. Object-oriented design involves more than

just object-oriented programming, and provides logical

advantages that are independent of the actual

implementation.

There are three major features in object-oriented

programming: encapsulation, inheritance and polymorphism.

Encapsulation refers to the creation of self-contained

modules that bind processing functions to the data i.e. tight

coupling or association of data structures with the methods

or functions that act on the data. These user-defined data

types are called "classes," and one instance of a class is an

"object." Encapsulation ensures good code modularity,

which keeps routines separate and less prone to conflict with

each other. Classes are created in hierarchies, and

inheritance allows the structure and methods in one class to

be passed down the hierarchy, and also the ability for a class

to extend or override functionality of another class. That

means less programming is required when adding functions

to complex systems. If a step is added at the bottom of a

hierarchy, then only the processing and data associated with

mailto:mdebaprasad@gmail.com

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 245

that unique step needs to be added. Everything else about

that step is inherited. The ability to reuse existing objects is

considered a major advantage of object technology. Object-

oriented programming allows procedures about objects to be

created whose exact type is not known until runtime. For

example, a screen cursor may change its shape from an

arrow to a line depending on the program mode. The routine

to move the cursor on screen in response to mouse

movement would be written for "cursor," and polymorphism

allows that cursor to take on whatever shape is required at

runtime. It also allows new shapes to be easily integrated.

Data Protection is the ability to protect some components of

the object from external entities. This is realized by language

keywords to enable a variable to be declared as private or

protected to the owning class. Interface means a definition of

functions or methods, and their signatures that are available

for use to manipulate a given instance of an object.

The advantages of object-oriented programming and

software engineering are many. Through OOSE Complex

software systems become easier to understand, since object-

oriented structuring provides a closer representation of

reality than other programming techniques. In a well-

designed object-oriented system, it is possible to implement

changes at class level, without having to make alterations at

other points in the system. This reduces the overall amount

of maintenance required. This is one of the most important

advantages of OOSE/OOP. Through polymorphism and

inheritance, object-oriented programming allows you to

reuse individual components. This vastly reduces the

development time of OO software. In an object-oriented

system, the amount of work involved in revising and

maintaining the system is reduced, since many problems can

be detected and corrected in the design phase.

Areas of application of OO concept include real time

systems design, simulation and modeling system, object

oriented database; object oriented distributed database,

client-server system, hypertext, hypermedia, neural

networking and parallel programming, decision support and

office automation systems, cim/cad/cam systems, artificial

intelligence and expert systems, etc.

Some of the major directions that object oriented

researchers are currently investigating are programming

languages, concurrency and distribution, object

management, software management and user environments.

Section I contain the introduction of analysis of applications

of object orientation to software engineering, data

warehousing and teaching methodologies, Section II contain

the survey of recent literature in the related domain, Section

III concludes with a brief synopsis of some of the recent

advancements in object technologies and OOSE and unearth

that certain important progress has been made in software

design.

II. SURVEY OF RECENT LITERATURE

In this section a survey of recent literature is being carried

out that will give an idea to the interested readers about the

many diverse research fields of object orientation.

Bidve et al [1] used source code from 25 Java projects to

analyze values esp. threshold values of 7 coupling metrics

between different modules and their impact on object

oriented software quality, to conclude that

controlling/maintaining the values of parameter, inheritance

and data abstraction during software development leads to

better values of the quality attributes (e.g. reliability,

integrity, maintainability) of software.

Sharma [2] proposed an approach based on inheritance

and encapsulation for estimation of efforts for up gradation

of object oriented programming system as per given

requirement change, utilizing the degree of inheritance to

identify methods that need either modification or reuse.

 Baas in his doctoral thesis provided support for concept of

reusability of object oriented components to improve

productivity, testability and maintainability of integrated

real-time software systems, by using a layered structure of

reusable components based on the generality and specificity

of the components to the application domain of the software,

and the inter-component communication through OSI/CMIP

conformant software highway [3].

 The design of object oriented software systems needs the

analysis of specifications for making decisions on the

architecture of the software. The analysis of the

specifications using simulation, for object oriented design of

software architecture, involves the analysis of non-functional

properties which can be measured using monitors. The

authors showed how these monitors can be parametrically

specified such that the instrumentation of the specifications

can be automated and also the addition of monitors did not

interfere with the behaviour of the software thus making it

possible to have a library of monitors for the analysis of

specifications [4].

 Xia et al [5] developed a drawing application using

attribute objects, which contain the attributes of digital

content as UI objects, and can be manipulated (moved,

cloned, linked, associated) through direct touch gestures

such as simultaneous touch and pen input to quickly,

coherently & consistently perform drawing interactions

which are tedious or difficult.

