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Abstract: We live in a world where each day tons and tons of data is generated from millions of sources. Companies and 

organizations thrive for this data in order to acquire valuable information that helps them understanding their customer needs 

and demands. This valuable insight collaborates in improving the services and products – thus enhancing the overall business 

and profits. Filtering out such significant information thus requires employing some data mining algorithms. Data mining is a 

wide area of study that is further developing day by day and is very useful in deriving important information and coherence 

from large and raw datasets. When we talk about one very well-known field of business, known as Market Basket Analysis – 

data mining has significantly affected this sector. As the name suggests, it is an analysis of shopper’s basket at a mart. We 

generally see various items arranged on the shelves in the malls and supermarkets; we also observe certain products 

recommended to us when we shop online. All of this is worked in the back-end with the help of data-mining algorithms that 

provide a proper analysis of customer buying patterns and hence it makes the relations and suggests them to the customers, 

which in turn results in an enhanced sales. Technically, association rule mining and frequent itemset mining is done for such 

analysis. These algorithms are also used in designing various games and in recommendation systems. In this paper we are thus 

understanding these algorithms and compare the efficiency of the most common ones on the basis of factors such as time, 

support and memory consumed. 
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I. INTRODUCTION 

As discussed market-basket analysis is a very significant 

stream that makes use of data mining techniques like 

association rule mining and frequent itemset mining in order 

to understand customer buying patterns. So when we talk 

about association rules, as the name says, these are if and 

then statements that help in discovering the relationships 

between the objects that are used together, quite frequently. 

These unfold the relationships between unrelated data that is 

stored either in a non-relational or relational database or may 

belong to some other information repository. And the task of 

association rule mining can be broken into two steps: first 

Frequent itemset generation and secondly Confidence Rules 

Generation. In this paper we are majorly focusing upon the 

techniques used in frequent itemset mining. Basically, 

frequent itemset mining focuses at sequences of actions or 

events. Here, the database takes the form of sets of 

transactions where each transaction has a number of items. 

And then there is a minimum threshold support value and 

user-specified minimum confidence, define as: 

Support: Support(S) of an association rule is defined as the 

percentage or the fraction of records that contain X∪Y to the 

total number of records in the database. Suppose the support 

of an item is 0.2%, it means only 0.2 percent of the 

transaction contains purchase of this item. 

Confidence(C):- Confidence(C) of an association rule can be 

defined as the percentage or the fraction of the number of 

transactions that contain X∪Y to the total number of records 

that contain X. Confidence [3] basically measures the 

strength of the association rules, for an instance, if the 

confidence of the association rule X⇒Y is 80%, then it 

means that 80% of the transactions containing X also contain 

Y together. 

 
II. RELATED WORK  

 

There are many algorithms for mining frequent itemsets. 

Each uses a different technique, has different intermediate 

steps and structures – that defines the efficiency of these 

algorithms. The intermediate steps and structures may 

include candidate itemset generation, creation of tidsets and 

diffsets, hash-tree formations, etc. So let us focus on the 10 
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mostly used algorithms for frequent itemsets mining 

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]: 

[A]. Apriori Algorithm 

[B]. AprioriTid Algorithm 

[C]. FP Growth Algorithm 

[D]. FP Max Algorithm 

[E]. Charm Bitset Algorithm 

[F]. HMine Algorithm 

[G]. LCM Algorithm 

[H]. Pascal Algorithm 

[I]. Eclat Algorithm 

[J]. dEclat Algorithm 

A. Apriori Algorithm: Apriori Algorithm proceeds by 

identifying the frequent individual items in the database and 

then extends them to larger and larger item sets as long as 

those item sets appear sufficiently often in the database. It 

uses a "bottom up" approach [1], where frequent subsets are 

extended one item at a time (a step known as candidate 

generation) [11], and groups of candidates are tested against 

the data. Apriori uses breadth-first search and a Hash tree 

structure to count these candidate item sets efficiently. The 

algorithm terminates when no further successful extensions 

[15] are found. This level-wise approach helps to reduce the 

number of itemsets that are required to count the support. 

The general idea is to use k-itemsets to explore (k+1)-

itemsets.  

1. Firstly find the set of frequent 1-itemsets, Lk: this is done 

by scanning the database and accumulating the count for 

each item and then keeping those that meet the minimum 

support in a new set called Lk. 

2. Next, Lk is used to find Ck+1 (the set of candidate 2-

itemsets):- This is a two-step process that first generates 

Ck+1 based on Lk   and then prunes Ck+1 by getting rid 

of those Ck+1 itemsets. 

3. To find Lk+1, support count for all the itemsets in Ck+1 is 

found and those below the minimum support are rejected. 

