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Abstract — Reinforcement Learning (RL) is an active research area of machine learning research based on the mechanism of learning from
rewards. RL has been applied successfully to variety of tasks and works well for relatively small problems, but as the complexity grows,
standard RL methods become increasingly inefficient due to large state spaces. This paper surveys Hierarchical Reinforcement Learning (HRL)
as one of the alternative approaches to cope with issues regarding complex problems and increasing the efficiency of reinforcement learning.
HRL is the subfield of RL that deals with the discovery and/or exploitation of underlying structure of a complex problem and solving it using
reinforcement learning by breaking it up into smaller sub-problems. This paper gives an introduction to HRL, discusses its basic concepts,
different algorithms, approaches and related work regarding Hierarchical Reinforcement Learning. At last but not the least this paper briefly
gives variation between flat RL and HRL following its pros and cons. It concludes with research scope of HRL in complex problems.
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L. INTRODUCTION
Reinforcement Learning is a type of Machine Learning,
inspired by behaviorist psychology and one of the most
active research areas in Artificial Intelligence. It is a
computational approach to learning where an agent tries to
maximize the total amount of reward it receives when
interacting with a complex, uncertain environment. [1][2]
RL is successfully studied in many other disciplines such as
Game theory, Control theory, Operation research,
Robotics, Economics, Information theory, Simulation based
optimization, Statistics and Genetic algorithms.
Current line of research is to establish highly data efficient
and robust RL algorithms that are able to solve complex
problems. In such complex problems, Curse of
Dimensionality [3] refers to the exponential increase in the
state-space with each additional variable or dimension that
describes the problem. Due to the table structure of state
action pairs, with large state spaces, reinforcement learning
becomes increasingly inefficient, which presents a major
obstacle in successfully applying RL to complex domains.
Learning in environments with extremely large state spaces
is infeasible without some form of generalization.
A method for dealing with this is Hierarchical
Reinforcement Learning. It is an approach to reinforcement
learning which splits the global goals of a reinforcement
learning agent up into smaller subgoals, and then attempts
to tackle each subgoal separately. By doing this the state
space is decreased and therefore the efficiency increased.
Thus hierarchical reinforcement learning is mentioned as a
good way of increasing efficiency in reinforcement
learning.[2]

II. CONCEPTS RELATED TO HIERARCHICAL
REINFORCEMENT LEARNING

Complex problems cannot be described by only a few
variables, but fortunately the real world is highly structured
with many constraints and with most parts independent of
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most other parts. Without structure it would be impossible
to solve complex problems of any size [4]. Structure can
significantly reduce the naive state space generated by sheer
enumeration. Reinforcement learning is concerned with
problems represented by actions as well as states,
generalizing problem solving to systems that are dynamic in
time. Hence we often refer to reinforcement learning
problems as tasks, and sub-problems as sub-tasks [5].
Below are the concepts related to hierarchical
reinforcement learning.

e  Hierarchical Decomposition

Many large problems have hierarchical structure that allows
them to be broken down into sub problems. The sub
problems, being smaller are solved more easily. The
solutions to the sub problems are recombined to provide the
solution for original large problem. A heuristic from [6] for
problem solving is decomposing and recombining or divide
and conquer in today’s parlance.

Decomposition can make finding the final solution
significantly more efficient with improvements in the time
and space complexity for both learning and execution.
Many times similar tasks need to be executed in different
contexts. If reinforcement learner is unaware of underlying
structure, it would relearn the same task in multiple
different contexts, when it is clearly better to learn the task
once and reuse it. In [8] a hierarchical reinforcement
learning approach was used to create a program which
plays a board game called ‘The Settlers of Catan’, which is
a popular modern board game. It is a very complex board
game and therefore a flat reinforcement learning approach
would have been inefficient. In their approach they use
hierarchical reinforcement learning and model trees for
value function approximation. Both Q-learning and SARSA
are used as the conventional reinforcement learning
algorithms at different stages of the learning process.

