[ 4
/AX]CSE International Journal of Computer Sciences and Engineering [pen Access

Research Paper Volume-5, Issue-8 E-ISSN: 2347-2693

Comparative Study of Top 10 Algorithms for Association Rule Mining

B. Nigam®", A. Nigam?, P. Dalal®

“Dept. of Information Technology, IET DAVV, Indore, India
%|deavate Pvt. Ltd., Indore, India
$Dept of Computer Engineering, DAVV, Indore, India

*Corresponding Author: bhawnanigam@gmail.com

Available online at: www.ijcseonline.org

Received: 06/Jul/2017, Revised: 19/Jul/2017, Accepted: 15/Aug/2017, Published: 31/Aug/2017

Abstract: We live in a world where each day tons and tons of data is generated from millions of sources. Companies and
organizations thrive for this data in order to acquire valuable information that helps them understanding their customer needs
and demands. This valuable insight collaborates in improving the services and products — thus enhancing the overall business
and profits. Filtering out such significant information thus requires employing some data mining algorithms. Data mining is a
wide area of study that is further developing day by day and is very useful in deriving important information and coherence
from large and raw datasets. When we talk about one very well-known field of business, known as Market Basket Analysis —
data mining has significantly affected this sector. As the name suggests, it is an analysis of shopper’s basket at a mart. We
generally see various items arranged on the shelves in the malls and supermarkets; we also observe certain products
recommended to us when we shop online. All of this is worked in the back-end with the help of data-mining algorithms that
provide a proper analysis of customer buying patterns and hence it makes the relations and suggests them to the customers,
which in turn results in an enhanced sales. Technically, association rule mining and frequent itemset mining is done for such
analysis. These algorithms are also used in designing various games and in recommendation systems. In this paper we are thus
understanding these algorithms and compare the efficiency of the most common ones on the basis of factors such as time,
support and memory consumed.
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I. INTRODUCTION of an item is 0.2%, it means only 0.2 percent of the

. L L transaction contains purchase of this item.
As discussed market-basket analysis is a very significant

stream that makes use of data mining techniques like
association rule mining and frequent itemset mining in order
to understand customer buying patterns. So when we talk
about association rules, as the name says, these are if and
then statements that help in discovering the relationships
between the objects that are used together, quite frequently.
These unfold the relationships between unrelated data that is
stored either in a non-relational or relational database or may
belong to some other information repository. And the task of
association rule mining can be broken into two steps: first
Frequent itemset generation and secondly Confidence Rules
Generation. In this paper we are majorly focusing upon the
techniques used in frequent itemset mining. Basically,
frequent itemset mining focuses at sequences of actions or
events. Here, the database takes the form of sets of
transactions where each transaction has a number of items.
And then there is a minimum threshold support value and
user-specified minimum confidence, define as:

Support: Support(S) of an association rule is defined as the
percentage or the fraction of records that contain XUY to the
total number of records in the database. Suppose the support
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Confidence(C):- Confidence(C) of an association rule can be
defined as the percentage or the fraction of the number of
transactions that contain XUY to the total number of records
that contain X. Confidence [3] basically measures the
strength of the association rules, for an instance, if the
confidence of the association rule X=Y is 80%, then it
means that 80% of the transactions containing X also contain
Y together.
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I1. RELATED WORK

There are many algorithms for mining frequent itemsets.
Each uses a different technique, has different intermediate
steps and structures — that defines the efficiency of these
algorithms. The intermediate steps and structures may
include candidate itemset generation, creation of tidsets and
diffsets, hash-tree formations, etc. So let us focus on the 10
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mostly used algorithms for frequent itemsets mining
[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]:

[A]. Apriori Algorithm

[B]. AprioriTid Algorithm
[C]. FP Growth Algorithm
[D]. FP Max Algorithm

[E]. Charm Bitset Algorithm
[F1. HMine Algorithm

[G]. LCM Algorithm

[H]. Pascal Algorithm

[1]. Eclat Algorithm

[9]. dEclat Algorithm

A. Apriori Algorithm: Apriori Algorithm proceeds by
identifying the frequent individual items in the database and
then extends them to larger and larger item sets as long as
those item sets appear sufficiently often in the database. It
uses a "bottom up" approach [1], where frequent subsets are
extended one item at a time (a step known as candidate
generation) [11], and groups of candidates are tested against
the data. Apriori uses breadth-first search and a Hash tree
structure to count these candidate item sets efficiently. The
algorithm terminates when no further successful extensions
[15] are found. This level-wise approach helps to reduce the
number of itemsets that are required to count the support.
The general idea is to use k-itemsets to explore (k+1)-
itemsets.

1. Firstly find the set of frequent 1-itemsets, Lk: this is done
by scanning the database and accumulating the count for
each item and then keeping those that meet the minimum
support in a new set called Lk.

2. Next, Lk is used to find Ck+1 (the set of candidate 2-
itemsets):- This is a two-step process that first generates
Ck+1 based on Lk and then prunes Ck+1 by getting rid
of those Ck+1 itemsets.