 Yoke eta al [6] designed and developed a proprietary role-

playing interactive game for learning of object oriented

programming and performed a case-study for game-based

learning to conclude that this form of learning improves

understanding and self-motivation towards object oriented

programming.

 Chandra and Singhal studied unit flow and data flow

testing techniques and compared and contrasted them for

software testing, quality assurance and avoidance of cost of

software failure [7].

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 246

 Jabangwe et al [8] developed a method to quantitatively

evaluate quality during evolution of object oriented

software, by analysing the impact of global software

development context on the defects in the product. The

authors used a method engineering approach to

incrementally develop the method through its application to

multiple industrial contexts. The authors claim that their

proposal can help in inferences of development settings and

make knowledge-based decisions during planning.

Holopainen studied different object oriented solutions for

game development by testing in a game prototype built using

Unity game engine by employing the principles of object

inheritance with composition and the entity-component-

system. The entity-component-system, concentrates on the

creation of components from the object’s attributes and

functionalities. The solutions studied utilized the entity

component system, inheritance with composition, and

control of all similar entities by a greater manager entity, and

the results were analyzed in terms of usability and versatility

[9].

 Maravic et al [10] compared knowledge in object oriented

programming for college students through pencil-paper

(control group) and computer adaptive test (experimental

group) consisting multiple choice questions of constituting

three clusters (easy, medium, and difficult). They found that

students who worked on a computer-adaptive test achieved a

higher average score than the students who did the

traditional test.

 Nierstrasz proposed “programming as a model” approach

to long term evolution of object oriented software

development where source code should encode a query able

and modifiable model of the applications and utilizable by

IDEs in these aspects. Furthermore, the author proposed that

the boundaries between code, software and the software

ecosystem should be transcended to facilitate the long term

evolution of software systems [11].

 Abdoli and Kara [12] used complexity capturing object

oriented modelling in model based system engineering to

develop coherent meta-model for generating design

alternatives of the logical architecture of warehouses using

the abstract interacting processes, sub-processes and

resources.

 Amato et al [13] proposed sharing analysis of objected

oriented programs when two variables are bound to

overlapping data structures, by using a graph theoretic

representation of aliasing information (and thus encoding

linearity and sharing too) and defining operators for analysis

of an object oriented language like Java.

 Micro worlds are used to give learners an intuitive and

rapid understanding of fundamental abstract concepts of

object orientation. Djelil et al [14] identified the design

principles of micro worlds and explored each principle

through the relation of the micro worlds to learning and

object oriented programming. They also presented a novel

programming world designed using the existing micro

worlds.

 Furia et al. [15] presented a modern auto-active semi-

automatic verifier for functional verification of object

oriented sequential programs with complex functional

features. The verifier takes code with annotations as input

and supports methodology for framing and class invariants.

The authors also present the features of interface, design,

implementation and performance on standard problems for

the auto-active verifier.

 Sunitha and Samuel [16] presented an implementation

pattern for state diagrams (of UML) which include the two

main components of state chart diagram that cannot be

effectively implemented in object oriented way because of

lack of proper one-is-to-one mapping i.e. hierarchical and

concurrent states. This would facilitate automatic generation

of skeletal code from state diagrams of systems designs of

various event driven systems.

 Börstler et al [17] proposed a readability measure SRES

for object oriented programs as a proxy for understandibility,

elegancy and simplicity from a cognitive and measurement

perspective. They find that their readability measure is

significantly correlated with quality measures, it is less

sensitive to commenting and whitespace, and improves

maintainability of programs.

 Alter and Bolloju [18] proposed that ideas from work

system theory and work system method can be a front-end to

object oriented analysis and design, a step before creating

use-case diagrams and UML artefacts, and thus providing

path from business-oriented descriptions to formal, technical

specifications to improve work systems performance.

 Live programming requires real-time (run-time,

development-time) support for object schema migration

which is hindered by need of extra-levels of indirection or a

very slow operation of sweep of all objects in the heap,

during the exchange of object identities. Miranda et al [19]

proposed Spur, a new object representation and memory

management system which uses direct pointers but still

sweeps the heap of object quickly by using forwarding

objects and a partial read barrier avoiding the cost of explicit

checking on the vast majority of object accesses.

 Rashmi Chhabra et al [20] illustrated a system for

designing of a relational schema from an object model which

was represented in their UML form and finally transformed

it into data warehouse.

 Murat Oruc et al [21] presented a graph-mining approach

for detecting object oriented design patterns for

understanding the intent and design of software projects. The

approach is based on probing input design patterns in the

space of model graph of the source code by isomorphic sub-

graph search process.