¢ Semi Markov Decision Process (SMDP)
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In reinforcement learning environments, states are often
assumed to fulfill the Markov property. MDP is the
probabilistic model of a sequential decision problem, where
states can be perceived exactly, and the current state and
action selected determine a probability distribution on
future states. The model is Markov if the state transitions
are independent of any previous environment states or agent
actions. [2]

SMDP is a generalization of the Markov Decision Process
(MDP) where the times between transitions are allowed to
be random variables whose distribution may depend upon
the current state, the action taken, (possibly) the next state.
An SMDP can be seen as representing the system at
decision points, while MDP represents the system at all
times. Semi-Markov decision processes (SMDPs) serve as
theoretical basis for many hierarchical RL approaches
developed during the last decay. Hierarchical reinforcement
learning is a sample-based framework for solving SMDPs
that finds the “best” policy consistent with a given
hierarchy [8]. These algorithms enable agents to construct
hierarchical policies that allow using multi-step actions as
“subroutines.” HRL algorithms can be described using the
SMDP framework.

An SMDP is defined as a tuple M=(S, A, P, R). S is the set
of states, and A is the set of actions the agent may take at a
decision point. P is a transition probability function, where
P(s, Nls, a) denotes the probability that action a taken in
state s will cause a transition to state s in N time steps.
Rewards can accumulate over the entire duration of an
action. The reward function R(s, Nls, a) is the expected
reward received from selecting action a in state s and
transitioning to state s with a duration of N time steps.

The use of hierarchical actions transforms a Markov
Decision Process (MDP) into a Semi-Markov Decision
Process (SMDP) and that convergence results still hold for
the learning algorithms known to converge in the absence
of hierarchy. [9, 10, 11, 12]

e State Abstraction

The method for dividing up the global state space of a
problem into smaller state spaces is given in [13]. It
describes how a problem’s state space can be divided up
into a series of intervals if the states in the same interval
block have the same properties in terms of transitions and
rewards. Decomposing large MDPs lead to state
abstraction, thus reduce the overall state space of the given
problem and thus reduce learning time. An abstracted state
space is smaller than the state space of an original MDP.
There are broadly two kinds of conditions under which
state-abstractions can be introduced [5, 14]. They are given
as follow:

o Eliminate irrelevant variables: When reinforcement
learning algorithms are given redundant information,
they will learn the same value-function or policy for all
the redundant states. Thus eliminating irrelevant

.
;’&] CSE ©2014, IICSE All Rights Reserved

Vol.-2(5), PP(72-78) May 2014, E-ISSN: 2347-2693

variables leads to state abstraction. This type of state
abstraction is used by [15] who exploit independence
between variables in dynamic Bayesian nets. It is
introduced by [14] for Max Node and Leaf Irrelevance
in the MAXQ graph [16] extend this form of model
minimization to state-action symmetry couched in the
algebraic formations of morphisms. They state
conditions under which the minimised model is a
homomorphic image and hence transitions and rewards
commute. Some states may not be reachable for some
sub-tasks in the task-hierarchy. This Shielding
condition [14] is another form of elimination of
irrelevant variables, in this case resulting from the
structure of the task-graph.
Funnelling: Funneling is a type of state abstraction
where abstract actions move the environment from a
large number of initial states to a small number of
resulting states.

The effect is exploited for example by [18] in plant control
and by [19] to reduce the size of the MDP.

e Abstract Actions

Approaches to HRL employ actions that persist for multiple
time-steps. These temporally extended or abstract actions
hide the multi-step state-transition and reward details from
the time they are invoked until termination. Abstract
actions are employed in many fields including Al, robotics
and control engineering. They are similar to macros in
computer science that make available a sequence of
instructions as a single program statement. Abstract actions
may execute a policy for a smaller MDPs or SMDPs. This
establishes a hierarchy where a higher-level parent task
employs child subtasks as its abstract actions, which is
called as Task Hierarchies [14].