4. The steps 2&3 are continued until no new frequent (k+1)-

itemsets are found. 

 

Apriori Algorithm is very easy to understand and implement. 

It can be used on large item sets, however, when it is 

required to find a large number of candidate rules, it can 

become computationally expensive. Moreover, multiple 

database scans is time and memory consuming as well. In 

order to improve this algorithm, AprioriTid was introduced. 

B. AprioriTid Algorithm: Apriori TID has the same 

candidate generation function as Apriori, however, it does 

not use database for counting support after the first pass. 

Instead, an encoding of the candidate item sets which was 

used in the previous pass is used again here. Eventually, in 

the later passes the size of encoding [1,12] can become much 

smaller than the database – thus saving reading effort. 

Following is the example that sums up the working of 

AprioriTid Algorithm:  

1. Firstly, one should keep in mind that database is not used 

at all for counting the support of candidate itemsets after 

the first pass. 

2. The candidate itemsets are generated in similar fashion as 

Apriori algorithm. 

3. Another set C’ is generated and each member has the TID 

of each transaction along with the large itemsets present in 

this transaction. This set is actually used to count the 

support of each candidate itemset. 

 

Figure 1. Example of AprioriTid Algorithm 

So what we observe is that the number of entries in C’ have 

decreased since than the number of transactions in the 

database, especially in the later passes. Thus, making this 

algorithm more efficient and fast. 

C. FP-Growth Algorithm: This is another important 

frequent pattern mining method, which generates frequent 

item set without candidate generation. It uses a divide and 

conquer strategy while creating a tree based structure. It 

works by generating a prefix-tree data structure known as 

FP-tree from two scans of the database. This method 

involves two phases. First phase needs two database scans 

for generating the FPtree [2, 12] by compressing that input 

database and creating an FP-tree instance that represent 

frequent items. After this first step it divides the compressed 

database into a set of conditional databases, each one 

associated with one frequent pattern. And then finally, each 

such database is mined separately. However, this phase 

doesn’t need any scan over database and it uses on FP-tree to 

generate frequent item set. 

This way FP-Growth reduces the search costs looking for 

short patterns recursively and then concatenating them in the 

long frequent patterns, that offers good selectivity. However, 

for large databases, it is sometimes difficult to hold an FP-
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Tree in the main memory and thus, this we move on to an 

enhanced version of this algorithm. 

 

Figure 2. Example of an FP-Tree Structure 

D. FPMax Algorithm: FPMax is based on the very famous 

FPGrowth algorithm and is used to discover frequent 

maximal item sets [2, 3] in a transaction database.  It 

includes several strategies that mines maximal item sets 

efficiently while it prunes the search space. We already 

know that a frequent item set is an item set that appears in at 

least min support transactions from the transaction database. 

While a frequent closed item set is a frequent item set that is 

not included in a proper superset having the same support. 

Having known that, we define a frequent maximal item set 

[14, 18] as a frequent item set that is not included in a proper 

superset (i.e. already a frequent item set). The set of frequent 

maximal item sets is thus a subset of the set of frequent 

closed item sets, which is a subset of frequent item sets. The 

reason we use the frequent maximal item sets is that they are 

usually much smaller than the set of frequent item sets and 

also smaller than the set of frequent closed item sets. Thus 

this is a very efficient algorithm over FP-Growth. 

E. Charm Algorithm: Charm is an efficient algorithm for 

enumerating the set of all frequent closed itemsets. It 

explores both the item set space and transaction space [4, 5], 

over a novel IT-tree (itemset - tidset tree) search space 

unlike the other algorithms that exploit only the itemset 

search space. It employs a highly efficient hybrid search 

method that skips many levels of the IT-tree and quickly 

identifies the frequent closed itemsets, instead of 

enumerating many possible subsets. Using a fast hash-based 

approach, it can eliminate non-closed itemsets and with a 

novel vertical data representations called as diffsets [19, 20, 

21], it can track the differences in tids of candidate pattern 

from its prefix pattern. The introduction of diffsets, 

drastically cut downs the size of memory required to store 

the intermediate results. One of the most efficient and 

simplest algorithms, it works the best for large databases by 

saving time and memory.  

F. HMine Algorithm: HMine algorithm takes advantage of 

a novel hyper-linked data structure known as H-Struct [5, 

18] that dynamically adjusts links in the mining process. 

This algorithm features a limited and precisely predictable 

space overhead that can run really fast in memory-based 

setting. Moreover, it can be scaled up to very large databases 

by database partitioning. Also, for dense data sets HMine 

integrates with FP-tree structures – thus making it a more 

versatile algorithm.  

