4
AX]CSE International Journal of Computer Sciences and Engineering [pen Access

Research Paper Volume-5, Issue-9 E-ISSN: 2347-2693

Analysis of Web Application Security

Shreekishan Jewliya
Dept. Of Computer Science, Rajasthan Swayat Shasan Mahavidyalaya, Jaipur, India
“Corresponding Author: krishanjew@yahool.com, Tel.: +91-9982379762
Available online at: www.ijcseonline.org

Received: 13/Aug/2017, Revised: 28/Aug/2017, Accepted: 10/Sep/2017, Published: 30/Sep/2017

Abstract— Web applications are a standout amongst the most predominant stages for data and administrations conveyance
over Internet today. As they are progressively utilized for basic administrations, web applications turn into a prominent and
significant focus for security assaults. Despite the fact that a huge group of methods have been developed to invigorate web
applications and alleviate the assaults toward web applications, there is little exertion gave to drawing associations among
these strategies and building a major picture of web application security look into. This paper reviews the range of web
application security, with the point of systematizing the current strategies into a enormous picture that advances future
research. We initially present the one of kind viewpoints in the web application advancement which brings inalienable
difficulties for building secure web applications. At that point we distinguish three fundamental security properties that a web
application should protect: Input Validity, State Integrity what's more, Logic Correctness, and depict the relating
vulnerabilities that abuse these properties alongside the assault vectors that adventure these vulnerabilities. We compose the
current research works on securing web applications into three classifications in view of their outline theory: security by
Construction, security by Verification and security by Protection. At long last, we compress the lessons learnt and examine

future research openings around there.

Keywords—Web Security, Web Application, AJAX, Jquery, XML, JavaScript, HTTP, PHP, session.

l. INTRODUCTION

Internet has developed from a framework that conveys static
pages to a stage that backings appropriated applications,
known as web applications and end up plainly a standout
amongst the most predominant advancements for data and
administration conveyance over Internet. The expanding
ubiquity of web application can be described to a few
variables, including remote accessibility, cross-stage
similarity, quick advancement, and so forth. The AJAX
(Asynchronous JavaScript and XML) innovation too
improves the client encounters of web applications with
better intelligence and responsiveness. As web applications
are progressively used to convey security basic
administrations, they turn into an important focus for security
attacks. Many web applications connect with back-end
database Frameworks, which may store delicate data (e.g.,
money related, wellbeing), the bargain of web applications
would bring about depicts the power and assets aggressors
have security property characterizes the part of the web
application conduct proposed by the designers. Given a
danger demonstrate, on the off chance that one web
application neglects to save certain security property under
all situations, this application is uncertain or powerless
against comparing assaults.

© 2017, IJCSE All Rights Reserved

We recognize a few open issues that are deficiently tended to
in the current writing. We additionally examine future
explore openings in the range of web application security
what's more, the new difficulties that are normal ahead. We
structure whatever is left of this paper as takes after. We first
portray how a web application works and its interesting
characteristics in Section Il. At that point, we represent three
fundamental security properties that a safe web application
should hold, also as relating vulnerabilities and assault
vectors in Section I11. We close our paper in Section IV.

Il. RELATED WORK

Chong et al. [1] develop a web application framework SIF
(Servlet Information Flow), based on a security-typed
language Jif, which extends Java with information flow
control and access control. SIF is able to label user input,
track the information flow and enforce the annotated security
policies at both compile time and runtime.

In addition, their parallel work Swift [2] is a unifying
framework to enforce end-to-end information flow policies
for distributed web applications. Jif source code can be
automatically and securely partitioned into server-side and
client-side code. SIF and Swift can be used for building
secure web applications free of input validation
vulnerabilities, as long as the security policies associated

215

International Journal of Computer Sciences and Engineering

with the information flow of untrusted user data are specified
correctly. We note that they can also be used to enforce other
security policies that are relevant with application logic (e.g.,
authorization), which we will explain later.

Samuel et al.[3] builds a reliable context-sensitive auto-
sanitization engine into web template systems based on type
qualifiers to address this problem.