 Parashar et al [22] presented a framework for mining the

stream of class-change commits that are continuously

generated during software development and evolution, using

empirically validated changeability measures, to understand

how classes have co-evolved or are change-coupled, and

thus predicted the future changeability behaviour of classes

for better maintenance of software.

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 247

 Ghoreshi et al [23] proposed an incremental method for

extracting test cases from formal object-oriented

specifications which tries to overcome the deficiencies of

existing methods of not being aligned with the iterative,

incremental, adapting and evolving nature of object oriented

development process.

 Finding proper sample applications that help developers to

mitigate problems while using object-oriented application

frameworks like large and complex APIs and often

incomplete user manual, is a hard and time- consuming

challenge. Noei et al [24] tried to address this problem and

propose EXAF which is a search engine for finding sample

applications of object-oriented framework-provided

concepts.

 In object-oriented programs, objects often provide

methods whose parameter types or return types are the

object types themselves, but such explicit recursive types,

which lead to a mismatch between sub classing and sub

typing, are not supported in most object oriented

programming languages. The authors thus proposed an

approach to support methods with This Types through a new

encoding of objects that allows sub typing by sub classing

even in the presence of negative occurrences of type

recursion variables, by distinguishing object types from

existential object types, and ultimately they formalized

language features to support This Typed methods. Ryu [25]

further produced an open-source implementation of the

approach as an extension of the Java programming language.

III. CONCLUSION

The object-oriented approach focuses on objects that

represent abstract or concrete things of the real world. There

is significant diversity of OOP languages, but the most

popular ones are class-based. The efficiency of object-

oriented programming depends directly on how object-

oriented language techniques are implemented in the system.

Through OOSE complex software systems become easier to

understand, since object-oriented structuring provides a

closer representation of reality than other programming

techniques. We perform a thorough analysis of some of the

recent advancements in object technologies and OOSE and

find that certain important progress has been made in

software design like coupling metrics between different

modules, up gradation of object oriented programming

system as per given requirement change, design of integrated

real-time software systems, by using a layered structure of

reusable components, attribute objects, meta-model for

generating design alternatives, implementation pattern for

state diagrams, real-time object schema migration, co-

evolved or change-coupled classes, and detecting object

oriented design patterns. In software analysis, we find that

contributions has been made on unit flow and data flow

testing, global software development context on the defects

in the product, source code encoding of a query able and

modifiable model of the applications, sharing analysis,

functional verification of object oriented sequential

programs, and analysis of non-functional properties which

can be measured using monitors. Other improvements were

made in game-based learning, game development, computer

adaptive testing, design principles of micro worlds,

readability measure, work system theory, live programming

and extracting test cases from formal object-oriented

specifications, and recursive types.

 Power et al [26] compute the different metric values

during the design phase of the entire life cycle of software

development. Also a component diagram consisting of the

components and their associations has been prepared using

ArgoUML software tool.

 There are as such no limitations of this survey but in

future as more and more new areas of research related to the

current domain emerge there will be lot of discussions

related to such work and that is the scope of future

improvement of this work.

REFERENCES

[1]. Bidve, V. S., and P. Sarasu. "Coupling Measures and its Impact

on Object-Oriented Software Quality." Indian Journal of Science

and Technology 9.21 (2016).

[2]. Sharma, Yashvardhan. "Effort Estimation for Program

Modification in Object Oriented Development." International

Conference on Computational Science and Its Applications.

Springer International Publishing, 2016.

[3]. Baas, Andre. An object-oriented component approch to building

real-time software systems. Diss. 2016.

[4]. Moreno-Delgado, Antonio, Francisco Durán, and José Meseguer.

"Towards Generic Monitors for Object-Oriented Real-Time

Maude Specifications." (2016).

[5]. Xia, Haijun, et al. "Object-Oriented Drawing." Proceedings of the

2016 CHI Conference on Human Factors in Computing Systems.

ACM, 2016.

[6]. Wong, Y. S., Hayati, M. Y. M., & Tan, W. H. (2016, September).

A Propriety Game-Based Learning Game as Learning Tool to

Learn Object-Oriented Programming Paradigm. In Joint

International Conference on Serious Games (pp. 42-54). Springer

International Publishing.

[7]. Chandra, Alaknanda, and Abhishek Singhal. "Study of Unit and

Data flow testing in object-oriented and aspect-oriented

programming." 2016 International Conference on Innovation and

Challenges in Cyber Security (ICICCS-INBUSH). IEEE, 2016.

[8]. Jabangwe, Ronald, et al. "A method for investigating the quality

of evolving object-oriented software using defects in global

software development projects." Journal of Software: Evolution

and Process (2016).

