
 © 2017, IJCSE All Rights Reserved 190

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-8 E-ISSN: 2347-2693

Comparative Study of Top 10 Algorithms for Association Rule Mining

B. Nigam
1*

, A. Nigam
2
, P. Dalal

3

1*

Dept. of Information Technology, IET DAVV, Indore, India
2
Ideavate Pvt. Ltd., Indore, India

3
Dept of Computer Engineering, DAVV, Indore, India

*Corresponding Author: bhawnanigam@gmail.com

Available online at: www.ijcseonline.org

Received: 06/Jul/2017 , Revised: 19/Jul/2017, Accepted: 15/Aug/2017, Published: 31/Aug/2017

Abstract: We live in a world where each day tons and tons of data is generated from millions of sources. Companies and

organizations thrive for this data in order to acquire valuable information that helps them understanding their customer needs

and demands. This valuable insight collaborates in improving the services and products – thus enhancing the overall business

and profits. Filtering out such significant information thus requires employing some data mining algorithms. Data mining is a

wide area of study that is further developing day by day and is very useful in deriving important information and coherence

from large and raw datasets. When we talk about one very well-known field of business, known as Market Basket Analysis –

data mining has significantly affected this sector. As the name suggests, it is an analysis of shopper’s basket at a mart. We

generally see various items arranged on the shelves in the malls and supermarkets; we also observe certain products

recommended to us when we shop online. All of this is worked in the back-end with the help of data-mining algorithms that

provide a proper analysis of customer buying patterns and hence it makes the relations and suggests them to the customers,

which in turn results in an enhanced sales. Technically, association rule mining and frequent itemset mining is done for such

analysis. These algorithms are also used in designing various games and in recommendation systems. In this paper we are thus

understanding these algorithms and compare the efficiency of the most common ones on the basis of factors such as time,

support and memory consumed.

Keywords- Data mining, Association rules, Apriori, FP-Growth, Eclat, dEclat

I. INTRODUCTION

As discussed market-basket analysis is a very significant

stream that makes use of data mining techniques like

association rule mining and frequent itemset mining in order

to understand customer buying patterns. So when we talk

about association rules, as the name says, these are if and

then statements that help in discovering the relationships

between the objects that are used together, quite frequently.

These unfold the relationships between unrelated data that is

stored either in a non-relational or relational database or may

belong to some other information repository. And the task of

association rule mining can be broken into two steps: first

Frequent itemset generation and secondly Confidence Rules

Generation. In this paper we are majorly focusing upon the

techniques used in frequent itemset mining. Basically,

frequent itemset mining focuses at sequences of actions or

events. Here, the database takes the form of sets of

transactions where each transaction has a number of items.

And then there is a minimum threshold support value and

user-specified minimum confidence, define as:

Support: Support(S) of an association rule is defined as the

percentage or the fraction of records that contain X∪Y to the

total number of records in the database. Suppose the support

of an item is 0.2%, it means only 0.2 percent of the

transaction contains purchase of this item.

Confidence(C):- Confidence(C) of an association rule can be

defined as the percentage or the fraction of the number of

transactions that contain X∪Y to the total number of records

that contain X. Confidence [3] basically measures the

strength of the association rules, for an instance, if the

confidence of the association rule X⇒Y is 80%, then it

means that 80% of the transactions containing X also contain

Y together.

II. RELATED WORK

There are many algorithms for mining frequent itemsets.

Each uses a different technique, has different intermediate

steps and structures – that defines the efficiency of these

algorithms. The intermediate steps and structures may

include candidate itemset generation, creation of tidsets and

diffsets, hash-tree formations, etc. So let us focus on the 10

mailto:bhawnanigam@gmail.com

International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 191

mostly used algorithms for frequent itemsets mining

[1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21]:

