[4
AX]CSE International Journal of Computer Sciences and Engineering [pen Access

Review Paper Volume-5, Issue-9 E-ISSN: 2347-2693

Analysis of Applications of Object Orientation to Software Engineering,
Data Warehousing and Teaching Methodologies

Biswajit Saha !, Debaprasad Mukherjee **

Dept. CSE, Dr. B.C Roy Engineering College, Maulana Abul Kalam Azad University of Technology, Kolkata, India
2Dept. CSE and IT, Dr. B.C Roy Engineering College, Maulana Abul Kalam Azad University of Technology, Kolkata, India

*Corresponding Author: mdebaprasad@gmail.com

Available online at: www.ijcseonline.org

Received: 07/Aug/2017, Revised: 18/Aug/2017, Accepted: 14/Sep/2017, Published: 30/Sep/2017

Abstract- Object oriented software engineering concepts are one of the most popular methods in the information technology
industry and academia as well as in many other forms of engineering design. Software engineering is a field of engineering that
came into existence owing to the various problems that developers of software faced while developing software projects. This
paper analyzes some of the most important technological innovations in object oriented software engineering in recent times.
The advancements in Object technologies that have been analyzed here include module coupling metrics, software up
gradation, layered reusability, monitors, attribute objects, global software development contexts, software testing, recursive
types, coupled and co-evolving classes, query-able source codes, meta-model for generating design alternatives, programming
micro-worlds, design pattern detection, object schema migration, functional verification, work system theory, and state chart
diagrams. From our analysis we predict further advancements in object technologies towards game development, metrics for
software design analysis, addition to fundamental Object oriented programming language features and distributed software

engineering.

Keywords: Object orientation, Software engineering, Data warehousing, Teaching methodologies.

I. INTRODUCTION

The object-oriented approach focuses on objects that
represent abstract or concrete things of the real world. These
objects are first defined by their character and their
properties which are represented by their internal structure
and their attributes (data). The behaviour of these objects is
described by methods (functionality). Objects form a capsule
which combines the character to the respective behaviour.
Objects should enable programmers to map a real problem
and its proposed software solution on a one-to-one basis, an
object's procedures can access and often modify the data
fields of the object with which they are associated (objects
have a notion of "this" or "self").There is significant
diversity of OOP languages, but the most popular ones are
class-based, meaning that objects are instances of classes,
which typically also determine their type. Many of the most
widely used programming languages are multi-paradigm
programming languages that support object-oriented
programming to a greater or lesser degree, typically in
combination with imperative, procedural programming.
Significant object-oriented languages include Java, C++, C#,
Python, PHP, Ruby, Perl, Delphi, Objective-C, Swift,
Common Lisp, and Smalltalk.

Object-oriented programming techniques do not
necessarily depend on object-oriented programming
languages. However, the efficiency of object-oriented

© 2017, IJCSE All Rights Reserved

programming depends directly on how object-oriented
language techniques are implemented in the system kernel.
Object-oriented tools allow one to create object-oriented
programs in object-oriented languages. They allow to model
and store development objects and the

relationships between them. The object-orientation
modeling of a software system is the most important, most
time-consuming, and most difficult requirement for attaining
the above goals. Object-oriented design involves more than
just object-oriented programming, and provides logical
advantages that are independent of the actual
implementation.

There are three major features in object-oriented
programming: encapsulation, inheritance and polymorphism.
Encapsulation refers to the creation of self-contained
modules that bind processing functions to the data i.e. tight
coupling or association of data structures with the methods
or functions that act on the data. These user-defined data
types are called “classes,”" and one instance of a class is an
"object." Encapsulation ensures good code modularity,
which keeps routines separate and less prone to conflict with
each other. Classes are created in hierarchies, and
inheritance allows the structure and methods in one class to
be passed down the hierarchy, and also the ability for a class
to extend or override functionality of another class. That
means less programming is required when adding functions
to complex systems. If a step is added at the bottom of a
hierarchy, then only the processing and data associated with

244

mailto:mdebaprasad@gmail.com

International Journal of Computer Sciences and Engineering

that unique step needs to be added. Everything else about
that step is inherited. The ability to reuse existing objects is
considered a major advantage of object technology. Object-
oriented programming allows procedures about objects to be
created whose exact type is not known until runtime. For
example, a screen cursor may change its shape from an
arrow to a line depending on the program mode. The routine
to move the cursor on screen in response to mouse
movement would be written for "cursor," and polymorphism
allows that cursor to take on whatever shape is required at
runtime. It also allows new shapes to be easily integrated.
Data Protection is the ability to protect some components of
the object from external entities. This is realized by language
keywords to enable a variable to be declared as private or
protected to the owning class. Interface means a definition of
functions or methods, and their signatures that are available
for use to manipulate a given instance of an object.