[9]. Holopainen, Timo. "Object-oriented programming with Unity:

Inheritance versus composition." (2016).

[10]. Cisar, Sanja Maravic, Petar Cisar, and Robert Pinter. "Evaluation

of knowledge in Object Oriented Programming course with

computer adaptive tests." Computers & Education 92 (2016): 142-

160.

 International Journal of Computer Sciences and Engineering Vol.5(9), Sep 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 248

[11]. Nierstrasz, Oscar. "The Death of Object-Oriented Programming."

International Conference on Fundamental Approaches to Software

Engineering. Springer Berlin Heidelberg, 2016.

[12]. Abdoli, Shiva, and Sami Kara. "Designing Warehouse Logical

Architecture by Applying Object Oriented Model Based System

Engineering." Procedia CIRP 50 (2016): 713-718.

[13]. Amato, Gianluca, Maria Chiara Meo, and Francesca Scozzari.

"Exploiting Linearity in Sharing Analysis of Object-oriented

Programs." Electronic Notes in Theoretical Computer Science 322

(2016): 3-18.

[14]. Djelil, Fahima, et al. "Microworlds for Learning Object-Oriented

Programming: Considerations from Research to Practice." Journal

of Interactive Learning Research 27.3 (2016): 247-266.

[15]. Furia, Carlo A., et al. "AutoProof: auto-active functional

verification of object-oriented programs." International Journal on

Software Tools for Technology Transfer (2016): 1-20.

[16]. Sunitha, E. V., and Philip Samuel. "Object Oriented Method to

Implement the Hierarchical and Concurrent States in UML State

Chart Diagrams." Software Engineering Research, Management

and Applications. Springer International Publishing, 2016. 133-

149.

[17]. Börstler, Jürgen, Michael E. Caspersen, and Marie Nordström.

"Beauty and the Beast: on the readability of object-oriented

example programs." Software Quality Journal 24.2 (2016): 231-

246.

[18]. Alter, Steven, and Narasimha Bolloju. "A Work System Front End

for Object-Oriented Analysis and Design." International Journal

of Information Technologies and Systems Approach (IJITSA) 9.1

(2016): 1-18.

[19]. Miranda, Eliot, and Clément Béra. "A partial read barrier for

efficient support of live object-oriented programming." ACM

SIGPLAN Notices 50.11 (2016): 93-104.

[20]. Chhabra, Rashmi, Parveen Kumar, and Payal Pahwa. "An

approach to Design Object Oriented Data Warehouse."

International Journal of Research and Engineering 3.3 (2016): 54-

56.

[21]. Oruc, Murat, Fuat Akal, and Hayri Sever. "Detecting Design

Patterns in Object-Oriented Design Models by Using a Graph

Mining Approach." 2016 4th International Conference in Software

Engineering Research and Innovation (CONISOFT). IEEE, 2016.

[22]. Parashar, Anshu, and Jitender Kumar Chhabra. "Mining software

change data stream to predict changeability of classes of object-

oriented software system." Evolving Systems 7.2 (2016): 117-

128.

[23]. Ghoreshi, M., and H. Haghighi. "An incremental method for

extracting tests from object-oriented specification." Information

and Software Technology 78 (2016): 1-26.

[24]. Noei, Ehsan, and Abbas Heydarnoori. "EXAF: A search engine

for sample applications of object-oriented framework-provided

concepts." Information and Software Technology 75 (2016): 135-

147.

[25]. Ryu, Sukyoung. "ThisType for Object-Oriented Languages: From

Theory to Practice." ACM Transactions on Programming

Languages and Systems (TOPLAS) 38.3 (2016): 8.

[26]. P.L. Power,M.P. Singh,Bharat Solanki, Jawwad Wasat Shareef,

“Computation of External view based Software Metrics: Java

Based Tool”, International Journal of Computer Sciences and

Engineering, Vol.5, Issue.8, pp.33-43,2017.

Authors Profile

Biswajit Saha completed Bachelor of Engineering in Computer

Science and Engineering in the year 2002 and Master of

Engineering in Software Engineering in the year 2004. He is

currently teaching in the department of Computer Science and

Engineering of an engineering college in Durgapur, India. He has

more than 15 years of teaching experience at both the

undergraduate and postgraduate level of engineering.

Debaprasad Mukherjee has graduated with a degree in Electrical

Engineering in 2001 and was awarded PhD on systems theory

(complex systems) in 2011. He is currently teaching in a college in

India. He has published papers on diverse topics revolving around

the theme of systems theory. His long term general and research

interest is metaphilosophy.

