

Content Caching and Multicasting of 5G Hetrogeneous Cellular Wireless Networks

P. Charanya^{1*}, A. Pavithra²

^{1*} Dept. of Computer Science, ARJ College of Engineering and Technology, Edayarnatham, India

² Dept. of Computer Science, ARJ College of Engineering and Technology, Edayarnatham, India

**Corresponding Author: pr.charanya@gmail.com*

Available online at: www.ijcseonline.org

Received: 22/May/2017, Revised: 09/Jun/2017, Accepted: 13/Jul/2017, Published: 30/Jul/2017

Abstract— D2D correspondence engine helped by a phone network brings the advantage of the vicinity of wireless devices to support reusing assets amongst D2D and cell UEs, and bestows any prizes of bounce pick up. 3GPP began a review thing on vicinity based administrations in D2D. SAE plan for a D2D network, which joins the center and get to, the protocol stack for D2D correspondence and totally extraordinary readying circumstances, style parts of D2D correspondence, control administration and direct measuring routes in D2D correspondence and totally unique building obstructs for D2D correspondence that are compulsory though fitting the D2D session, and, additionally, develops the use cases, business, and chances of uses that exist. In this paper introducing some concept to improve energy efficiency of 5G little bit more. That performance improvement satisfy demand on mobile data with minimal energy expenditures. This excellent development is achieved by combine the concept of caching and multicast. Caching procedure is based on the idea of storing the popular content at the Small-cell Base Stations via backhaul links. Multicast is used to reduce energy and bandwidth consumption of wireless network by serving concurrent user requests for the same content via common multicast stream. Combination of Cache and multicast is effective when there is occurring repeated requested for a few content files appear over time. It can indeed reduce energy costs. The gains over existing caching schemes are 19% when users tolerate delay of three minutes, increasing further with the sharpness of content access pattern.

Keywords— D2D Communication, 5G Network, WSN, Cache.

I. INTRODUCTION

With the presentation of a myriad of sensible hand-held devices, user requests for mobile broadband are experiencing partner degree exceptional ascent. The mighty development of data transfer capacity hungry applications like video gushing and transmission document sharing are already pushing the limits of current cell frameworks. Inside the following decade, pictured media-rich mobile applications like telecommunication and 3D optics would require data rates only unendurable with fourth era (4G) networks. The steadily developing interest for higher data rates and capacity require offbeat speculation for taking after era (5G) cell frameworks. Agreeable interchanges has such guarantee! Helpful interchanges speak to a substitution classification of wireless correspondence procedures amid which network nodes encourage each other in handing-off information to grasp spacial differing qualities benefits. This new transmission paradigm ensures key execution picks up as far as connection irresponsibleness, otherworldly strength, framework capacity, and transmission change. Agreeable correspondence has been widely contemplated inside the

writing, and stuck terminal transferring (which includes the readying of low-power base stations to help the correspondence between the supply and along these lines the goal) has already been encased inside the 4G future Evolution (LTE)-Advanced standard. Mounted terminal transferring acquires improvements cell frameworks, however the total capability of participation might be acknowledged exclusively through the usage of device handing-off. The term device here alludes to a mobile telephone or the other moveable wireless device with cell property (tablet, portable workstation, and so forth) a user claims. Device transferring makes it feasible for devices amid a network to execute as transmission transfers for each unique and notice a tremendous unconstrained work network. This, obviously, is plausible with device-to-device (D2D) correspondence common sense that grants 2 close devices to talk with each other inside the approved cell data measure while not a base station (BS) concerned or with confined baccalaureate association. This can be unmistakably an emotional takeoff from the traditional cell plan. Inside the first four eras of cell networks, D2D correspondence common sense has not been thought of [1,2,3,4,5,6,7,8,9].

This can be essentially as an after effects of its principally been unbelievable as an apparatus to lessen the value of local administration arrangement, that acclimated be uncompleted among the past upheld the cell administrators' market insights. The administrators' point toward D2D reasonableness has been dynamical as of late because of many patterns inside the wireless market. For instance, the amount of setting mindful administrations and applications is developing rapidly. These applications require area revelation and correspondence with neighboring devices, and furthermore the comfort of such a reasonableness would downsize the estimation of correspondence abstract in an exceptionally standard cell framework, devices don't appear to be permitted to straightforwardly speak with each other inside the approved cell data measure and each one interchanges happen through the base stations. Amid this article, we tend to imagine a two-level cell network that includes a macrocell level (i.e., BS-to-device interchanges) and an apparatus level (i.e., device-to-device correspondences) [10,11,12,13,14].