3. To find Lk+1, support count for all the itemsets in Ck+1 is
found and those below the minimum support are rejected.
4. The steps 2&3 are continued until no new frequent (k+1)-

itemsets are found.

Apriori Algorithm is very easy to understand and implement.
It can be used on large item sets, however, when it is
required to find a large number of candidate rules, it can
become computationally expensive. Moreover, multiple
database scans is time and memory consuming as well. In
order to improve this algorithm, AprioriTid was introduced.

B. AprioriTid Algorithm: Apriori TID has the same
candidate generation function as Apriori, however, it does
not use database for counting support after the first pass.
Instead, an encoding of the candidate item sets which was
used in the previous pass is used again here. Eventually, in
the later passes the size of encoding [1,12] can become much
smaller than the database — thus saving reading effort.
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Following is the example that sums up the working of
AprioriTid Algorithm:

1. Firstly, one should keep in mind that database is not used
at all for counting the support of candidate itemsets after
the first pass.

2. The candidate itemsets are generated in similar fashion as
Apriori algorithm.

3. Another set C’ is generated and each member has the TID
of each transaction along with the large itemsets present in
this transaction. This set is actually used to count the
support of each candidate itemset.

Database o} G
TID | Items Itemset | Support Ttemset | Support
100 |134 {1} 2 {12} 1
200 (235 - {2} 3 ‘ {13} 7
300 (1235 {3} 3 {15} 1
400 |25 {s} 3 {23}* 2
{25}% 3
Itemset | Support G — {3 5}* 2
{235} 2 C,
100 {13}
c, 200 {23}.{25}. {3 5}
300 {12}, {13} {15},
200 [{235} {23}.{25). {35}
300  [{235} 400 {25}

Figure 1. Example of AprioriTid Algorithm

So what we observe is that the number of entries in C’ have
decreased since than the number of transactions in the
database, especially in the later passes. Thus, making this
algorithm more efficient and fast.

C. FP-Growth Algorithm: This is another important
frequent pattern mining method, which generates frequent
item set without candidate generation. It uses a divide and
conquer strategy while creating a tree based structure. It
works by generating a prefix-tree data structure known as
FP-tree from two scans of the database. This method
involves two phases. First phase needs two database scans
for generating the FPtree [2, 12] by compressing that input
database and creating an FP-tree instance that represent
frequent items. After this first step it divides the compressed
database into a set of conditional databases, each one
associated with one frequent pattern. And then finally, each
such database is mined separately. However, this phase
doesn’t need any scan over database and it uses on FP-tree to
generate frequent item set.

This way FP-Growth reduces the search costs looking for
short patterns recursively and then concatenating them in the
long frequent patterns, that offers good selectivity. However,
for large databases, it is sometimes difficult to hold an FP-
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Tree in the main memory and thus, this we move on to an
enhanced version of this algorithm.
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Figure 2. Example of an FP-Tree Structure

D. FPMax Algorithm: FPMax is based on the very famous
FPGrowth algorithm and is used to discover frequent
maximal item sets [2, 3] in a transaction database. It
includes several strategies that mines maximal item sets
efficiently while it prunes the search space. We already
know that a frequent item set is an item set that appears in at
least min support transactions from the transaction database.
While a frequent closed item set is a frequent item set that is
not included in a proper superset having the same support.
Having known that, we define a frequent maximal item set
[14, 18] as a frequent item set that is not included in a proper
superset (i.e. already a frequent item set). The set of frequent
maximal item sets is thus a subset of the set of frequent
closed item sets, which is a subset of frequent item sets. The
reason we use the frequent maximal item sets is that they are
usually much smaller than the set of frequent item sets and
also smaller than the set of frequent closed item sets. Thus
this is a very efficient algorithm over FP-Growth.

E. Charm Algorithm: Charm is an efficient algorithm for
enumerating the set of all frequent closed itemsets. It
explores both the item set space and transaction space [4, 5],
over a novel IT-tree (itemset - tidset tree) search space
unlike the other algorithms that exploit only the itemset
search space. It employs a highly efficient hybrid search
method that skips many levels of the IT-tree and quickly
identifies the frequent closed itemsets, instead of
enumerating many possible subsets. Using a fast hash-based
approach, it can eliminate non-closed itemsets and with a
novel vertical data representations called as diffsets [19, 20,
21], it can track the differences in tids of candidate pattern
from its prefix pattern. The introduction of diffsets,
drastically cut downs the size of memory required to store
the intermediate results. One of the most efficient and
simplest algorithms, it works the best for large databases by
saving time and memory.

