

 © 2017, IJCSE All Rights Reserved 56

International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-5, Issue-7 E-ISSN: 2347-2693

Efficient Simulation of SoC based on Design Checkpointing for Efficient

Debugging

Nikhil K.M
1*

, Veena M.B
2

1*

Dept. of ECE, BMS College of Engineering, Visveswaraya Technological University, Bengaluru, India
2
 Dept. of ECE, BMS College of Engineering, Visveswaraya Technological University, Bengaluru, India

*Corresponding Author: nikhil.km2@gmail.com, Tel.: +91 9141698810

Available online at: www.ijcseonline.org

Received: 27/May/2017, Revised: 13/Jun/2017, Accepted: 26/Jul/2017, Published: 30/Jul/2017

Abstract— As the complexity of SoC design increases, functional verification of full chip takes more time and to verify the

complete functionality of the design, many test cases need to be run. Here the simulation of DUT (Design-under-Test) is an

important step to perform functional verification, which may require hours or days together for simulation. This can

significantly impact on overall development time and time-to-market. The ability to restore regressions from a previously saved

state can reduce considerably the development and debug cycle, thereby enhancing the productivity. This paper details a tool

based checkpoint methodology for efficient simulation of Industrial SoC designs. This simulation checkpoint technique can

greatly impact on reducing the development and debug cycle. Instead of saving the entire simulation state, only essential state

of the simulation can be saved and the regressions are restored from that saved point in more dynamic way. It also describes

how to avoid initial setup phase (RESET Phase) which is common for all test cases. These Checkpoint-restore techniques have

been implemented to speed-up simulation of register-transfer level models and its effect on applying it to industrial SOC

designs. In this Proposed work the experimental results on Industrial designs reveals that reset step which consumes

approximately 17 hrs. can be restored in 43 minutes, saving almost 16 hrs. of simulation time for each of the testcases.

Keywords— Checkpointing, Save/restore, simulation based functional verification.

I. INTRODUCTION

Companies designing and developing multiprocessor SoCs

(MPSoCs) are progressively demanding verification team to

upsurge the productivity by shortening development and

debug cycles. Here the simulation speed is of excessive

importance for complex MPSoCs platforms and hence, an

augmented demand for simulation performance is

anticipated. The accumulative complexity of System-on-Chip

(SoC) designs, inspired by Moore’s law on a single chip,

faces novel challenges in the development and debug cycles.

Under high time-to-market burden, to shorten product

development cycle, system-level sculpting and simulation

has turn out to be a essential part of the design method.

Efficient system-level simulation of multi-core architectures

is a challenging problem as it requires fast and at the same

time truthful performance. Therefore, the core challenge is to

accomplish system level simulations fast and accurately at

the same phase. The Design checkpointing technique offers

an opportunity to reduce the number of simulation runs by

loading the state of the simulation to a file. Then this

checkpoint image is used to restart the simulation in the

equivalent state at a later point of time.

Figure 1. Typical Design Flow from specification to RTL description

Simulation-based functional verification is characterized by

two inherently contradictory targets: the signal visibility and

the simulation performance [3]. Fig. 1 illustrates a typical

design methodology for SoCs. Starting with the intent of

design, the SoC architect decides the specification for SoC

using human language and it is transcribed into a Register

Transfer Level (RTL) description using any Hardware

Description Languages (HDL) such as Verilog, VHDL. This

 International Journal of Computer Sciences and Engineering Vol.5(7), Jul 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 57

transformation process involves use of IPs from third parties

or from older projects.

Here in order to ensure the correctness of the design, each

step needs to be verified and any disparity in the between

two consecutive steps is known as a design error or a bug.

Implementation procedure is the important step in this

process where bugs are introduced due to misinterpretation;

such bugs can be eliminated with the assistance of more

reliable vendor tools [1]. Design errors introduced to the

specification and the captured design are identified as

functional bugs which results in malfunctioning of the chip.

Hence functional verification is implemented for identifying

and fixing functional bugs so that the captured design meets

the design intent [2].