Device terminal transferring makes it feasible for devices in an exceptionally network to work as transmission transfers for each extraordinary and comprehend a gigantic unintended work network. This can be unmistakably a sensational takeoff from the standard cell plan and brings particular specialized difficulties. In such a two-level cell framework, since the user knowledge is steered through various users' devices, security ought to be kept up for protection. To affirm effect on the execution of existing macrocell BSs, the two-level network must be outlined with great impedance administration ways and satisfactory asset portion plans. Additionally, novel valuation models should be intended to entice devices to take an interest amid this assortment of correspondence [15,16,17,18,19].

D2D reasonableness may assume a critical part in mobile distributed computing and encourage viable sharing of assets (range, handle control, applications, social substance, and so forth.) for users UN office are spatially close to each other. Benefit providers will additional trade out of D2D common sense to require some load off of the network in an extremely local space like a development or a colossal shopping center by allowing transmission instrument among phones and distinctive devices. In addition, D2D correspondence might be of essential use in cataclysmic events.

II. PROPOSED METHOD

5G systems are expected to be rolled out by the year 2020. It is anticipated that the Heterogeneous Cellular Network (HCN) architecture will be part of the landscape. HCN consist of a Macro cell Base Station (MBS) and multiple Small cell Base Stations (SBS) and/or relays. Caches can be installed at SBS and targeting to offload traffic from the

collocated MBS. Cache filled with popular content files at Evolved Packet Core (EPC) or at the Radio Access Network (RAN). SBS allow spatial reuse and so they can increase significantly capacity and coverage. Caching content at the wireless edge has gained considerable traction as a promising technique for future wireless networks. The idea of edge caching comes from the possibility of significantly reducing the backhaul usage by bringing the content closer to the end users. Exploiting the new capabilities of future multi-tier networks, numerous works have investigated the potential benefits of caching content in densely deployed SBS equipped with storage capabilities. Several ways to assess the performance of caching have been proposed, e.g. from an information-theoretic perspective and from an outage probability point of view. One measure of great interest is the energy efficiency (EE), which has gained considerable attention in the last few years.

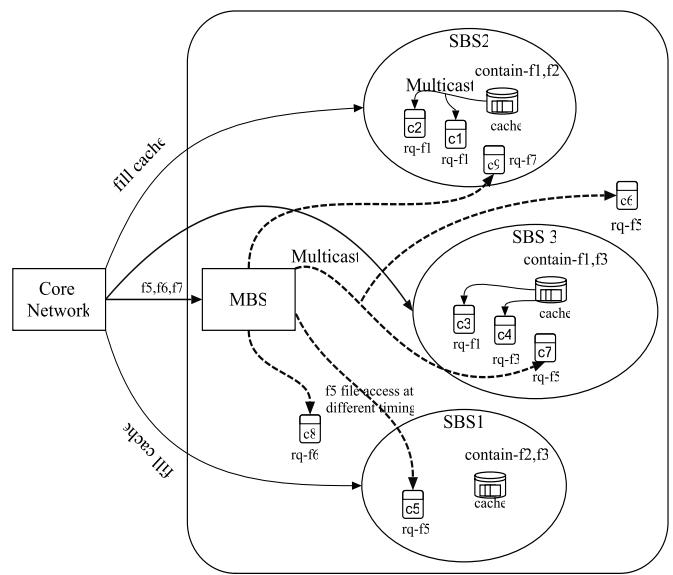


Fig 1: SBS Architecture

Multicasting is a more efficient method of supporting group communication than unicasting or broadcasting, as it allows transmission and routing of packets to multiple destinations using fewer network resources. Along with widespread deployment of wireless networks, the fast-improving capabilities of mobile devices, and an increasingly sophisticated mobile work force worldwide, content and service providers are increasingly interested in supporting multicast communications over wireless networks. Applications of wireless multicast support group-oriented mobile commerce, military command and control, distance education, and intelligent transportation systems. Many new mcommerce applications, including mobile auctions, will also gain significant benefit if group communication among mobile users is supported by wireless networks.

These two excellent concepts are merge to reduce the data traffic in wireless communication. HCN model that supports caching and multicast for the service of the mobile users. Requests for the same content file generated during a short-time window are aggregated and served through a single multicast transmission when the corresponding window expires. To ensure that the user experienced delay will be limited, the duration of this window should be as small as possible.

Randomized Rounding Algorithm: Using randomized rounding techniques, we develop a multicast-aware caching algorithm that achieves performance guarantees under the assumption that the capacity constraints can be violated in a bounded way.

Step 1: Compute a min-cost fractional set cover x^* (an optimal solution to the LP relaxation).