Wassermann et al. [4] propose string-taint analysis, which
enhances Minamide’s string analysis with taint support.
Their technique labels and tracks untrusted substrings from
user input and ensures no untrusted scripts can be included in
SQL queries and generated HTML pages. Their technique
not only addresses the missing sanitization but also

the weak sanitization performed over user input.

Nguyen- Tuong et al. [5] modify PHP interpreter to precisely
taint user data at the granularity of characters and tracks
tainted user data at runtime. However, the sanitization of user
data

requires retrofitting the application source code to explicitly
call a newly-defined function, which can be error-prone and
affect the analysis precision.

Robertson et al. [6] propose a strong typing development
framework to build robust web applications against XSS and
SQL injection. This framework leverages Haskell, a strong
typing language, to remedy the weak typing feature of
scripting languages.

Huang et al. [7] propose a tool WebSSARI that applies static
analysis into identifying wvulnerabilities within web
applications. The tool employs flow-sensitive, intra-
procedural

analysis based on a lattice model. They extend the PHP
language with two type-states, namely tainted and untainted,
and track each variable’s type-state. In addition, runtime
sanitization functions are inserted where the tainted data
reaches the sinks to automatically harden the vulnerable web
application

I1l. METHODOLOGY

UNDERSTAND HOW A WEB APPLICATION WORKS

Web application is an appropriated application that is
executed over the Web stage. It is a basic piece of the present
Web biological community that empowers dynamic data and
administration conveyance. As appeared in Fig. 1, a web
application may comprise of code on both the server side and
the customer side. The server- side code will create dynamic
HTML pages either through execution (e.g., Java servlet,
CGI) or elucidation (e.g., PHP, JSP). Amid the execution of
the server-side code, the web application may connect with
nearby record framework or back-end database for putting

© 2017, IJCSE All Rights Reserved

Vol.5(9), Sep 2017, E-ISSN: 2347-2693

away and recovering information. The customer side code
(e.g., in JavaScript) are implanted in the HTML pages, which
is executed inside the program. It can speak with the server-
side code (i.e., AJAX) and powerfully refreshes the HTML
pages. In what tails, we portray three interesting aspects of
the web application advancement, which separate web
applications from conventional applications.

A. Programming Language: Web application
improvement depends on web programming dialects. These
dialects incorporate scripting dialects that are outlined
particularly for web (e.g., PHP, JavaScript) and broadened
customary universally useful programming dialects (e.g.,
JSP). A recognizing highlight of many web programming
dialects is their sort frameworks. For instance, a few
scripting dialects (e.g., PHP) are progressively wrote, which
implies that the kind of a variable is resolved at runtime,
rather than arrange time. A few dialects (e.g., JavaScript) are
pitifully written, which implies that an announcement or a
capacity can be performed on an assortment of information
sorts through certain sort throwing. Such sort frameworks
enable designers to mix a few sorts of builds in one record
for runtime translation. For imposition, a PHP document may
contain both static HTML labels and PHP capacities and a
site page may install executable JavaScript code. The
portrayal of use information and code by an unstructured
arrangement of bytes is a one of a kind component of web
application that helps improve the advancement productivity.

Java Dynamic
Script, Flash StaticHTML Executable HTML
Pages Javascript CGI Pages, PHP, J
SP

Runtime/ Interpreter JVM ZEND.

Web DATABASE
Browser
Web Server

Client Side Server Side

Figure 1. Overview of Web Application

B. State Maintenance: HTTP convention is stateless, where
each web asks for is autonomous of each other. In any case,
to execute non-minor functionalities, “stateful" web
applications should be assembled over this stateless
foundation. In this way, the reflection of web session is
embraced to assist the web application with identifying
furthermore, connect a progression of web demands from a
similar client amid a specific timeframe. The condition of a
web session records the conditions from the verifiable web
asks for that will influence the future execution of the web
application. The session state can be kept up either at the
customer side (through treat, shrouded shape or URL
changing) or at the server side. In the last case, a one of a
kind identifier (session ID) is characterized to list the express
session factors put away at the server side and issued to the
customer. For instance, the greater part of web programming
dialects (e.g., PHP, JSP) offers designers a gathering of

216

International Journal of Computer Sciences and Engineering

capacities for dealing with the web session. For instance, in
PHP, session begin() can be called to introduce a web session
and a pre-characterized worldwide cluster $SESSION is
utilized to contain the session state. In either case, the
customer assumes an essential part in keeping up the
conditions of a web application.

