4
AX]CSE International Journal of Computer Sciences and Engineering [pen Access

Research Paper Volume-5, Issue-7 E-ISSN: 2347-2693

Efficient Simulation of SoC based on Design Checkpointing for Efficient
Debugging

Nikhil K.M*", Veena M.B?

YDept. of ECE, BMS College of Engineering, Visveswaraya Technological University, Bengaluru, India
? Dept. of ECE, BMS College of Engineering, Visveswaraya Technological University, Bengaluru, India

“Corresponding Author: nikhil.km2@gmail.com, Tel.: +91 9141698810
Available online at: www.ijcseonline.org

Received: 27/May/2017, Revised: 13/Jun/2017, Accepted: 26/Jul/2017, Published: 30/Jul/2017

Abstract— As the complexity of SoC design increases, functional verification of full chip takes more time and to verify the
complete functionality of the design, many test cases need to be run. Here the simulation of DUT (Design-under-Test) is an
important step to perform functional verification, which may require hours or days together for simulation. This can
significantly impact on overall development time and time-to-market. The ability to restore regressions from a previously saved
state can reduce considerably the development and debug cycle, thereby enhancing the productivity. This paper details a tool
based checkpoint methodology for efficient simulation of Industrial SoC designs. This simulation checkpoint technique can
greatly impact on reducing the development and debug cycle. Instead of saving the entire simulation state, only essential state
of the simulation can be saved and the regressions are restored from that saved point in more dynamic way. It also describes
how to avoid initial setup phase (RESET Phase) which is common for all test cases. These Checkpoint-restore techniques have
been implemented to speed-up simulation of register-transfer level models and its effect on applying it to industrial SOC
designs. In this Proposed work the experimental results on Industrial designs reveals that reset step which consumes
approximately 17 hrs. can be restored in 43 minutes, saving almost 16 hrs. of simulation time for each of the testcases.

Keywords— Checkpointing, Save/restore, simulation based functional verification.

. INTRODUCTION
Functional Verification

Companies designing and developing multiprocessor SoCs e
(MPSoCs) are progressively demanding verification team to

upsurge the productivity by shortening development and

debug cycles. Here the simulation speed is of excessive

importance for complex MPSoCs platforms and hence, an Design Design
augmented demand for simulation performance is Intent) specification)
anticipated. The accumulative complexity of System-on-Chip é‘g
(SoC) designs, inspired by Moore’s law on a single chip,
faces novel challenges in the development and debug cycles.
Under high time-to-market burden, to shorten product
development cycle, system-level sculpting and simulation
has turn out to be a essential part of the design method.

Captured
Design

Bugs introduced Bugs introduced

in in
Specification RTL coding

Efficient system-level simulation of multi-core architectures
is a challenging problem as it requires fast and at the same
time truthful performance. Therefore, the core challenge is to
accomplish system level simulations fast and accurately at
the same phase. The Design checkpointing technique offers
an opportunity to reduce the number of simulation runs by
loading the state of the simulation to a file. Then this
checkpoint image is used to restart the simulation in the
equivalent state at a later point of time.

© 2017, IJCSE All Rights Reserved

Figure 1. Typical Design Flow from specification to RTL description

Simulation-based functional verification is characterized by
two inherently contradictory targets: the signal visibility and
the simulation performance [3]. Fig. 1 illustrates a typical
design methodology for SoCs. Starting with the intent of
design, the SoC architect decides the specification for SoC
using human language and it is transcribed into a Register
Transfer Level (RTL) description using any Hardware
Description Languages (HDL) such as Verilog, VHDL. This

56

International Journal of Computer Sciences and Engineering

transformation process involves use of IPs from third parties
or from older projects.

Here in order to ensure the correctness of the design, each
step needs to be verified and any disparity in the between
two consecutive steps is known as a design error or a bug.
Implementation procedure is the important step in this
process where bugs are introduced due to misinterpretation;
such bugs can be eliminated with the assistance of more
reliable vendor tools [1]. Design errors introduced to the
specification and the captured design are identified as
functional bugs which results in malfunctioning of the chip.
Hence functional verification is implemented for identifying
and fixing functional bugs so that the captured design meets
the design intent [2].

The waveform generation time can be in days for handling
the bigger designs. To manage it waveforms are generated
for limited simulation time and limited hierarchies. This
increases the time and effort in root causing the bug. In
addition to that tools will crash occasionally and disk space
will run out at critical times to augment to difficulty.

A simple issue can cost heavily and the time it takes to root
cause bug can become unknown. Since the eventual goal of
verification is to find bugs in the most efficient way and
hence the amount of time spent on functional verification is
key in overall cost equation.