Step 2: Let $\lambda \leftarrow \ln(2) / \dots$

Step 3: For each $s \in S$ do: ...

Step 4: Return x^* .

Local caching of popular files at the Small cell Base Stations (SBS) has been recently proposed, aiming at reducing the traffic incurred when transferring the requested content from the core network to the users. The cache design policy carefully takes into account the fact that an operator can serve the requests for the same file that happen at nearby times via a single multicast transmission. That is, Multicasting is the transfer of messages to multiple destinations simultaneously, using fewer networks. The information is delivered to each of the links only once, and copies are created when the links to the destinations split, thus creating an optimal distribution path. It reduces unnecessary packet duplication. Overall combination of caching and multicasting incurs less traffic in mobile communication and expand energy efficiency.

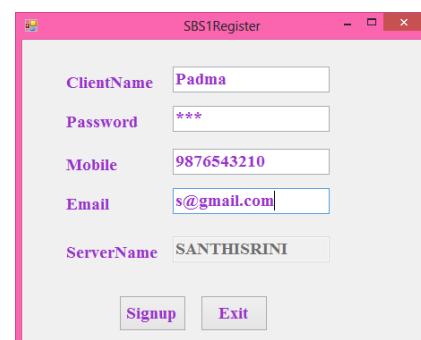
Advantages:

- Multicast services doesn't wait for all system request. It only response the requests for the same file that happen at nearby times. So this proposed system reduced the time delay.
- This system enhancing the network capacity.
- Because of the Caching concept, the distance between core network and end-user device is reduced. It satisfies the demand on data traffic.

III. PROPOSED SYSTEM PROCESS

The major demand in mobile communication is mobile data. To handle this “data tsunami”, the emerging 5th generation systems need to improve the network performance in terms of energy consumption, throughput and user experienced delay, and at the same time make a better use of the network resources such as wireless bandwidth and backhaul link capacity. Two candidate solutions that have been investigated are caching and multicast.

A. Caching Process:

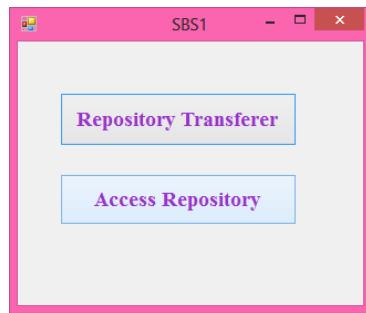

A cache is a temporary storage used by wireless network to reduce the average cost (time or energy) to access data from the main storage location. The cache is a smaller, faster memory which stores copies of the data from popular used main memory locations. When the mobile station want to access the popular file, the cache storage provide that file to mobile station. This reduce the distance between storage to the end user.

B. Multicasting Process:

Multicasting provides delivery to multiple destinations belong to same multicast group. Multicasting reduces the communication costs for applications that send the same data to multiple recipients. Instead of sending data via multiple unicasts, multicasting minimizes the link bandwidth consumption, sender and router processing, and delivery delay. To preform multicasting process, group of mobile stations are selected on the bases of user request. That is the user requests within a short-time window are aggregated and served through a single multicast stream when the corresponding window expires.

IV. EXPECTED OUTCOMES

A. Login and Registration Module:

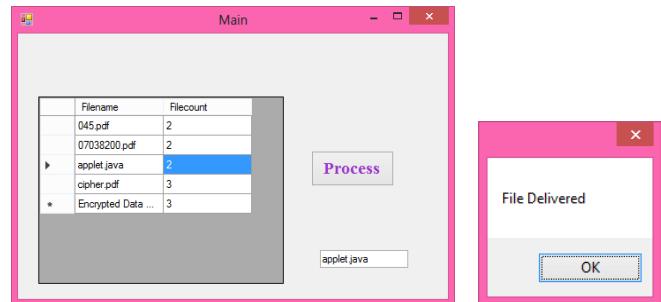


If want to enter the communication, the user give the details and register. The user correctly registered and display register successfully information. In security, logging in, (or logging on or signing in or signing on), is the process by which an individual gains access to a computer system by


identifying and authenticating themselves. The user credentials are typically some form of username and a matching password and these credentials themselves are sometimes referred to as a login, (or a logon or a sign in or a sign on).