[A]. Apriori Algorithm

[B]. AprioriTid Algorithm

[C]. FP Growth Algorithm

[D]. FP Max Algorithm

[E]. Charm Bitset Algorithm

[F]. HMine Algorithm

[G]. LCM Algorithm

[H]. Pascal Algorithm

[I]. Eclat Algorithm

[J]. dEclat Algorithm

A. Apriori Algorithm: Apriori Algorithm proceeds by

identifying the frequent individual items in the database and

then extends them to larger and larger item sets as long as

those item sets appear sufficiently often in the database. It

uses a "bottom up" approach [1], where frequent subsets are

extended one item at a time (a step known as candidate

generation) [11], and groups of candidates are tested against

the data. Apriori uses breadth-first search and a Hash tree

structure to count these candidate item sets efficiently. The

algorithm terminates when no further successful extensions

[15] are found. This level-wise approach helps to reduce the

number of itemsets that are required to count the support.

The general idea is to use k-itemsets to explore (k+1)-

itemsets.

1. Firstly find the set of frequent 1-itemsets, Lk: this is done

by scanning the database and accumulating the count for

each item and then keeping those that meet the minimum

support in a new set called Lk.

2. Next, Lk is used to find Ck+1 (the set of candidate 2-

itemsets):- This is a two-step process that first generates

Ck+1 based on Lk and then prunes Ck+1 by getting rid

of those Ck+1 itemsets.

3. To find Lk+1, support count for all the itemsets in Ck+1 is

found and those below the minimum support are rejected.

4. The steps 2&3 are continued until no new frequent (k+1)-

itemsets are found.

Apriori Algorithm is very easy to understand and implement.

It can be used on large item sets, however, when it is

required to find a large number of candidate rules, it can

become computationally expensive. Moreover, multiple

database scans is time and memory consuming as well. In

order to improve this algorithm, AprioriTid was introduced.

B. AprioriTid Algorithm: Apriori TID has the same

candidate generation function as Apriori, however, it does

not use database for counting support after the first pass.

Instead, an encoding of the candidate item sets which was

used in the previous pass is used again here. Eventually, in

the later passes the size of encoding [1,12] can become much

smaller than the database – thus saving reading effort.

Following is the example that sums up the working of

AprioriTid Algorithm:

1. Firstly, one should keep in mind that database is not used

at all for counting the support of candidate itemsets after

the first pass.

2. The candidate itemsets are generated in similar fashion as

Apriori algorithm.

3. Another set C’ is generated and each member has the TID

of each transaction along with the large itemsets present in

this transaction. This set is actually used to count the

support of each candidate itemset.

Figure 1. Example of AprioriTid Algorithm

So what we observe is that the number of entries in C’ have

decreased since than the number of transactions in the

database, especially in the later passes. Thus, making this

algorithm more efficient and fast.

C. FP-Growth Algorithm: This is another important

frequent pattern mining method, which generates frequent

item set without candidate generation. It uses a divide and

conquer strategy while creating a tree based structure. It

works by generating a prefix-tree data structure known as

FP-tree from two scans of the database. This method

involves two phases. First phase needs two database scans

for generating the FPtree [2, 12] by compressing that input

database and creating an FP-tree instance that represent

frequent items. After this first step it divides the compressed

database into a set of conditional databases, each one

associated with one frequent pattern. And then finally, each

such database is mined separately. However, this phase

doesn’t need any scan over database and it uses on FP-tree to

generate frequent item set.

This way FP-Growth reduces the search costs looking for

short patterns recursively and then concatenating them in the

long frequent patterns, that offers good selectivity. However,

for large databases, it is sometimes difficult to hold an FP-

International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 192

Tree in the main memory and thus, this we move on to an

enhanced version of this algorithm.

Figure 2. Example of an FP-Tree Structure

D. FPMax Algorithm: FPMax is based on the very famous

FPGrowth algorithm and is used to discover frequent

maximal item sets [2, 3] in a transaction database. It

includes several strategies that mines maximal item sets

efficiently while it prunes the search space. We already

know that a frequent item set is an item set that appears in at

least min support transactions from the transaction database.

While a frequent closed item set is a frequent item set that is

not included in a proper superset having the same support.