A. The Cost of Verification

Verification of given design is an unavoidable evil which
takes long time and costs more. Verification will not directly
generate the revenue; the design being verified and taped out
chip eventually makes money, not the verification. In order
to market product and create revenues the design must be
functionally correct without any bugs and must benefits the
customer necessitates.

FAIL PASS

Type 1l

(False Positive)

Bad Design

Type |l

Good Design (False Negative)

Figure 2. Type | & Il mistakes in typical SOC Verification Process

Usually verification engineers encounter two types of errors
in functional verification process: Type | and Type Il
mistakes shown in Fig. 2. Type | mistakes are called false

© 2017, IJCSE All Rights Reserved

Vol.5(7), Jul 2017, E-ISSN: 2347-2693

negatives which are the easy to detect. When the
misinterpretation is recognized, the implementation of the
design is altered to mask those mistakes and the mistake no
longer occurs. Type Il mistakes are called false positives are
the most critical ones. In such situation a corrupt design will
be shipped accidentally, with all the potential penalties to the
company.

B. Time-to-Market Trends

During the development of complex SoC designs for any
applications such as military, industrial, and consumer grade
electronic devices, it demands intense reductions in the time-
to-market. In order to meet time to market trends, design
cycles are shrinking for all type of applications. The complex
SoC development technology and market challenges are
greatly influenced by new verification methodologies and
tools. A verification task consumes major percent of the total
development work. Hence these verification deeds have to be
done more efficiently in order to meet overall market
challenges.

Rest of the paper is organized as follows, Section | contains
the introduction of checkpointing and simulation, Section 11
contain the related work of Checkpointing, Section Il
contain the implementation details of checkpointing in
simulation and Section V concludes research work.

Il. RELATED WORK

Software based checkpointing is an extensively used method
to create snapshots during a simulation [5]. Commercially
available simulators have implemented Software based
checkpointing and it has a consistent interface within the
Verilog language via built-in methods (e.g., $save, $restart)
[6]. The way of implementation of this type of checkpointing
mechanism in each of the commercially available simulators
from synopsis, cadence and Mentor graphics fluctuates in
terms of disk space necessities and the stored information. If
any simulation follows same characteristics for several hours
of simulation then the saved image up to common phase can
be shared across all tetscases which takes longer duration for
the simulation. For System Level verification it takes more
than a day for simulator for model bring up in RTL and then
need to start various testing scenarios for DUT. This
initialization phase can be saved to disk and simulation can
be resumed directly from saved state. Typically, once a bug
is exposed after hours or days of simulation, the simulation
need to be repeated for hours or days to verify the bug fix
which can be avoided by this checkpointing technique.

Simulation Checkpointing is a process by which simulator
stores the state of the simulated system to disk and later it is
restored from the saved checkpoint into the simulator as
shown in fig. 3, which results in exact simulated state.

57

International Journal of Computer Sciences and Engineering

Reference) Tsim

Start Check point1l «...-. Check point N Stop

1011.... 1101....

sy Tsim

Test case 1
Start
Stop

Reduced Simulation time

) Tsim

Testcase N

St? rt Stop

Reduced Simulation time

Figure 3. The checkpoint-restore mechanism for various testcases.

simulation at any point and resume it later. This
checkpointing method is used to decrease the functional-
verification effort of SoC Designs. A fresh simulation can be
resumed from the saved state thus effectively speeding up the
SoC verification. Here the state of simulation can be saved at
any simulation time stamp and restored in order to skip hours
or days of simulation and authenticate a bug fix. This allows
speedy verification of bug fixes and enables longer
simulations by replaying previously validated code.
Furthermore, the file generated from the checkpointing
technique requires a significant amount of disk space.
Checkpoints are generated during the long runs can exceed
available disk space for the projects.

The most significant usage of the Checkpointing - Restore
feature in SoC simulations are:

e Time saving - If a simulation runs for longer
duration and fails at final stage, in this case the user
need not to re-run the same simulation in order to
reach a failed state, but it can be re-loaded from
previously saved state by using checkpointing
technique.

e Simulation transfer - one can transfer a checkpoint
image to anyone in order to make use in his/her
simulation.

Il. METHODOLOGY

In Checkpointing, we need to determine the correct place in
our design which can be used as the end of the common
setup phase. This varies depending on the style of the design.
It could be based on a fixed simulation time, or a fixed
location in the testbench, or it could be dynamic and
programmed based on the activity in the design.

We have implemented checkpointing of our design in two
ways.

© 2017, IJCSE All Rights Reserved

Vol.5(7), Jul 2017, E-ISSN: 2347-2693

1. Based on number of clock cycles.
2. Based on Events in Test environment.

In checkpointing based on number of clock cycles we can
checkpoint our design based on user specified number of
clock cycles at run time, which can be implemented using
+plusargs support. This method provides the fault tolerance
for regressions and useful when the user have no idea about
where the program will pop out an error and stop simulation
at any point of time.