The advantages of object-oriented programming and
software engineering are many. Through OOSE Complex
software systems become easier to understand, since object-
oriented structuring provides a closer representation of
reality than other programming techniques. In a well-
designed object-oriented system, it is possible to implement
changes at class level, without having to make alterations at
other points in the system. This reduces the overall amount
of maintenance required. This is one of the most important
advantages of OOSE/OOP. Through polymorphism and
inheritance, object-oriented programming allows you to
reuse individual components. This vastly reduces the
development time of OO software. In an object-oriented
system, the amount of work involved in revising and
maintaining the system is reduced, since many problems can
be detected and corrected in the design phase.

Areas of application of OO concept include real time
systems design, simulation and modeling system, object
oriented database; object oriented distributed database,
client-server system, hypertext, hypermedia, neural
networking and parallel programming, decision support and
office automation systems, cim/cad/cam systems, artificial
intelligence and expert systems, etc.

Some of the major directions that object oriented
researchers are currently investigating are programming
languages, concurrency and distribution, object
management, software management and user environments.

Section | contain the introduction of analysis of applications
of object orientation to software engineering, data
warehousing and teaching methodologies, Section Il contain
the survey of recent literature in the related domain, Section
Il concludes with a brief synopsis of some of the recent
advancements in object technologies and OOSE and unearth
that certain important progress has been made in software
design.

© 2017, IJCSE All Rights Reserved

Vol.5(9), Sep 2017, E-ISSN: 2347-2693

1. SURVEY OF RECENT LITERATURE

In this section a survey of recent literature is being carried
out that will give an idea to the interested readers about the
many diverse research fields of object orientation.

Bidve et al [1] used source code from 25 Java projects to
analyze values esp. threshold values of 7 coupling metrics
between different modules and their impact on object
oriented software quality, to conclude that
controlling/maintaining the values of parameter, inheritance
and data abstraction during software development leads to
better values of the quality attributes (e.g. reliability,
integrity, maintainability) of software.

Sharma [2] proposed an approach based on inheritance
and encapsulation for estimation of efforts for up gradation
of object oriented programming system as per given
requirement change, utilizing the degree of inheritance to
identify methods that need either modification or reuse.

Baas in his doctoral thesis provided support for concept of
reusability of object oriented components to improve
productivity, testability and maintainability of integrated
real-time software systems, by using a layered structure of
reusable components based on the generality and specificity
of the components to the application domain of the software,
and the inter-component communication through OSI/CMIP
conformant software highway [3].

The design of object oriented software systems needs the
analysis of specifications for making decisions on the
architecture of the software. The analysis of the
specifications using simulation, for object oriented design of
software architecture, involves the analysis of non-functional
properties which can be measured using monitors. The
authors showed how these monitors can be parametrically
specified such that the instrumentation of the specifications
can be automated and also the addition of monitors did not
interfere with the behaviour of the software thus making it
possible to have a library of monitors for the analysis of
specifications [4].

Xia et al [5] developed a drawing application using
attribute objects, which contain the attributes of digital
content as Ul objects, and can be manipulated (moved,
cloned, linked, associated) through direct touch gestures
such as simultaneous touch and pen input to quickly,
coherently & consistently perform drawing interactions
which are tedious or difficult.

Yoke eta al [6] designed and developed a proprietary role-
playing interactive game for learning of object oriented
programming and performed a case-study for game-based
learning to conclude that this form of learning improves
understanding and self-motivation towards object oriented
programming.

Chandra and Singhal studied unit flow and data flow
testing techniques and compared and contrasted them for
software testing, quality assurance and avoidance of cost of
software failure [7].

245

International Journal of Computer Sciences and Engineering

Jabangwe et al [8] developed a method to quantitatively
evaluate quality during evolution of object oriented
software, by analysing the impact of global software
development context on the defects in the product. The
authors used a method engineering approach to
incrementally develop the method through its application to
multiple industrial contexts. The authors claim that their
proposal can help in inferences of development settings and
make knowledge-based decisions during planning.