In hierarchical problem solving, the decomposed
subproblem can be solved by abstract actions. It can be
realized by the set of primitive actions to reach the subgoal.
Thus in hierarchical reinforcement learning the
corresponding action policy can be learned based on the
abstract states identified subgoals and abstract actions [17].

e  Optimality
HRL cannot guarantee optimal solution to decomposed
problems. Types of optimality in HRL can be given as
follows:

e  Hierarchical Optimality
The overall learned policy is the best policy consistent with
the hierarchy. Policies that are hierarchically optimal are
ones that maximize the overall value function consistent
with the constraints imposed by the task-hierarchy.

e Recursive Optimality
In Recursive optimality, sub-task policies to reach goal
terminal states are context free ignoring the needs of their
parent tasks. Here the sub-tasks can be re-used in various
contexts, but they may not be optimal in each situation.
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e  Hierarchical Greedy Optimality
In Hierarchical Greedy Optimality, a subtask policy
proceeding to termination may be sub-optimal and by
constantly interrupting the sub-task a better sub-task may be
chosen. It is better than hierarchical and recursive
optimality but does not guarantee of global optimality.

III. APPROACHES FOR HRL

Hierarchical reinforcement learning involves breaking the
target Markov decision problem into a hierarchy of sub
problems or subtasks. There are three general approaches to
defining these subtasks i.e three prominent HRL approaches
are: Options, a formalization of abstract actions; HAMQ, a
partial program approach, and MAXQ value function
decomposition including state abstraction. While choosing
the appropriate hierarchy, we have to look at available
domain knowledge: If some behaviors are completely
specified — use Options; if some behaviors are partially
specified — use HAM; if less domain knowledge available —
use MAXQ. We can use all three to specify different
behaviors in tandem.

e  Options

Options approach is to define each subtask in terms of a
fixed policy that is provided by the programmer (or that has
been learned in some separate process).

An option is a triple < I, @, B > in which, [ € S is an
initiation set, B: S* — [0, 1] is a termination condition, and
m: S x A— [0, 1] is a policy [20]. An option < I, , B > is
available in state s, if and only if s, € L. If the option is
taken, then actions are selected according to m until the
option terminates stochastically according to f. In
particular, a Markov option executes as follows. First, the
next action a, is selected according to probability
distribution 7w (s, -). The environment then makes a
transition to state s.;, where the option either terminates,
with probability 8 (1), or else continues, determining a.;
according to m (Syy, -), possibly terminating in Sy,
according to B (si2), and so on. When the option terminates,
the agent has the opportunity to select another option. An
option is temporally extended action with well defined
policy. When option policies and termination depend on
only the current state s, options are called Markov options.
The option policy and termination depends on the entire
history sequence of states, actions and rewards since the
option was initiated. Options of this sort are called semi-
Markov options. Options can only input complete policy
and requires complete specification of policy.

e  HAMQ (Hierarchical Abstract Machine)
In the hierarchy of abstract machines (HAM) approach to
HRL the designer specifies abstract actions by providing
stochastic finite state automata called abstract machines that
work jointly with the MDP [9].
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A HAM is a program which, when executed by an agent in
an environment, constrains the actions that the agent can
take in each state. An abstract machine is a triple <u; I; §)
where 1 is a finite set of machine states, I is a stochastic
function from states of the MDP to machine states that
determines the initial machine state, and 6 1is a stochastic
next-state function, mapping machine states and MDP
states to next machine states [5]. HAMs are a way to
partially specify procedural knowledge to transform an
MDP to a reduced SMDP. Extended HAM approach is
given by introducing more expressible agent design
languages for HRL (Programmable HAM -PHAM) [22]
and ALisp, a Lisp-based high-level partial programming
language [23].

¢ MAXQ

The third approach MAXQ is to define each subtask in
terms of a termination predicate and a local reward function
[21]. MAXQ algorithm expects the hierarchical structure to
be supplied by the designer. It suggests breaking the main
problem’s value function up into an additive combination of
smaller value functions, each associated with a smaller
problem i.e. MAXQ represents the value of a state as a
decomposed sum of sub-task completion values plus the
expected reward for the immediate primitive action. A
completion value is the expected cumulative reward to
complete the sub-task after taking the next abstract action.
Detailed overview of MAXQ is given [24]. The MAXQ
algorithm is tested against flat Q-Learning and significantly
outperforms it. Function approximation and optimistic
exploration are combined to allow MAXQ to cope with
large and even infinite state spaces [35].