Here we have include options of removing the stale
checkpoints in order to address the disk space requirements,
so that we can retain only user specified number of
checkpoints before the failure.

Any Test case Bug-1 Bug N

—% —%
mroms ot o

S = (]

_ Tum
. Checkpolot i1

Start Stop

Reduced Simulation time for Bug -1
L J
T

Reduced Simulation time for Bug -N

Figure 4. Periodic checkpointing based on specified number of clock cycles

Fig. 4 illustrates periodic checkpoint generation; this shows
how efficiently we can use cycle based checkpointing to fix a
bug that has occurred in functional verification. One can
specify the number of checkpoints that has to be retained
prior to the current simulation time stamp, this will help in
restoring our simulation from that point where the bug has
occurred when the test fails. When the user encounters the
Bug-1 at some point of time regression halts then the user
can resume the regression from check point 2 after fixing the
issue. This method will be very useful when the regressions
take more time to complete. For example if a regression
takes 48 hours to complete but if it is failed at 47th hour.
Then this checkpoint mechanism can save lot of time in SoC
development cycle. But this will add overhead for simulation
time as many checkpoints are created and deleted in the
corresponding regressions. And this will not add more
overhead to disk space as old checkpoints will be deleted as
3 the new checkpoints are created. But cycle based
simulation checkpoint will be slow when compared to usual
runs and it mainly depends on the specified time interval in
command line. Creation of checkpoint is invoked with the
help of Verilog task whenever it has to be done in simulation
environment. Fig. 5 shows the pseudocode for this method.

58

International Journal of Computer Sciences and Engineering

initial

begin

if ($value$plusargs ("SAVE_ENABLE=%d",
chk))

$display ("+#++ SAVE ENABLED ##+x");

if ($valuesplusargs ("SAVE_INTERVAL=%4d",
save_interval))

$display ("Specified Interval for SAVE is
%d ns ", save_interval);

end

// checkpoint every specified time units
always

begin

// waits for the user specified interval
#save_interval

// save some old restarts

$system("mv —f save.chk save.chk.1l");

// Call Verilog sysytem task for save the
state of simulation

$save ("save.chk");

$display (Stime, "Finished SAVING....");
end

Figure 5. Pseudocode for cycle based checkpointing

In Event based checkpointing we can checkpoint our design
before the start of User defined phases of UVM if that
regression has path cleared the same. And we can play
around different sequences for our test environment. This
adds to productivity by avoiding the redundant runs for every
test. The methodology works once the user has identified a
set of common simulation steps for a set of regressions tests.
And we can checkpoint our design based on several verilog
events and various phases of UVM whose algorithmic flow
is illustrated in figure 6.

Process the command line options
and get the list of events

l

Fork the events for detection

|

Is Event is NO
—_—
registered?

l YES

Wait for the Event to end

|

Call DPI for checkpoint creation
after the end of event

Ignore the Event
and check for
another event

Fgure 6. Algorithm flow for Event based checkpointing

© 2017, IJCSE All Rights Reserved

Vol.5(7), Jul 2017, E-ISSN: 2347-2693

In this method a Perl script is used to process the command
line options and it intimates about the check pointing
information to the system verilog interface file. If the
specified events have registered in factory database, then
interface file will be aware about the occurrence of events
and waits for the phase or events to finish. When the
specified phase or event has been ended check pointing
functions will be called through DPI support. During restore
operations restart script will be called, which contains all the
information to restart the simulation from saved point.

Restore
Start Stop
[e ——— — T:im
L]| J

I I

= Cydle based checkpointing can be used here

Reduced Simulation time

Figure 7. Efficient usage of Phase based and cycle based check pointing.

Checkpoints can be created even during restore runs as
illustrated in fig. 7 and in the restore flow it is possible to
enable the signal dump for all signals. During the restore
flow, the sequence executed at a particular phase can be

changed this will add more robustness to this methodology
which is shown in figure 8.

my_test_init_seqg init_seq;
my_base_test_seq test_seq;

initial

begin

uvm_report info(get_full name (),
$sformatf (Restored simulation with

test_seg = %s, seg name));
if ($testSplusargs(seg=))
begin

($value$plusargs (seq=%s, seq_name))
test_seg = my base_test_seq::type_id::
create (seq_name);

test seq.start (seq name);

end

end

if ($value$plusargs (TESTNAME=%s, name))
run_test (name) ;

else begin

uvm_report_info (get_full name (), No test
name specified. Running default test
mytest);

run_test (mytest);

and

//compilation
ves —sverilog uvm +incdir+../sv
file name.sv —debug

//simulate to common state
./simv +UVM_TESTNAME=test_casel -ucli -i
save.chk

//simulate different stimulus

./simv +seg=init seqg -ucli -i save.chk

Figure 8. Pseudo code for verifying the DUT for different stimulus using
checkpointing advantage

59

International Journal of Computer Sciences and Engineering

Users can also checkpoint and restore the design state on
different machines. The users should ensure that the machine
where design state is being checkpointed and the machine
where design state is restored should have similar OS
specifications. Different OS systems may have different
memory mappings for low level system libraries and can
cause issues during state restore.