 

Figure 3. Frequent Closed and Maximal Item sets  

G. LCM Algorithm: Precisely called as LCM, Linear Time 

Closed Item set Miner enumerates (output, or count) all 

frequent itemsets, all maximal frequent itemsets, or all 

frequent closed itemsets in a given transaction database for 

given a support. LCM features quite a stable performance 

for both computation time and memory usage [6, 11]. The 

basic idea of this algorithm is depth-first search. LCM in its 

first step computes the frequency of each item set composed 

of one item. If that item set is frequent, then enumerate 

frequent item sets are obtained by adding one item to it. This 

way, recursively, LCM enumerates all frequent itemsets. 

H. Pascal Algorithm: Pascal is a two-way algorithm that is 

used to discover frequent itemsets and at the same time 

identify which ones are generators [8, 16] in a transaction 

database. Pascal is an Apriori-based algorithm. It uses a 

special pruning property that can avoid counting the support 

of some candidate itemsets. This property is based on the 

fact that if an itemset of size k is not a generator, then its 

support is the support of the minimum support of its subsets 

of size k-1. The Pascal algorithm is considered to be more or 

less as efficient as Apriori algorithm since it is an Apriori-

based algorithm. Pascal utilizes pruning strategies [13] that 

are supposed to make it faster by avoiding counting the 

support of some candidates. 

I. Eclat Algorithm: It is a depth first search based 

algorithm. Eclat algorithm uses a vertical database layout i.e. 

instead of explicitly listing all transactions [9, 17]; each item 

is stored together with its cover (also called tidlist) and uses 

the intersection based approach to compute the support of an 

item set. It requires less space than Apriori [10] if item sets 

are small in number .It is suitable for small datasets and 
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requires less time for frequent pattern generation than other 

Algorithms. 

J. dEclat Algorithm: dEclat is a variation of the Eclat 

algorithm that is implemented using a structure called 

"diffsets" rather than "tidsets". Diffset [9, 10] only keeps 

track of differences in the tids of a candidate pattern from its 

generating frequent patterns. They drastically cut down (by 

orders of magnitude) the size of memory required to store 

intermediate results. The initial database stored in diffset 

format, instead of tidsets can also reduce the total database 

size. Since the diffsets are a small fraction of the size of 

tidsets, intersection operations are performed blazingly fast! 

We have also made use of these diffsets in Charm, which 

has proved to be the most efficient of all the algorithms.  

 

 
Figure 4. Tid Intersections for Pattern Counting 

 
Figure 5. Diffsets for Pattern Counting 

III.  RESULTS AND DISCUSSION 

 

As learnt and discussed, we can observe that each algorithm 

follows a different approach and has different intermediate 

structures [20] formed – which affect their efficiency. Also, 

a few algorithms follow a hybrid approach that leads to 

faster and better results. Thus, in order to understand, 

compare and evaluate the performance of these ten 

algorithms we have applied them on a large transactional 

database consisting of 75,000 transactions. These 

transactions belong to a bakery shop having customer 

transactions of each day, for which we are trying to perform 

the market-basket analysis by extracting frequent item sets 

and then later using them to generate the various association 

rules. 

Following three are the graphs on different minimum 

support values that compare these ten algorithms on the 

basis of the time taken by them:  

 
Figure 6. Time Taken at Support = 0.02 

 
Figure 7. Time Taken at Support = 0.03 
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Figure 8. Time Taken at Support = 0.05 

 

Following three are the graphs on different minimum 

support values that compare these ten algorithms on the 

basis of the memory consumed by them: 

 
Figure 9. Memory Consumed at Support = 0.02 

 
Figure 10.Memory Consumed at Support = 0.03 

 
Figure 11.Memory Consumed at Support = 0.05 

 

IV. CONCLUSION 

Of all the ten algorithms where different approaches are 

employed, Charm, dEclat and Eclat have proven to be the 

best and suitable for large sized databases. These algorithms 

can be scaled up and extended easily without much efforts 

and will run fast, while utilizing minimum memory. 

However, when we talk about smaller datasets, we may find 

that primary algorithms like Apriori or FP-Growth are 

suitable as well, since they follow a simpler approach of 

candidate generation and tree creation. On the other hand 

when we need some more details such as identifying the 

generators, Pascal proves to be the best choice as it will take 

up almost the similar time as Apriori and provide us with 

two results. Furthermore, AprioriTid, FP Max and dEclat are 

the other algorithms which are basically the enhanced 

versions of the previously proposed algorithms namely, 

Apriori, FPGrowth and Eclat, respectively. Lastly, when we 

talk about the Charm, it certainly has its own charm in 

proving us tremendous results by employing a hybrid 

approach towards generating the frequent item sets. 
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