C. Logic Correctness: The business rationale characterizes
the usefulness of a web application, which is particular to
every application. Such usefulness is showed as a proposed
application control stream and is typically incorporated with
the route connections of a web application. For instance,
confirmation and approval are a typical piece of the control
stream in many web applications, through which a web
application limits its delicate data and advantaged operations
from unapproved clients. As another case, web based
business sites for the most part deal with the grouping of
operations that the clients require perform amid shopping and
checkout. A web application is typically executed as a
number of free modules, each of which can be
straightforwardly air conditioning accessed in any request by
a client. This remarkable element of web applications
fundamentally entangles the requirement of the application's
control stream crosswise over various modules. This errand
should be performed through a tight joint effort of two
approaches. The principal approach, which is honed by most
web applications, is interface covering up, where just open
assets and activities of the web application are displayed as
web connections and presented to clients. The second
approach enquires express checks of the application state,
which is kept up by session factors (or determined questions
in the database), some time recently sensitive data and
operations can be accessed.

UNDERSTAND WEB APPLICATION SECURITY PROPERTIES,
VULNERABILITIES AND ATTACK VECTORS

A protected web application needs to fulfill wanted security
properties under the given threat model. In the territory of
web application security, the accompanying risk
demonstrates is generally considered:

1) the web application itself is amiable (i.e., not facilitated or,
on the other hand possessed for vindictive purposes) and
facilitated on a trusted what's more, solidified framework
(i.e., the confide in processing base, counting OS, web
server, mediator, and so on.) ;

2) the assailant can control either the substance or the
grouping of web demands sent to the web application,
however can't straightforwardly trade off the foundation or
the application code The wvulnerabilities inside web
application usage may damage the proposed security
properties and take into consideration relating fruitful
adventures.

Specifically, a protected web application should save the
following pile of security properties, as appeared in Fig. 2.

© 2017, IJCSE All Rights Reserved

Vol.5(9), Sep 2017, E-ISSN: 2347-2693

Input Validity implies the client information ought to be
validated before it can be used by the web application; state
Integrity implies the application state ought to be kept
unhampered Logic Correctness implies the application
integrity ought to be executed effectively as expected by the
engineers. The over three security properties are connected in
a way that disappointment in protecting a security property at
the lower level will influence the confirmation of the security
property at a more elevated amount. For example, if the web
application neglects to hold the info Validity property, a
cross site scripting assault can be propelled by the assailant
to take the casualty's session attack. At that point, the
assailant can capture and alter the casualty's web session,
bringing about the infringement of state honesty property. In
the accompanying areas, we portray the three security
properties and show how the one of kind highlights of web
application advancement confuse the security outline for web
applications. Logic Correctness State Integrity input Validity
Security Property Rationale Implementation State
Maintenance Programming Language Improvement Feature
Attack State violation(logic) attack XSS, SQL injection, and
so forth. CSRF, session fixation, and so forth.