B. Repository Transfer SBS to MBS Module:

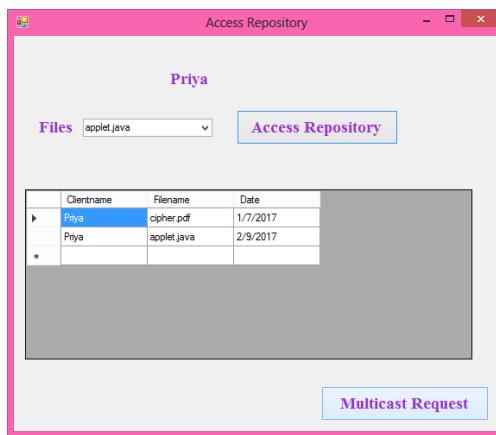
In this module, user give username and password and login for communication. The authorized user only upload the files into the server. The unauthorized user does not upload the files into server. In computing, a file server (or fileserver) is a computer attached to a network that has the primary purpose of providing a location for shared disk access, i.e. shared storage of computer files such as multimedia file that can be accessed by the workstations that are attached to the same computer network. The term server highlights the role of the machine in the client–server scheme, where the clients are the workstations using the storage. A file server is not intended to perform computational tasks, and does not run programs on behalf of its clients.



C. Caching Scheme Module:

A cache server is a dedicated network server or service acting as a server that saves Web pages or other Internet content locally. By placing previously requested information in temporary storage, or cache, a cache server both speeds up access to data and reduces demand on an enterprise's bandwidth. In computing, a cache is a hardware or software component that stores data so future requests for that data can be served faster; the data stored in a cache might be the result of an earlier computation, or the duplicate of data stored elsewhere. A cache hit occurs when the requested data

can be found in a cache, while a cache miss occurs when it cannot. Cache hits are served by reading data from the cache, which is faster than re-computing a result or reading from a slower data store; thus, the more requests can be served from the cache, the faster the system performs.


D. Server Scheme Module:

The server is a computer program or a device that provides functionality for other programs or devices, called clients. The client–server model and a single overall computation is distributed across multiple processes or devices. Servers can provide various functionalities, often called services, such as sharing data or resources among multiple clients, or performing computation for a client. A single server can serve multiple clients, and a single client can use multiple servers. A client process may run on the same device or may connect over a network to a server on a different device. Typical servers are database servers, file servers, mail servers, print servers, web servers, game servers, and application servers.


E. Optimization Based on Multicast Transmission Module:

In computer networking, multicast (one-to-many or many-to-many distribution) is group communication where information is addressed to a group of destination computers simultaneously. Group communication may either be application layer multicast or network assisted multicast, where the latter makes it possible for the source to efficiently send to the group in a single transmission. Copies are automatically created in other network elements, such as routers, switches and cellular network base stations, but only to network segments that currently contain members of the group. Multicast is often employed in Internet Protocol (IP) applications of streaming media, such as Internet television scheduled content (but not media-on-demand) and multipoint videoconferencing, but also for ghost distribution of backup disk images to multiple computers simultaneously.

F. Comparison Chart Module:

Comparison diagram or comparative diagram is a general type of diagram, in which a comparison is made between two or more objects, phenomena or groups of data. A comparison diagram or can offer qualitative and/or quantitative information. This type of diagram can also be called comparison chart. The diagram itself is sometimes referred to as a cluster diagram. In this module display file download count and also display difference between normal download count and multicast download count.

V. CONCLUSION AND FUTURE WORK

In this article, we tend to specify the limitations of current receptive networks and arranged a remarkable proactive networking paradigm wherever storing assumes a critical part. By misusing the prophetic capacities of 5G 10 networks, and additionally ideas of setting mindfulness and informal organizations, it had been demonstrated that pinnacle knowledge movement requests will be extensively diminished by proactively serving unsurprising users requests, by means of storing key substance at each the base station and user's devices. The main idea implemented in project is to combining the caching and multicasting concept. This increase the energy efficiency of the wireless communication. In contrast to the traditional caching schemes that simply bring popular content close to the users, proposed caching strategy is carefully designed so as to additionally exploit the multicast opportunities. Multicast is the efficient technique for delivering data to the particular group of cellular network. In this project multicast delivery the data to nodes which request same file in the nearby time. The overall concept face the problem of NP-hard. Two effective algorithms are implemented to overcome the NP-hard problem. That is performance guarantees and heuristic algorithm. These both algorithm executed to reduce the cache miss and unicast transmission (i.e.) improve the opportunity of cache hit with multicast transmission. The improvement over conventional caching schemes are 19% with the sharpness of content access pattern. Overall, the project can be seen as an attempt to combine caching and multicast in a methodical way as a means of improving energy efficiency in 5G wireless networks.

Future work of the project is to investigate more about the delay tolerance of the network. Then try to improve the energy efficiency of the network. And also the goals for future work include further research on cache management and multicasting methods, as well as evaluating them on new, larger datasets of content request patterns.