Holopainen studied different object oriented solutions for
game development by testing in a game prototype built using
Unity game engine by employing the principles of object
inheritance with composition and the entity-component-
system. The entity-component-system, concentrates on the
creation of components from the object’s attributes and
functionalities. The solutions studied utilized the entity
component system, inheritance with composition, and
control of all similar entities by a greater manager entity, and
the results were analyzed in terms of usability and versatility
[9].

Maravic et al [10] compared knowledge in object oriented
programming for college students through pencil-paper
(control group) and computer adaptive test (experimental
group) consisting multiple choice questions of constituting
three clusters (easy, medium, and difficult). They found that
students who worked on a computer-adaptive test achieved a
higher average score than the students who did the
traditional test.

Nierstrasz proposed “programming as a model” approach
to long term evolution of object oriented software
development where source code should encode a query able
and modifiable model of the applications and utilizable by
IDEs in these aspects. Furthermore, the author proposed that
the boundaries between code, software and the software
ecosystem should be transcended to facilitate the long term
evolution of software systems [11].

Abdoli and Kara [12] used complexity capturing object
oriented modelling in model based system engineering to
develop coherent meta-model for generating design
alternatives of the logical architecture of warehouses using
the abstract interacting processes, sub-processes and
resources.

Amato et al [13] proposed sharing analysis of objected
oriented programs when two variables are bound to
overlapping data structures, by using a graph theoretic
representation of aliasing information (and thus encoding
linearity and sharing too) and defining operators for analysis
of an object oriented language like Java.

Micro worlds are used to give learners an intuitive and
rapid understanding of fundamental abstract concepts of
object orientation. Djelil et al [14] identified the design
principles of micro worlds and explored each principle
through the relation of the micro worlds to learning and
object oriented programming. They also presented a novel
programming world designed using the existing micro
worlds.

© 2017, IJCSE All Rights Reserved

Vol.5(9), Sep 2017, E-ISSN: 2347-2693

Furia et al. [15] presented a modern auto-active semi-
automatic verifier for functional verification of object
oriented sequential programs with complex functional
features. The verifier takes code with annotations as input
and supports methodology for framing and class invariants.
The authors also present the features of interface, design,
implementation and performance on standard problems for
the auto-active verifier.

Sunitha and Samuel [16] presented an implementation
pattern for state diagrams (of UML) which include the two
main components of state chart diagram that cannot be
effectively implemented in object oriented way because of
lack of proper one-is-to-one mapping i.e. hierarchical and
concurrent states. This would facilitate automatic generation
of skeletal code from state diagrams of systems designs of
various event driven systems.

Borstler et al [17] proposed a readability measure SRES
for object oriented programs as a proxy for understandibility,
elegancy and simplicity from a cognitive and measurement
perspective. They find that their readability measure is
significantly correlated with quality measures, it is less
sensitive to commenting and whitespace, and improves
maintainability of programs.

Alter and Bolloju [18] proposed that ideas from work
system theory and work system method can be a front-end to
object oriented analysis and design, a step before creating
use-case diagrams and UML artefacts, and thus providing
path from business-oriented descriptions to formal, technical
specifications to improve work systems performance.

Live programming requires real-time (run-time,
development-time) support for object schema migration
which is hindered by need of extra-levels of indirection or a
very slow operation of sweep of all objects in the heap,
during the exchange of object identities. Miranda et al [19]
proposed Spur, a new object representation and memory
management system which uses direct pointers but still
sweeps the heap of object quickly by using forwarding
objects and a partial read barrier avoiding the cost of explicit
checking on the vast majority of object accesses.

Rashmi Chhabra et al [20] illustrated a system for
designing of a relational schema from an object model which
was represented in their UML form and finally transformed
it into data warehouse.

Murat Oruc et al [21] presented a graph-mining approach
for detecting object oriented design patterns for
understanding the intent and design of software projects. The
approach is based on probing input design patterns in the
space of model graph of the source code by isomorphic sub-
graph search process.

Parashar et al [22] presented a framework for mining the
stream of class-change commits that are continuously
generated during software development and evolution, using
empirically validated changeability measures, to understand
how classes have co-evolved or are change-coupled, and
thus predicted the future changeability behaviour of classes
for better maintenance of software.

246

International Journal of Computer Sciences and Engineering

Ghoreshi et al [23] proposed an incremental method for
extracting test cases from formal object-oriented
specifications which tries to overcome the deficiencies of
existing methods of not being aligned with the iterative,
incremental, adapting and evolving nature of object oriented
development process.