Development
Feature

Security Property

Logic Implementation Logic Correctness Logic Violation Attack

CSRF, Session, Fixation
Attack

State Maintance State Integrity

Programming Language Input Validity XSS, SQL, Injectection

Figure 2. Web Application Security Properties

A. Input Validity: Given the risk display, client input
information can't be trusted. Be that as it may, for the un-
trusted client information to be utilized as a part of the
application (e.g., forming web reaction or SQL questions),
they must be first approved. Along these lines, we allude to
this security property as input Validity property : All the
client information ought to be approved effectively to
guarantee it is used by the web application in the planned
way. The client input approval is frequently performed by
means of purification schedules, which change untrusted
client contribution to confided in information by sifting
suspicious characters or builds inside client input. While
basic on a basic level, it is non-trifling to accomplish the
fulfillment and rightness of client input sterilization,
particularly when the web application is customized utilizing
scripting dialects. To start with, since client input
information is proliferated all through the application, it must
be followed the distance to distinguish all the sterilization
focuses. Notwithstanding, the dynamic highlights of scripting
dialects must be taken care of appropriately to guarantee the
right following of client input information. Second, rectify
cleansing needs to consider the unique situation, which

217

International Journal of Computer Sciences and Engineering

determines how the client input is used by the application
what's more, deciphered later either by the web program or
the SQL translator. In this manner diverse settings require
unmistakable sterilization capacities. Nonetheless, the feeble
writing highlight of programming dialects makes setting
delicate cleansing testing and mistake inclined. In current
web improvement hones, cleansing schedules are normally
set by designers physically in a specially appointed way,
which can be either deficient or wrong, and in this way bring
vulnerabilities into the web application. Missing cleansing
permits vindictive client contribution to stream into trusted
web substance without approval; flawed disinfection permits
malevolent client contribution to sidestep the approval
strategy. A web application with the above vulnerabilities
neglects to accomplish the information Validity property
accordingly is powerless against a class of assaults, which
are alluded to as content infusions, information stream
assaults or information approval assaults. This sort of
assaults implants malevolent substance inside web demands,
which are used by the web application and executed later.
INustrations of info approval assaults incorporate cross-site
scripting (XSS), SQL infusion, registry traversal, filename
incorporation, reaction part, and so forth. They are
recognized by the areas where vindictive substance get
executed. In the accompanying, we represent the most two
prevalent information approval assaults.

1) SQL Injection: A SQL infusion assault is effectively
propelled when malevolent substance inside client input
stream into SQL inquiries without adjust approval. The
database trusts the web application and executes every one of
the inquiries issued by the application. Utilizing this assault,
the aggressor can insert SQL catchphrases or administrators
inside client contribution to control the SQL inquiry structure
and result in unintended execution. Results of SQL infusions
incorporate confirmation by pass, data exposure and even the
decimation of the whole database. Intrigued per user can
allude for additional insights about SQL infusion.

2) Cross-Site Scripting: A cross-site scripting (XSS) assault is
effectively propelled when noxious substance inside client
input stream into web reactions without redress approval.
The web program translates all the web reactions returned by
the trusted web application (as per the same-source
arrangement). Utilizing this assault, the aggressor can infuse
vindictive contents into web reactions, which get executed
inside the casualty's web program. The most widely
recognized outcome of XSS is the revelation of sensitive
data, e.g., session treat robbery. XSS normally fills in as the
initial step that empowers further advanced assaults. There
are a few variations of XSS, as per how the noxious contents
are infused, including put away/steady XSS (malevolent
contents are infused into determined capacity), reflected
XSS, DOM-based XSS, content-sniffing XSS.

© 2017, IJCSE All Rights Reserved

Vol.5(9), Sep 2017, E-ISSN: 2347-2693

The most widespread vulnerabilities are Cross-Site Scripting,
Information Leakage, SQL Injection, Insufficient Transport
Layer Protection, Fingerprinting mw HTTP Response Splitting
(P. 1). As a rule, Cross-Site Scripting, SQL Injection and
HTTP Response Splitting vulnerabilities are caused by
design errors, while Information Leakage, Insufficient
Transport Layer Protection and Fingerprinting are often
caused by insuffi cient administration (e.g., access control).