IV. RESULTS AND DISCUSSION

The proposed methodology has been successfully
implemented and tested on Industrial designs for various
testcases. We have observed remarkable speedup in
simulation. With the design scenarios where initial setup
phase time has a higher percentage of overall time, the
amount of throughput will be higher. It provides a valued
impact to the verification engineer’s productivity by
shortening their typical development - debug cycle.

The RTL simulation of large SoC designs with a Verilog
HDL simulator, the initial setup phase alone consumes 17
hrs. which can be restored in less than one hour using this
checkpointing technique. Now one can play around with
different stimulus to verify the complete functionality of
DUT.

V. CONCLUSION

This method offers an effective method for the simulation of
complex SoC designs based on checkpointing to speed-up
the simulation process and to increase the debugging
productivity with a small overhead for the first regression.
The verification engineers can easily integrate this method
into their existing verification environment with very less
modification in the testbench code. The signal visibility can
be achieved without sacrificing simulation speed.

Therefore, the SOC design verification which needs much
lengthier simulation cycles can be overcome by this proposed
approach, which results in a very good overall improvement
in the verification productivity. In this proposed work the
experimental results on industrial designs have shown more
than 20x simulation speed-up when compared to a
conservative simulation method.

In this method if the check pointed models are changed (e.g.,
signals added or removed) limits the reuse of saved state and
sometimes and it is reused only in limited conditions. This
significantly decreases its effectiveness while debugging.
Also tool supported checkpoint mechanism suffers from lack
of flexibility in using it.

© 2017, IJCSE All Rights Reserved

Vol.5(7), Jul 2017, E-ISSN: 2347-2693

REFERENCES

[1] Kyuho Shim, Youngrae Cho, Namdo Kim, Hyuncheol Baik,
Kyungkuk Kim, Dusung Kim, Jaebum Kim, Byeongun Min,
Kyumyung Choi, Maciej Ciesielski, Seiyang Yang, “A Fast Two-
pass HDL Simulation with On-Demand Dump”, in Design
Automation Conference, 2008 (ASPDAC 2008) Asia and South
Pacific, 21-24 March 2008.

[2] K. Arya, R. Garg, A. Y. Polyakov, and G. Cooperman, “Design and
implementation for checkpointing of distributed resources using
process level virtualization”, in IEEE Int. Conf. on Cluster Computing
(Cluster16). IEEE Press, 2016.

[3] M. Monton, J. Engblom, C. Schrder, J. Carrabina, and M.Burton,
“Checkpoint and Restore for SystemC Models” in Advances in
Design Methods from Modeling Languages for Embedded
Systems and SoCs. Springer, 2010.

[4] Bogdan- Andrei Tabacaru, Moomen Chaari, Wolfgang Ecker,
Thomas Kruse, and Cristiano Novello “Efficient Checkpointing-
Based SafetyVerification Flow Using Compiled-Code Simulation”,
Euromicro Conference on Digital System Design, 2016.

[5] B.A. Tabacaru, M. Chaari, W. Ecker, T. Kruse, and C. Novello,
“Comparison of Different Fault-Injection Methods into TLM
Models”, Resiliency in Embedded Electronic Systems (REES), 1st
International ESWEEK Workshop on, pp. 16, 2015.

Authors Profile

Mr.Nikhil K.M pursed B.E in Electronics and
Communication from JNNCE, Shivamogga
affiliated to VTU Belagavi. He is currently
pursuing M.Tech in Electronics under Department
of Electronics, BMSCE, Bangalore. His area
interests include VLSI, Embedded systems, SoC
deign and verifiction.

Dr. Veena M.B pursed B.E. & M.E., degree in
Electronics & communication Engineering from
University of Mysore, & university of Bangalore
respectively, and Ph.D. degree in Electrical and
Electronics engineering from V.T.U, Karnataka,
India. Presently working as Associate professor in
the Department of Electronics & communication
Engineering, BMSCE, Bangalore. Her current o ik ,
research interests include VLSI, Wireless communication,
Embedded systems, Signal & Image Processing. She is a Fellow
member of Institution of Engineers (India) and is a Life Member of
the Indian Society for Technical Education (ISTE).

60