IV. ALGORITHMS AND RELATED WORKS IN HRL

There are several important design decisions that must be
made when constructing a hierarchical reinforcement
learning system. [21]

o Specify subtasks
Hierarchical reinforcement learning involves breaking the
target Markov decision problem into a hierarchy of sub
problems or subtasks. The three general approaches to
defining these subtasks are Options, Ham and MAXQ as
mentioned in above section III.

o  Employ state abstractions within subtasks
The second design issue is whether to employ state
abstractions within subtasks. A subtask employs state
abstraction if it ignores some aspects of the state of the
environment.

o Non-hierarchical execution
The third design issue concerns the non-hierarchical
execution of a learned hierarchical policy. Extra learning
ie. in all states (and at all levels of the hierarchy) is
required, in order to support this non-hierarchical
execution. In HRL, the only states where learning is
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required at the higher levels of the hierarchy are states
where one or more of the subroutines could terminate.
o Learning algorithm

The final issue is what form of learning algorithm to
employ. Finding online algorithms that work for general
hierarchical reinforcement learning has been difficult,
particularly within the termination predicate family of
methods. Some relied on each subtask having a unique
terminal state[30]; Some employed a mix of online and
batch algorithms to train her hierarchy[31]; and work within
the options framework usually assumes that the policies for
the sub problems are given and do not need to be learned at
all.

Some important algorithms in HRL are as given below:

e H-DYNA Algorithm

DYNA is a reinforcement learner that uses both real and
simulated experience after building a model of the reward
and state transition function. A gating mechanism called
Hierarchical-DYNA (H-DYNA) was developed [30] which
first learns elementary tasks such as to navigate to specific
goal locations. Each task is treated as an abstract action at a
higher level of control. H-DYNA differs from hierarchical
planners in two ways: first, the abstract models are learned
using experience gained while learning to solve other tasks
in the same environment, and second, the abstract models
can be used to solve stochastic control tasks.

e HEXQ

The HEXQ (hierarchical exit Q function) approach is a
series of algorithms motivated by MAXQ value-function
decomposition and bottom-up structure learning [25]. It has
ability to abstract tasks dynamically. HEXQ automatically
builds task-hierarchies from interactions with the
environment assuming an underlying finite state factored
MDP. It employs both variable elimination and funnel type
state abstractions to construct a compact representation. As
one subtask is learnt for each exit, HEXQ solutions are
hierarchically optimal. HEXQ can use hierarchical greedy
execution to try to improve on the hierarchically optimal
solution, and the HEXQ policy converges to the globally
optimal result for task-hierarchies were only the root-
subtask has stochastic transition or reward functions. The
introduction of parallel decomposition of variables and
sequential actions allows HEXQ to create abstract state
variables not supplied by the designer. It conveys safe
decomposition [25]. In more recent versions, state variables
are tackled in parallel [26].

[36] propose a Bayesian network model causal graph based
approach - Variable Influence Structure Analysis (VISA)
that relates the way variables influence each other to
construct the task-hierarchy [27]. Unlike HEXQ this
algorithm combines variables that influence each other and
ignores lower-level activity.

e  HDG (Hierarchical Distance to Goal)
Algorithm
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HDG learning algorithm [31] wuses a hierarchical
decomposition of the state space to make learning to
achieve goals more efficient with a small penalty in path
quality and introduces the important idea of composing the
value function from distance components along the path to
a goal. It uses hierarchical approach to solving problems
when goal of achievement are given to the agent
dynamically. It is descendent of Watkins’ Q-learning
algorithm.

HDG algorithm was extended to automatically generate
hierarchies in goal directed systems [33]. But again none of
these systems focused on discovering subgoals in the state
space to facilitate hierarchy.

e HABS(Hierarchical Assignment of Behaviors
by Self-organizing)

The HABS algorithm [32] is derived mainly from
HASSLE. It was developed to overcome the action
explosion problem in HASSLE and to allow neural
networks to be used as function approximator for the high
level policy. If this feature could be dropped and replaced
by something that always uses a fixed set of behaviors as
high level actions, the number of high level actions would
remain constant when the problem size grows. That way the
useful aspects of HASSLE will retain, like using the
abstracted state space and starting with a priori
uncommitted subpolicies.