P-1The probability to detect vulnerabilities depending on their origin
0,

B Cross-site scripting
B S0L Injection
30% ®HTTP Response spliting
mInformtion leakage
B Path Traversal
Content Spoofing

10% 5% g
5% : 2%
0% T T T T T l7

Cross-site SaL HTTP Informtion Path Content
scripting Injection Response leakage Traversal Spoofing
spliting

Fig.3
Table. 1 The probability to detect vulpgrabilities depending on vulnerability
origin
S. No Vulnerability % Vulns

1. Cross-site scripting 43%

2. SQL Injection 5%

3. HTTP Response spliting 6%

4. Informtion leakage 31%

5. Path Traversal 3%

6. Content Spoofing 2%

B. State Integrity State support is the reason for building
stateful web applications, which requires a safe web
application to save the respectability of use states.
Nonetheless, The contribution of an untrusted party
(customer) in the application state support makes the
confirmation of state respectability a testing issue for web
applications. Various assault vectors focus on the
vulnerabilities inside session administration and state support
components of web applications, including treat harming
(altering the treat data), session obsession (when the session
identifier is unsurprising), session commandeering (when the
session identifier is stolen), and so on. Cross-site ask for
falsification (i.e., session riding) is a mainstream assault that
falls in this classification. In this assault, the assailant traps
the casualty into ending made web demands with the

218

International Journal of Computer Sciences and Engineering

casualty's substantial session identifier, in any case, on the
aggressor's sake. This could bring about the casualty's
session being altered, sensitive data uncovered (e.g., [10]),
money related misfortunes (e.g., an aggressor may
manufacture a web ask for that trains a defenceless saving
money site to exchange the casualty's cash to his record), and
so forth. To protect state respectability, various powerful
systems have been proposed [11]. Customer side state data
can be ensured by respectability confirmation through MAC
(Message Validation Code). Session identifiers should be
created with high arbitrariness (to safeguard against session
obsession) what's more, transmitted over secure SSL
convention (against session commandeering). To moderate
CSRF assaults, web solicitations can be approved by
checking headers (Referrer header, or Origin header [12]) or
related remarkable mystery tokens. Since the strategies for
safeguarding state Integrity are moderately develop,
subsequently falling past the extent of this overview.

C. Logic Correctness: Guaranteeing Logic Correctness is vital to
the working of web applications. Since the application
rationale is particular to each web application, it is difficult
to cover every one of the perspectives by one depiction.
Rather, a general depiction that spreads most regular
application functionalities is given as takes after, which we
allude to as rationale rightness property : Clients can just
access approved data and operations and are implemented to
take after the expected work process given by the web
application To execute and implement application rationale
accurately can be trying because of its state support
component and "decentralized" structure of web applications.
To begin with, interface concealing method, which takes
after the guideline of "security by lack of clarity", is clearly
insufficient in nature, which permits the assailant to reveal
shrouded joins and specifically get to unapproved data or
operations or abuse the planned work process. Second,
equivocal checking of the application state is performed by
engineers physically and in an impromptu way.
Consequently, it is likely that specific state checks are absent
on unforeseen control stream ways, because of those
numerous passage focuses of the web application. In
addition, composing right state checks can be blunder
inclined, since static security strategies as well as
additionally unique state data ought to be considered. Both
absent and flawed state checks present rationale
vulnerabilities into web applications. A web application with
rationale defects is helpless against a class of assaults, which
are normally alluded to as rationale assaults or state
infringement assaults. Since the application rationale is
particular to each web application, rationale assaults are
additionally eccentric to their particular targets. A few
assault vectors that fall (or halfway) inside this classification
incorporate validation sidesteps, parameter altering, mighty
perusing, and so forth. There are additionally application-
particular rationale assault vectors. For instance, a powerless

© 2017, IJCSE All Rights Reserved

Vol.5(9), Sep 2017, E-ISSN: 2347-2693

e-business site may enable a same coupon to be connected
various circumstances, which can be misused by the
aggressor to decrease his instalment.

IV. RESULTS AND DISCUSSION

Web applications have been advancing exceptionally quickly
with new programming models and innovations rising,
bringing about a consistently changing scene for web
application security with new difficulties, which requires
significant and maintained endeavours from security
specialists. We plot a few advancing patterns and call
attention to a few spearheading fills in as takes after. Initial,
an expanding measure of use code and rationale is moving to
the customer side, which brings new security challenges.
Since the customer side code is uncovered, the aggressor can
acquire information about the application, along these lines
more prone to trade off the server-side application state.