The waveform generation time can be in days for handling

the bigger designs. To manage it waveforms are generated

for limited simulation time and limited hierarchies. This

increases the time and effort in root causing the bug. In

addition to that tools will crash occasionally and disk space

will run out at critical times to augment to difficulty.

A simple issue can cost heavily and the time it takes to root

cause bug can become unknown. Since the eventual goal of

verification is to find bugs in the most efficient way and

hence the amount of time spent on functional verification is

key in overall cost equation.

A. The Cost of Verification

Verification of given design is an unavoidable evil which

takes long time and costs more. Verification will not directly

generate the revenue; the design being verified and taped out

chip eventually makes money, not the verification. In order

to market product and create revenues the design must be

functionally correct without any bugs and must benefits the

customer necessitates.

Figure 2. Type I & II mistakes in typical SOC Verification Process

Usually verification engineers encounter two types of errors

in functional verification process: Type I and Type II

mistakes shown in Fig. 2. Type I mistakes are called false

negatives which are the easy to detect. When the

misinterpretation is recognized, the implementation of the

design is altered to mask those mistakes and the mistake no

longer occurs. Type II mistakes are called false positives are

the most critical ones. In such situation a corrupt design will

be shipped accidentally, with all the potential penalties to the

company.

B. Time-to-Market Trends

During the development of complex SoC designs for any

applications such as military, industrial, and consumer grade

electronic devices, it demands intense reductions in the time-

to-market. In order to meet time to market trends, design

cycles are shrinking for all type of applications. The complex

SoC development technology and market challenges are

greatly influenced by new verification methodologies and

tools. A verification task consumes major percent of the total

development work. Hence these verification deeds have to be

done more efficiently in order to meet overall market

challenges.

Rest of the paper is organized as follows, Section I contains

the introduction of checkpointing and simulation, Section II

contain the related work of Checkpointing, Section III

contain the implementation details of checkpointing in

simulation and Section V concludes research work.

II. RELATED WORK

Software based checkpointing is an extensively used method

to create snapshots during a simulation [5]. Commercially

available simulators have implemented Software based

checkpointing and it has a consistent interface within the

Verilog language via built-in methods (e.g., $save, $restart)

[6]. The way of implementation of this type of checkpointing

mechanism in each of the commercially available simulators

from synopsis, cadence and Mentor graphics fluctuates in

terms of disk space necessities and the stored information. If

any simulation follows same characteristics for several hours

of simulation then the saved image up to common phase can

be shared across all tetscases which takes longer duration for

the simulation. For System Level verification it takes more

than a day for simulator for model bring up in RTL and then

need to start various testing scenarios for DUT. This

initialization phase can be saved to disk and simulation can

be resumed directly from saved state. Typically, once a bug

is exposed after hours or days of simulation, the simulation

need to be repeated for hours or days to verify the bug fix

which can be avoided by this checkpointing technique.

Simulation Checkpointing is a process by which simulator

stores the state of the simulated system to disk and later it is

restored from the saved checkpoint into the simulator as

shown in fig. 3, which results in exact simulated state.

 International Journal of Computer Sciences and Engineering Vol.5(7), Jul 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 58

Figure 3. The checkpoint-restore mechanism for various testcases.

simulation at any point and resume it later. This

checkpointing method is used to decrease the functional-

verification effort of SoC Designs. A fresh simulation can be

resumed from the saved state thus effectively speeding up the

SoC verification. Here the state of simulation can be saved at

any simulation time stamp and restored in order to skip hours

or days of simulation and authenticate a bug fix. This allows

speedy verification of bug fixes and enables longer

simulations by replaying previously validated code.

Furthermore, the file generated from the checkpointing

technique requires a significant amount of disk space.

Checkpoints are generated during the long runs can exceed

available disk space for the projects.

The most significant usage of the Checkpointing - Restore

feature in SoC simulations are:

 Time saving - If a simulation runs for longer

duration and fails at final stage, in this case the user

need not to re-run the same simulation in order to

reach a failed state, but it can be re-loaded from

previously saved state by using checkpointing

technique.