REFERENCES

- [1] P. Ostovari, A. Kherishah, and J. Wu, "Cache Content Placement Using Triangular Network Coding," in IEEE, pp. 1375–1380, Apr. 2013.
- [2] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, "Multicast-aware caching for small-cell networks," in IEEE, pp. 2300–2305, Apr. 2014.
- [3] M. Dehghan, "On the complexity of optimal routing and content caching in heterogeneous networks," in IEEE, pp. 936–944, Apr. 2015.
- [4] Neelam Yadav, Rajeev Paulus, A.K Jaiswal and Aditi Agrawal, "Analysis the Services of Multicast and Broadcast in Heterogeneous Network using QualNet6.1" in International Journal of Computer Applications, Vol.121, issue-6, pp:0975 – 8887, July 2015.
- [5] B.Palguna kumar and B.Purushotham, "Efficient resource allocation for wireless multicast in Heterogeneous Network," in International Journal of Advanced Research in Computer Science and Software Engineering, Vol.2, Issue-4, pp-387–400, Apr.2012.

- [6] Bo Zhou, Ying Cui and Meixia Tao, "Stochastic Content-Centric Multicast Scheduling for Cache-Enabled Heterogeneous Cellular Networks", IEEE Transactions on Wireless Communications, Vol. 15, Issue- 9 pp- 6284 – 6297 ,2016.
- [7] Sheng Zhou, Jie Gong, Zhenyu Zhou, Wei Chen and Zhisheng Niu, "GreenDelivery: Proactive Content Caching and Push with Energy Harvesting-based Small Cells", IEEE Communications Magazine, Vol.53, Issue: 4, pp-142 – 149, 2015.
- [8] Georgios Paschos, Ejder Bastug, Ingmar Land, Merouane Debbah and Giuseppe Caire, "Wireless Caching: Technical Misconceptions and Business Barriers", in IEEE, Vol.54, Issue-8, pp-16–22, 2016.
- [9] N.Chi, K.Guan, D.C.Kilper, and G.Atkinson, "In-network caching effect on optimal energy consumption in content-centric networking," in Proc. IEEE Int. Conf. Commun., Jun. 2012, pp. 2889–2894.
- [10] A. Hayrapetyan, D. Kempe, M. P'al, and Z. Svitkina, "Unbalanced graph cuts," in Proc. Eur. Symp. Algorithms (ESA), Oct. 2005, pp. 191–202.
- [11] C.Jasmin Selvi, G.Sathish Kumar, "An Adaptive Double-Quality-Guaranteed (DQG) Scheme based Quality of Service (QOS) in Heterogeneous Cloud Environment", International Journal of Computer Sciences and Engineering, Vol.4, Issue.4, pp.258-265, 2016.
- [12] D.Bertsimas and J.N.Tsitsiklis, *Introduction to Linear Optimization*. Belmont, MA, USA: Athena Scientific, 1997.
- [13] Y. Sun et al., "Trace-driven analysis of ICN caching algorithms on video-on-demand workloads," in Proc. ACM Int. Conf. Emerging Netw. Exp. Technol. (CoNEXT), Dec. 2014, pp. 363–376.
- [14] F. Pantisano, M. Bennis, W. Saad, and M. Debbah, "In-network Caching and Content Placement in Cooperative Small Cell Networks," in Proc. Int. Conf. 5G Ubiqu. Connect. (5GU), Nov. 2014, pp. 128–133.
- [15] K. Hamidouche, W. Saad, and M. Debbah, "Many-to-Many Matching Games for Proactive Social-Caching in Wireless Small Cell Networks," in Proc. Int. Symp. Model. Optim. Mobile Ad Hoc Wireless Netw. (WiOpt), May 2014, pp. 569–574.
- [16] H.K. Dandage, V.S. Gaikwad, "Device-to-Device Communication in Wireless Network using mmWave within Small Cells and Exploiting Spatial Reuse", International Journal of Computer Sciences and Engineering, Vol.5, Issue.1, pp.75-79, 2017.
- [17] P. Ostovari, A. Khreichah, and J. Wu, "Cache Content Placement Using Triangular Network Coding," in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2013, pp. 1375–1380.
- [18] A. Kumar and W. Saad, "On the Tradeoff between Energy Harvesting and Caching in Wireless Networks," in Proc. IEEE Int. Conf. Commun. Workshop (ICCW), Jun. 2015, pp. 1976–1981.
- [19] M. Erol-Kantarci, "Content Caching in Small Cells with Optimized Uplink and Caching Power," in Proc. IEEE Wireless Commun. Netw. Conf. (WCNC), Mar. 2015, pp. 2173–2178.