V. CONCLUSION AND FUTURE SCOPE

This paper gave a far reaching study of later look into brings
about the region of web application security. We portrayed
one of a kind quality of web application development,
recognized critical security properties that safe web
applications should safeguard and ordered existing works
into three noteworthy classes. We additionally brought up a
few open issues that still should be tended.

REFERENCES

[1] S. Chong, K. Vikram, and A. C. Myers, “Sif: Enforcing
confidentiality and integrity in web applications,” in
USENIX’07: Proceedings of the 16th conference on USENIX
security symposium , 2007.

[2] S. Chong, J. Liu, A. C. Myers, X. Qi, K. Vikram, L. Zheng,
and X. Zheng, “Secure web applications via automatic
partitioning,” in SOSP ’07: Proceedings of the 21st ACM
SIGOPS symposium on Operating systems principles, 2007,
pp. 31-44.

[3] M. Samuel, P. Saxena, and D. Song, “Context-sensitive auto-
sanitization in web templating languages using type
qualifiers,” in CCS’11: Proceedings of the 18th ACM
conference on Computer and communications security , 2011,
pp. 587-600.

[4] G. Wassermann and Z. Su, “Sound and precise analysis of web
applications for injection vulnerabilities,” in PLDI’07:
Proceedings of the 2007 ACM SIGPLAN conference on
Programming language design and implementation , 2007, pp.
32-41.

[5] A. Nguyen-tuong, S. Guarnieri, D. Greene, J. Shirley, and D.
Evans, “Automatically hardening web applications using
precise tainting,” in Proc. of the 20th IFIP International
Information Security Conference, 2005, pp. 372-382.

[6] W. Robertson and G. Vigna, “Static enforcement of web
application integrity through strong typing,” in USENIX’09:
Proceedings of the 18th conference on USENIX security
symposium, 2009, pp. 283-298.

[7] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D.-T. Lee, and S.-
Y. Kuo, “Securing web application code by static analysis and
runtime protection,” in WWW’04: Proceedings of the 13th

219

International Journal of Computer Sciences and Engineering

international conference on World Wide Web , 2004, pp. 40—
52.

[8] M. Johns, “Sessionsafe: Implementing xss immune session
handling,” in ESORICS’06: Proceedings of the 11th European
Symposium On Research In Computer Security , 2006.

[9] A. Barth, C. Jackson, and J. C. Mitchell, “Robust defenses for
cross-site request forgery,” in CCS’08: Proceedings of the
15th ACM conference on Computer and communications
security , 2008, pp. 75-88.

[10] N. Jovanovic, E. Kirda, and C. Kruegel, “Preventing cross site
request forgery attacks,” in SecureComm’06: 2nd
International Conference on Security and Privacy in
Communication Networks , 20086, pp. 1 -10.

[11] M. Johons and J. Winter, “Requestrodeo: Client-side
protection against session riding,” in OWASP AppSec
Europe , 2006.

[12] Z. Mao, N. Li, and 1. Molloy, “Defeating cross-site request
forgery attacks with browser-enforced authenticity
protection,” in FC’09: 13 th International Conference on
Financial Cryptography and Data Security , 2009, pp. 238—
255.

Authors Profile

Mr. S.K. Jewliya has completed his M.Tech(IT), M.Phil(CS), and
MCA. He is currently working as Assistant Professor at Rajasthan
Swayat Shasasn College, Tonk Road, Jaipur, INDIA. His area of
interest are OS, SE, Webdesign, PHP , Linux , Shell Programming,
C& C++, DS etc. He has 12 years of teaching experience . He has
undergone rigourus training of Linux and PHP. He has attended
many Seminars and conferences and presented several reaserach
papers.

© 2017, IJCSE All Rights Reserved

Vol.5(9), Sep 2017, E-ISSN: 2347-2693

220