Finding proper sample applications that help developers to
mitigate problems while using object-oriented application
frameworks like large and complex APIs and often
incomplete user manual, is a hard and time- consuming
challenge. Noei et al [24] tried to address this problem and
propose EXAF which is a search engine for finding sample
applications of object-oriented framework-provided
concepts.

In object-oriented programs, objects often provide
methods whose parameter types or return types are the
object types themselves, but such explicit recursive types,
which lead to a mismatch between sub classing and sub
typing, are not supported in most object oriented
programming languages. The authors thus proposed an
approach to support methods with This Types through a new
encoding of objects that allows sub typing by sub classing
even in the presence of negative occurrences of type
recursion variables, by distinguishing object types from
existential object types, and ultimately they formalized
language features to support This Typed methods. Ryu [25]
further produced an open-source implementation of the
approach as an extension of the Java programming language.

1. CONCLUSION

The object-oriented approach focuses on objects that
represent abstract or concrete things of the real world. There
is significant diversity of OOP languages, but the most
popular ones are class-based. The efficiency of object-
oriented programming depends directly on how object-
oriented language techniques are implemented in the system.
Through OOSE complex software systems become easier to
understand, since object-oriented structuring provides a
closer representation of reality than other programming
techniques. We perform a thorough analysis of some of the
recent advancements in object technologies and OOSE and
find that certain important progress has been made in
software design like coupling metrics between different
modules, up gradation of object oriented programming
system as per given requirement change, design of integrated
real-time software systems, by using a layered structure of
reusable components, attribute objects, meta-model for
generating design alternatives, implementation pattern for
state diagrams, real-time object schema migration, co-
evolved or change-coupled classes, and detecting object
oriented design patterns. In software analysis, we find that
contributions has been made on unit flow and data flow

© 2017, IJCSE All Rights Reserved

Vol.5(9), Sep 2017, E-ISSN: 2347-2693

testing, global software development context on the defects
in the product, source code encoding of a query able and
modifiable model of the applications, sharing analysis,
functional verification of object oriented sequential
programs, and analysis of non-functional properties which
can be measured using monitors. Other improvements were
made in game-based learning, game development, computer
adaptive testing, design principles of micro worlds,
readability measure, work system theory, live programming
and extracting test cases from formal object-oriented
specifications, and recursive types.

Power et al [26] compute the different metric values
during the design phase of the entire life cycle of software
development. Also a component diagram consisting of the
components and their associations has been prepared using
ArgoUML software tool.

There are as such no limitations of this survey but in
future as more and more new areas of research related to the
current domain emerge there will be lot of discussions
related to such work and that is the scope of future
improvement of this work.

REFERENCES

[1]. Bidve, V. S., and P. Sarasu. "Coupling Measures and its Impact
on Object-Oriented Software Quality." Indian Journal of Science
and Technology 9.21 (2016).

[2]. Sharma, Yashvardhan. "Effort Estimation for Program
Modification in Object Oriented Development." International
Conference on Computational Science and Its Applications.
Springer International Publishing, 2016.

[3]. Baas, Andre. An object-oriented component approch to building
real-time software systems. Diss. 2016.

[4]. Moreno-Delgado, Antonio, Francisco Durén, and José Meseguer.
"Towards Generic Monitors for Object-Oriented Real-Time
Maude Specifications.” (2016).

[5]. Xia, Haijun, et al. "Object-Oriented Drawing." Proceedings of the
2016 CHI Conference on Human Factors in Computing Systems.
ACM, 2016.

[6]. Wong, Y. S., Hayati, M. Y. M., & Tan, W. H. (2016, September).
A Propriety Game-Based Learning Game as Learning Tool to
Learn Object-Oriented Programming Paradigm. In Joint
International Conference on Serious Games (pp. 42-54). Springer
International Publishing.

[7]. Chandra, Alaknanda, and Abhishek Singhal. "Study of Unit and
Data flow testing in object-oriented and aspect-oriented
programming.”" 2016 International Conference on Innovation and
Challenges in Cyber Security (ICICCS-INBUSH). IEEE, 2016.

[8]. Jabangwe, Ronald, et al. A method for investigating the quality
of evolving object-oriented software using defects in global
software development projects.” Journal of Software: Evolution
and Process (2016).

[9]. Holopainen, Timo. "Object-oriented programming with Unity:
Inheritance versus composition." (2016).