Having known that, we define a frequent maximal item set

[14, 18] as a frequent item set that is not included in a proper

superset (i.e. already a frequent item set). The set of frequent

maximal item sets is thus a subset of the set of frequent

closed item sets, which is a subset of frequent item sets. The

reason we use the frequent maximal item sets is that they are

usually much smaller than the set of frequent item sets and

also smaller than the set of frequent closed item sets. Thus

this is a very efficient algorithm over FP-Growth.

E. Charm Algorithm: Charm is an efficient algorithm for

enumerating the set of all frequent closed itemsets. It

explores both the item set space and transaction space [4, 5],

over a novel IT-tree (itemset - tidset tree) search space

unlike the other algorithms that exploit only the itemset

search space. It employs a highly efficient hybrid search

method that skips many levels of the IT-tree and quickly

identifies the frequent closed itemsets, instead of

enumerating many possible subsets. Using a fast hash-based

approach, it can eliminate non-closed itemsets and with a

novel vertical data representations called as diffsets [19, 20,

21], it can track the differences in tids of candidate pattern

from its prefix pattern. The introduction of diffsets,

drastically cut downs the size of memory required to store

the intermediate results. One of the most efficient and

simplest algorithms, it works the best for large databases by

saving time and memory.

F. HMine Algorithm: HMine algorithm takes advantage of

a novel hyper-linked data structure known as H-Struct [5,

18] that dynamically adjusts links in the mining process.

This algorithm features a limited and precisely predictable

space overhead that can run really fast in memory-based

setting. Moreover, it can be scaled up to very large databases

by database partitioning. Also, for dense data sets HMine

integrates with FP-tree structures – thus making it a more

versatile algorithm.

Figure 3. Frequent Closed and Maximal Item sets

G. LCM Algorithm: Precisely called as LCM, Linear Time

Closed Item set Miner enumerates (output, or count) all

frequent itemsets, all maximal frequent itemsets, or all

frequent closed itemsets in a given transaction database for

given a support. LCM features quite a stable performance

for both computation time and memory usage [6, 11]. The

basic idea of this algorithm is depth-first search. LCM in its

first step computes the frequency of each item set composed

of one item. If that item set is frequent, then enumerate

frequent item sets are obtained by adding one item to it. This

way, recursively, LCM enumerates all frequent itemsets.

H. Pascal Algorithm: Pascal is a two-way algorithm that is

used to discover frequent itemsets and at the same time

identify which ones are generators [8, 16] in a transaction

database. Pascal is an Apriori-based algorithm. It uses a

special pruning property that can avoid counting the support

of some candidate itemsets. This property is based on the

fact that if an itemset of size k is not a generator, then its

support is the support of the minimum support of its subsets

of size k-1. The Pascal algorithm is considered to be more or

less as efficient as Apriori algorithm since it is an Apriori-

based algorithm. Pascal utilizes pruning strategies [13] that

are supposed to make it faster by avoiding counting the

support of some candidates.

I. Eclat Algorithm: It is a depth first search based

algorithm. Eclat algorithm uses a vertical database layout i.e.

instead of explicitly listing all transactions [9, 17]; each item

is stored together with its cover (also called tidlist) and uses

the intersection based approach to compute the support of an

item set. It requires less space than Apriori [10] if item sets

are small in number .It is suitable for small datasets and

International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 193

requires less time for frequent pattern generation than other

Algorithms.

J. dEclat Algorithm: dEclat is a variation of the Eclat

algorithm that is implemented using a structure called

"diffsets" rather than "tidsets". Diffset [9, 10] only keeps

track of differences in the tids of a candidate pattern from its

generating frequent patterns. They drastically cut down (by

orders of magnitude) the size of memory required to store

intermediate results. The initial database stored in diffset

format, instead of tidsets can also reduce the total database

size. Since the diffsets are a small fraction of the size of

tidsets, intersection operations are performed blazingly fast!

We have also made use of these diffsets in Charm, which

has proved to be the most efficient of all the algorithms.