 Simulation transfer - one can transfer a checkpoint

image to anyone in order to make use in his/her

simulation.

III. METHODOLOGY

In Checkpointing, we need to determine the correct place in

our design which can be used as the end of the common

setup phase. This varies depending on the style of the design.

It could be based on a fixed simulation time, or a fixed

location in the testbench, or it could be dynamic and

programmed based on the activity in the design.

We have implemented checkpointing of our design in two

ways.

1. Based on number of clock cycles.

2. Based on Events in Test environment.

In checkpointing based on number of clock cycles we can

checkpoint our design based on user specified number of

clock cycles at run time, which can be implemented using

+plusargs support. This method provides the fault tolerance

for regressions and useful when the user have no idea about

where the program will pop out an error and stop simulation

at any point of time.

 Here we have include options of removing the stale

checkpoints in order to address the disk space requirements,

so that we can retain only user specified number of

checkpoints before the failure.

Figure 4. Periodic checkpointing based on specified number of clock cycles

Fig. 4 illustrates periodic checkpoint generation; this shows

how efficiently we can use cycle based checkpointing to fix a

bug that has occurred in functional verification. One can

specify the number of checkpoints that has to be retained

prior to the current simulation time stamp, this will help in

restoring our simulation from that point where the bug has

occurred when the test fails. When the user encounters the

Bug-1 at some point of time regression halts then the user

can resume the regression from check point 2 after fixing the

issue. This method will be very useful when the regressions

take more time to complete. For example if a regression

takes 48 hours to complete but if it is failed at 47th hour.

Then this checkpoint mechanism can save lot of time in SoC

development cycle. But this will add overhead for simulation

time as many checkpoints are created and deleted in the

corresponding regressions. And this will not add more

overhead to disk space as old checkpoints will be deleted as

3 the new checkpoints are created. But cycle based

simulation checkpoint will be slow when compared to usual

runs and it mainly depends on the specified time interval in

command line. Creation of checkpoint is invoked with the

help of Verilog task whenever it has to be done in simulation

environment. Fig. 5 shows the pseudocode for this method.

 International Journal of Computer Sciences and Engineering Vol.5(7), Jul 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 59

Figure 5. Pseudocode for cycle based checkpointing

In Event based checkpointing we can checkpoint our design

before the start of User defined phases of UVM if that

regression has path cleared the same. And we can play

around different sequences for our test environment. This

adds to productivity by avoiding the redundant runs for every

test. The methodology works once the user has identified a

set of common simulation steps for a set of regressions tests.

And we can checkpoint our design based on several verilog

events and various phases of UVM whose algorithmic flow

is illustrated in figure 6.

Fgure 6. Algorithm flow for Event based checkpointing

In this method a Perl script is used to process the command

line options and it intimates about the check pointing

information to the system verilog interface file. If the

specified events have registered in factory database, then

interface file will be aware about the occurrence of events

and waits for the phase or events to finish. When the

specified phase or event has been ended check pointing

functions will be called through DPI support. During restore

operations restart script will be called, which contains all the

information to restart the simulation from saved point.

Figure 7. Efficient usage of Phase based and cycle based check pointing.

Checkpoints can be created even during restore runs as

illustrated in fig. 7 and in the restore flow it is possible to

enable the signal dump for all signals. During the restore

flow, the sequence executed at a particular phase can be

changed this will add more robustness to this methodology

which is shown in figure 8.

Figure 8. Pseudo code for verifying the DUT for different stimulus using

checkpointing advantage

 International Journal of Computer Sciences and Engineering Vol.5(7), Jul 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 60

Users can also checkpoint and restore the design state on

different machines. The users should ensure that the machine

where design state is being checkpointed and the machine

where design state is restored should have similar OS

specifications. Different OS systems may have different

memory mappings for low level system libraries and can

cause issues during state restore.