¢ Feudal Reinforcement Learning
The feudal reinforcement learning algorithm [34]
emphasizes state abstraction. It is referred as information
hiding and involves hierarchy of learning modules. It has
the idea that decision models should be constructed at
coarser granularities further up the control hierarchy.

e HASSEL Algorithm

HASSLE algorithm [28] outperformed variants of plain RL
in deterministic and stochastic versions of a large MDP. It
discovers subgoals and the corresponding specialized
subtask solvers by learning how to transition between
abstract states. In the process subgoal abstract actions are
generalized to be reused or specialized to work in different
parts of the state-space or to reach different goals. HASSEL
is extended with function approximation [29].

Some recent work in HRL is discussed below:

A method for learning a hierarchy of actions in a
continuous environment is given [37] by learning a
qualitative representation of the continuous environment
and then and actions to reach qualitative states.[38] presents
methods that learn to parameterize and order a set of motion
templates to form abstract actions (options) in continuous
time. A skill discovery method for reinforcement learning
in continuous domains is introduced [39] that constructs
chains of skills leading to an end-of-task reward. The
method is further developed to build skill trees faster from a
set of sample solution trajectories.
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Automatic basis function construction to HRL extended
[40]. The approach is based on hierarchical spectral
analysis. Hierarchical Approaches of graphs induced on an
SMDP's state space from sample trajectories. Brief review
of more recent progress in general representation discovery
is provided in [41]. The review includes temporal and
homomorphic state abstractions, with the latter generalized
to representing value functions abstractly in terms of a basis
functions. A hierarchical reinforcement learning method
based on action sub rewards is proposed which can reduce
state spaces greatly and choose actions with favorable
purpose and efficiency so as to optimize reward function
and enhance convergence speed [42]. The approach is given
[43] to optimizing Natural Language Generation for
situated interactions using HRL with Bayesian Networks.
SHARSHA contributes to research in hierarchical
reinforcement learning. It supports convergent policy
learning within hierarchical reactive plans, while other
convergent methods rely on more constrained
representations and a non-interruptible execution model
[48].

Some real world applications where HRL is implemented
successfully are Toy Robot [44], Flight Simulator [45],
AGYV Scheduling [46], Keepaway soccer [47].

V. FLAT RL AND HRL

The main reason for introducing hierarchical architectures
in RL is to bridge the gap between theoretical
considerations to machine intelligence and practical
application to real-world problems. In large-scale problems
the performance of flat RL is too poor with regard to
learning speed and computational effort. It also scales badly
with the size of state and action-spaces and the length of the
sequence of actions to reach the terminal state.

Advantages of HRL over flat RL:

a) Improved exploration as it can take big steps at
high levels of abstraction.

b) Learning from fewer trials as fewer parameters
must be learned and subtasks can ignore irrelevant
features of full state.

c) Faster learning for new problems because subtasks
learned on previous problems can be reused

d) Allows transfer at multiple levels of hierarchy,
which can speed up learning.

e) Task decompositions are helpful in reducing the
size of the problem, and therefore in exorcising the
Curse of Dimensionality

Limitations of HRL:
a) HRL automatically handles exploration-

exploitation shift but at the same time it lacks in
sufficient exploration and sufficient subtlety.
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b) Some of the existing algorithms only work well for
the problem which they were designed to solve.
VI. CONCLUSIONS AND FUTURE SCOPE

Hierarchical reinforcement learning is a key to scaling
reinforcement methods to large, complex, real world
problems. Complex learning task can be broken down into
several smaller subtasks in multiple levels of hierarchy, by
using appropriately formulated background knowledge. So
that it can be learned more quickly, easily and then
recombined to solve complex large problems.
While choosing the appropriate hierarchy approach, we
need to look up the domain knowledge. If some behaviors
are completely specified —use Options, if some behaviors
are partially specified — use HAM and if less domain
knowledge available — use MAXQ approach. We can use
all three to specify different behaviours in system.
HRL research must give more leverage to automated
discovery of hierarchy and state abstraction. Exploration
must improve before attempts to learn simultaneously at
multiple levels of hierarchy.
Even applied successfully on complex problems, HRL
research needs effectiveness (in terms of optimality, and
choosing right options) on more large and complex
continuous control tasks and real world problems. HRL
research must give more leverage to automated discovery of
hierarchy and state abstraction. Also exploration must
improve before attempts to learn simultaneously at multiple
levels of hierarchy.
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