Figure 4. Tid Intersections for Pattern Counting

Figure 5. Diffsets for Pattern Counting

III. RESULTS AND DISCUSSION

As learnt and discussed, we can observe that each algorithm

follows a different approach and has different intermediate

structures [20] formed – which affect their efficiency. Also,

a few algorithms follow a hybrid approach that leads to

faster and better results. Thus, in order to understand,

compare and evaluate the performance of these ten

algorithms we have applied them on a large transactional

database consisting of 75,000 transactions. These

transactions belong to a bakery shop having customer

transactions of each day, for which we are trying to perform

the market-basket analysis by extracting frequent item sets

and then later using them to generate the various association

rules.

Following three are the graphs on different minimum

support values that compare these ten algorithms on the

basis of the time taken by them:

Figure 6. Time Taken at Support = 0.02

Figure 7. Time Taken at Support = 0.03

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000
5500
6000
6500
7000

1

Time Taken by Different Algorithms at Support =
0.02 (in ms)

Apriori Apriori Tid Charm Bitset Eclat FP Growth

FP Max Hmine LCM Pascal dEclat

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1

Time Taken by Different Algorithms at Support =
0.03 (in ms)

Apriori Apriori Tid Charm Bitset Eclat FP Growth

FP Max Hmine LCM Pascal dEclat

International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 194

Figure 8. Time Taken at Support = 0.05

Following three are the graphs on different minimum

support values that compare these ten algorithms on the

basis of the memory consumed by them:

Figure 9. Memory Consumed at Support = 0.02

Figure 10.Memory Consumed at Support = 0.03

Figure 11.Memory Consumed at Support = 0.05

IV. CONCLUSION

Of all the ten algorithms where different approaches are

employed, Charm, dEclat and Eclat have proven to be the

best and suitable for large sized databases. These algorithms

can be scaled up and extended easily without much efforts

and will run fast, while utilizing minimum memory.

However, when we talk about smaller datasets, we may find

that primary algorithms like Apriori or FP-Growth are

suitable as well, since they follow a simpler approach of

candidate generation and tree creation. On the other hand

when we need some more details such as identifying the

generators, Pascal proves to be the best choice as it will take

up almost the similar time as Apriori and provide us with

two results. Furthermore, AprioriTid, FP Max and dEclat are

the other algorithms which are basically the enhanced

versions of the previously proposed algorithms namely,

Apriori, FPGrowth and Eclat, respectively. Lastly, when we

talk about the Charm, it certainly has its own charm in

proving us tremendous results by employing a hybrid

approach towards generating the frequent item sets.

REFERENCES

[1]. Agrawal R, Srikant R., “Fast algorithms for mining association

rules”, InProc. 20th int. conf. very large data bases, VLDB, Vol.

1215, pp. 487-499, 1994.

[2]. Han J, Pei J, Yin Y, Mao R., “Mining frequent patterns without

candidate generation: A frequent-pattern tree approach”, Data

mining and knowledge discovery, Vol.8, Issue.1, pp.53-87, 2004.

[3]. Akilandeswari. S and A.V.Senthil Kumar, "A Novel Low Utility

Based Infrequent Weighted Itemset Mining Approach Using

Frequent Pattern", International Journal of Computer Sciences

and Engineering, Vol.3, Issue.7, pp.181-185, 2015.

[4]. Lei Wen, “An efficient algorithm for mining frequent closed

itemset,” Fifth World Congress on Intelligent Control and

Automation, Vol. 5, pp. 4296-4299, 2004.

[5]. M. J. Zaki and K. Gouda, “Fast vertical mining using diffsets,”

Proceedings of the ninth ACM SIGKDD international conference

on Knowledge discovery and data mining - KDD ’03, PP.pp.