F. HMine Algorithm: HMine algorithm takes advantage of
a novel hyper-linked data structure known as H-Struct [5,
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18] that dynamically adjusts links in the mining process.
This algorithm features a limited and precisely predictable
space overhead that can run really fast in memory-based
setting. Moreover, it can be scaled up to very large databases
by database partitioning. Also, for dense data sets HMine
integrates with FP-tree structures — thus making it a more
versatile algorithm.
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Figure 3. Frequent Closed and Maximal Item sets

G. LCM Algorithm: Precisely called as LCM, Linear Time
Closed Item set Miner enumerates (output, or count) all
frequent itemsets, all maximal frequent itemsets, or all
frequent closed itemsets in a given transaction database for
given a support. LCM features quite a stable performance
for both computation time and memory usage [6, 11]. The
basic idea of this algorithm is depth-first search. LCM in its
first step computes the frequency of each item set composed
of one item. If that item set is frequent, then enumerate
frequent item sets are obtained by adding one item to it. This
way, recursively, LCM enumerates all frequent itemsets.

H. Pascal Algorithm: Pascal is a two-way algorithm that is
used to discover frequent itemsets and at the same time
identify which ones are generators [8, 16] in a transaction
database. Pascal is an Apriori-based algorithm. It uses a
special pruning property that can avoid counting the support
of some candidate itemsets. This property is based on the
fact that if an itemset of size k is not a generator, then its
support is the support of the minimum support of its subsets
of size k-1. The Pascal algorithm is considered to be more or
less as efficient as Apriori algorithm since it is an Apriori-
based algorithm. Pascal utilizes pruning strategies [13] that
are supposed to make it faster by avoiding counting the
support of some candidates.

I. Eclat Algorithm: It is a depth first search based
algorithm. Eclat algorithm uses a vertical database layout i.e.
instead of explicitly listing all transactions [9, 17]; each item
is stored together with its cover (also called tidlist) and uses
the intersection based approach to compute the support of an
item set. It requires less space than Apriori [10] if item sets
are small in number .It is suitable for small datasets and
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requires less time for frequent pattern generation than other
Algorithms.

J. dEclat Algorithm: dEclatis a variation of the Eclat
algorithm that is implemented using a structure called
"diffsets” rather than "tidsets". Diffset [9, 10] only keeps
track of differences in the tids of a candidate pattern from its
generating frequent patterns. They drastically cut down (by
orders of magnitude) the size of memory required to store
intermediate results. The initial database stored in diffset
format, instead of tidsets can also reduce the total database
size. Since the diffsets are a small fraction of the size of
tidsets, intersection operations are performed blazingly fast!
We have also made use of these diffsets in Charm, which
has proved to be the most efficient of all the algorithms.
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Figure 4. Tid Intersections for Pattern Counting
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Figure 5. Diffsets for Pattern Counting
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I11. RESULTS AND DISCUSSION

As learnt and discussed, we can observe that each algorithm
follows a different approach and has different intermediate
structures [20] formed — which affect their efficiency. Also,
a few algorithms follow a hybrid approach that leads to
faster and better results. Thus, in order to understand,
compare and evaluate the performance of these ten
algorithms we have applied them on a large transactional
database consisting of 75,000 transactions. These
transactions belong to a bakery shop having customer
transactions of each day, for which we are trying to perform
the market-basket analysis by extracting frequent item sets
and then later using them to generate the various association
rules.

Following three are the graphs on different minimum
support values that compare these ten algorithms on the
basis of the time taken by them:

Time Taken by Different Algorithms at Support =
0.02 (in ms)
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Figure 6. Time Taken at Support = 0.02
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Figure 7. Time Taken at Support = 0.03
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Time Taken by Different Algorithms at Support =

0.05 (in ms)
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Figure 8. Time Taken at Support = 0.05

Following three are the graphs on different minimum
support values that compare these ten algorithms on the
basis of the memory consumed by them:

Memory Used by Different Algorithms at Support =

0.02 (in mb)
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Figure 9. Memory Consumed at Support = 0.02
Memory Used by Different Algorithms at Support =
0.03 (in mb)
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Figure 10.Memory Consumed at Support = 0.03
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Memory Used by Different Algorithms at Support =

0.05 (in mb)
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Figure 11.Memory Consumed at Support = 0.05

IV. CONCLUSION

Of all the ten algorithms where different approaches are
employed, Charm, dEclat and Eclat have proven to be the
best and suitable for large sized databases. These algorithms
can be scaled up and extended easily without much efforts
and will run fast, while utilizing minimum memory.
However, when we talk about smaller datasets, we may find
that primary algorithms like Apriori or FP-Growth are
suitable as well, since they follow a simpler approach of
candidate generation and tree creation. On the other hand
when we need some more details such as identifying the
generators, Pascal proves to be the best choice as it will take
up almost the similar time as Apriori and provide us with
two results. Furthermore, AprioriTid, FP Max and dEclat are
the other algorithms which are basically the enhanced
versions of the previously proposed algorithms namely,
Apriori, FPGrowth and Eclat, respectively. Lastly, when we
talk about the Charm, it certainly has its own charm in
proving us tremendous results by employing a hybrid
approach towards generating the frequent item sets.
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