[10].Cisar, Sanja Maravic, Petar Cisar, and Robert Pinter. “"Evaluation
of knowledge in Object Oriented Programming course with
computer adaptive tests." Computers & Education 92 (2016): 142-
160.

247

International Journal of Computer Sciences and Engineering

[11]. Nierstrasz, Oscar. "The Death of Object-Oriented Programming."
International Conference on Fundamental Approaches to Software
Engineering. Springer Berlin Heidelberg, 2016.

[12]. Abdoli, Shiva, and Sami Kara. "Designing Warehouse Logical
Architecture by Applying Object Oriented Model Based System
Engineering." Procedia CIRP 50 (2016): 713-718.

[13]. Amato, Gianluca, Maria Chiara Meo, and Francesca Scozzari.
"Exploiting Linearity in Sharing Analysis of Object-oriented
Programs." Electronic Notes in Theoretical Computer Science 322
(2016): 3-18.

[14].Djelil, Fahima, et al. "Microworlds for Learning Object-Oriented
Programming: Considerations from Research to Practice." Journal
of Interactive Learning Research 27.3 (2016): 247-266.

[15].Furia, Carlo A., et al. "AutoProof: auto-active functional
verification of object-oriented programs." International Journal on
Software Tools for Technology Transfer (2016): 1-20.

[16].Sunitha, E. V., and Philip Samuel. "Object Oriented Method to
Implement the Hierarchical and Concurrent States in UML State
Chart Diagrams." Software Engineering Research, Management
and Applications. Springer International Publishing, 2016. 133-
149.

[17].Borstler, Jurgen, Michael E. Caspersen, and Marie Nordstrém.
"Beauty and the Beast: on the readability of object-oriented
example programs.” Software Quality Journal 24.2 (2016): 231-
246.

[18]. Alter, Steven, and Narasimha Bolloju. "A Work System Front End
for Object-Oriented Analysis and Design." International Journal
of Information Technologies and Systems Approach (IJITSA) 9.1
(2016): 1-18.

[19].Miranda, Eliot, and Clément Béra. "A partial read barrier for
efficient support of live object-oriented programming." ACM
SIGPLAN Notices 50.11 (2016): 93-104.

[20].Chhabra, Rashmi, Parveen Kumar, and Payal Pahwa. "An
approach to Design Object Oriented Data Warehouse."
International Journal of Research and Engineering 3.3 (2016): 54-
56.

[21].Oruc, Murat, Fuat Akal, and Hayri Sever. "Detecting Design
Patterns in Object-Oriented Design Models by Using a Graph
Mining Approach." 2016 4th International Conference in Software
Engineering Research and Innovation (CONISOFT). IEEE, 2016.

[22].Parashar, Anshu, and Jitender Kumar Chhabra. "Mining software
change data stream to predict changeability of classes of object-
oriented software system." Evolving Systems 7.2 (2016): 117-
128.

[23].Ghoreshi, M., and H. Haghighi. "An incremental method for
extracting tests from object-oriented specification." Information
and Software Technology 78 (2016): 1-26.

[24].Noei, Ehsan, and Abbas Heydarnoori. "EXAF: A search engine
for sample applications of object-oriented framework-provided
concepts." Information and Software Technology 75 (2016): 135-
147.

[25].Ryu, Sukyoung. "ThisType for Object-Oriented Languages: From
Theory to Practice.” ACM Transactions on Programming
Languages and Systems (TOPLAS) 38.3 (2016): 8.

[26].P.L. Power,M.P. Singh,Bharat Solanki, Jawwad Wasat Shareef,
“Computation of External view based Software Metrics: Java
Based Tool”, International Journal of Computer Sciences and
Engineering, Vol.5, Issue.8, pp.33-43,2017.

© 2017, IJCSE All Rights Reserved

Vol.5(9), Sep 2017, E-ISSN: 2347-2693

Authors Profile

Biswajit Saha completed Bachelor of Engineering in Computer
Science and Engineering in the year 2002 and Master of
Engineering in Software Engineering in the year 2004. He is
currently teaching in the department of Computer Science and
Engineering of an engineering college in Durgapur, India. He has
more than 15 years of teaching experience at both the
undergraduate and postgraduate level of engineering.

Debaprasad Mukherjee has graduated with a degree in Electrical
Engineering in 2001 and was awarded PhD on systems theory
(complex systems) in 2011. He is currently teaching in a college in
India. He has published papers on diverse topics revolving around
the theme of systems theory. His long term general and research
interest is metaphilosophy.

248