IV. RESULTS AND DISCUSSION

The proposed methodology has been successfully

implemented and tested on Industrial designs for various

testcases. We have observed remarkable speedup in

simulation. With the design scenarios where initial setup

phase time has a higher percentage of overall time, the

amount of throughput will be higher. It provides a valued

impact to the verification engineer’s productivity by

shortening their typical development - debug cycle.

The RTL simulation of large SoC designs with a Verilog

HDL simulator, the initial setup phase alone consumes 17

hrs. which can be restored in less than one hour using this

checkpointing technique. Now one can play around with

different stimulus to verify the complete functionality of

DUT.

V. CONCLUSION

This method offers an effective method for the simulation of

complex SoC designs based on checkpointing to speed-up

the simulation process and to increase the debugging

productivity with a small overhead for the first regression.

The verification engineers can easily integrate this method

into their existing verification environment with very less

modification in the testbench code. The signal visibility can

be achieved without sacrificing simulation speed.

Therefore, the SOC design verification which needs much

lengthier simulation cycles can be overcome by this proposed

approach, which results in a very good overall improvement

in the verification productivity. In this proposed work the

experimental results on industrial designs have shown more

than 20x simulation speed-up when compared to a

conservative simulation method.

In this method if the check pointed models are changed (e.g.,

signals added or removed) limits the reuse of saved state and

sometimes and it is reused only in limited conditions. This

significantly decreases its effectiveness while debugging.

Also tool supported checkpoint mechanism suffers from lack

of flexibility in using it.

REFERENCES

[1] Kyuho Shim, Youngrae Cho, Namdo Kim, Hyuncheol Baik,

Kyungkuk Kim, Dusung Kim, Jaebum Kim, Byeongun Min,

Kyumyung Choi, Maciej Ciesielski, Seiyang Yang, “A Fast Two-

pass HDL Simulation with On-Demand Dump”, in Design

Automation Conference, 2008 (ASPDAC 2008) Asia and South

Pacific, 21-24 March 2008.

[2] K. Arya, R. Garg, A. Y. Polyakov, and G. Cooperman, “Design and
implementation for checkpointing of distributed resources using

process level virtualization”, in IEEE Int. Conf. on Cluster Computing

(Cluster16). IEEE Press, 2016.

[3] M. Monton, J. Engblom, C. Schrder, J. Carrabina, and M.Burton,

“Checkpoint and Restore for SystemC Models” in Advances in

Design Methods from Modeling Languages for Embedded

Systems and SoCs. Springer, 2010.

[4] Bogdan- Andrei Tabacaru, Moomen Chaari, Wolfgang Ecker,

Thomas Kruse, and Cristiano Novello “Efficient Checkpointing-

Based SafetyVerification Flow Using Compiled-Code Simulation”,

Euromicro Conference on Digital System Design, 2016.

[5] B.A. Tabacaru, M. Chaari, W. Ecker, T. Kruse, and C. Novello,

“Comparison of Different Fault-Injection Methods into TLM

Models”, Resiliency in Embedded Electronic Systems (REES), 1st

International ESWEEK Workshop on, pp. 16, 2015.

Authors Profile

Mr.Nikhil K.M pursed B.E in Electronics and
Communication from JNNCE, Shivamogga
affiliated to VTU Belagavi. He is currently
pursuing M.Tech in Electronics under Department
of Electronics, BMSCE, Bangalore. His area
interests include VLSI, Embedded systems, SoC
deign and verifiction.

Dr. Veena M.B pursed B.E. & M.E., degree in
Electronics & communication Engineering from
University of Mysore, & university of Bangalore
respectively, and Ph.D. degree in Electrical and
Electronics engineering from V.T.U, Karnataka,
India. Presently working as Associate professor in
the Department of Electronics & communication
Engineering, BMSCE, Bangalore. Her current
research interests include VLSI, Wireless communication,
Embedded systems, Signal & Image Processing. She is a Fellow
member of Institution of Engineers (India) and is a Life Member of
the Indian Society for Technical Education (ISTE).