326-335, 2003.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

1

Time Taken by Different Algorithms at Support =
0.05 (in ms)

Apriori Apriori Tid Charm Bitset Eclat FP Growth

FP Max Hmine LCM Pascal dEclat

0

10

20

30

40

50

1

Memory Used by Different Algorithms at Support =
0.02 (in mb)

Apriori Apriori Tid Charm Bitset Eclat FP Growth

FP Max Hmine LCM Pascal dEclat

0

10

20

30

40

50

1

Memory Used by Different Algorithms at Support =
0.03 (in mb)

Apriori Apriori Tid Charm Bitset Eclat FP Growth

FP Max Hmine LCM Pascal dEclat

0

20

40

60

80

1

Memory Used by Different Algorithms at Support =
0.05 (in mb)

Apriori Apriori Tid Charm Bitset Eclat FP Growth

FP Max Hmine LCM Pascal dEclat

International Journal of Computer Sciences and Engineering Vol.5(8), Aug 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 195

[6]. J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. "H-Mine:

Fast and space-preserving frequent pattern mining in large

databases", IIE Transactions, Vol.39, Issue 6, pp.593-605, 2007.

[7]. Takeaki Uno, Masashi Kiyomi and Hiroki Arimura, “LCM ver. 2:

Efficient Mining Algorithms for Frequent/Closed/Maximal

Itemsets”,. Proc. IEEE ICDM Workshop on Frequent Itemset

Mining Implementations Brighton, UK, November 1, 2004.

[8]. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., &Lakhal, L.,

“Mining frequent patterns with counting inference”, ACM

SIGKDD Explorations Newsletter, Vol.2, Issue.2, 66-75, 2000.

[9]. P. Sagar, M. Goyal, "A Review: Comparative Analysis of various

Data Mining Techniques", International Journal of Computer

Sciences and Engineering, Vol.4, Issue.12, pp.56-60, 2016.

[10]. JHS Tomar, JS Kumar, "A Review on Big Data Mining Methods",

International Journal of Scientific Research in Network Security

and Communication, Vol.4, Issue.3, pp.7-14, 2016.

[11]. R.J. Bayardo, “Efficiently Mining Long Patterns from Databases”,

ACM SIGMOD Conf. Management of Data, June 1998.

[12]. M.Manigandan and K. Aravind Kumar, "Secure Multiparty

Protocol for Distributed Mining of Association Rules",

International Journal of Scientific Research in Computer Science

and Engineering, Vol.3, Issue.1, pp.6-10, 2015.

[13]. R. Agrawal and R. Srikant, “Fast Algorithms for Mining

Association Rules”, Proc. 20th Very Large Data Base Conf., Sept.

1994.

[14]. D. Gunopulos, H. Mannila, and S. Saluja, “Discovering All the

Most Specific Sentences by Randomized Algorithms”, Int'l Conf.

Database Theory, pp. 215-29, Jan. 1997.

[15]. S. Brin, R. Motwani, J. Ullman, and S. Tsur, “Dynamic Itemset

Counting and Implication Rules for Market Basket Data”,

Proceedings of the 1997 ACM SIGMOD international conference

on Management of data - SIGMOD ’97, 1997.

[16]. M. J. Zaki and C.-J. Hsiao., “CHARM: An efficient algorithm for

closed association rule mining”, Technical Report 99-10,

Computer Science Dept., Rensselaer Polytechnic Institute,

October 1999.

[17]. D. Cheung, J. Han, V. Ng, A. Fu, and Y. Fu, “A Fast Distributed

Algorithm for Mining Association Rules”, Fourth Int'l Conf.

Parallel and Distributed Information Systems, Dec. 1996.

[18]. B.A. Davey, H.A. Priestley, “Introduction to Lattices and

Order”, Cambridge Univ. Press, 1990.

[19]. D. Eppstein, “Arboricity and Bipartite Subgraph Listing

Algorithms”, Information Processing Letters, Vol.51, pp. 207-211,

1994.

[20]. Philippe Fournier-Viger, “An Open-Source Data Mining Library”,

www.philippe-fournier-viger.com

[21]. M.R. Garey and D.S. Johnson, “Computers and Intractability: A

Guide to the Theory of NP-Completeness”, Revista Da Escola De

Enfermagem Da USP, Vol.44, Issue.2, pp.340, 1979.

http://www.philippe-fournier-viger.com/
http://www.philippe-fournier-viger.com/

