

Improved system for Butterfly Valve

Harikrishnan A.R.^{1*}, Jishnu², Leneesh N. Gopal³, Arun Jose⁴

^{1,2,3,4}Department of Mechanical Engineering, Mangalam College of Engineering, Ettumanoor, Kottayam, India

www.ijcseonline.org

Received: 15/Mar/2017, Revised: 28/Mar/2017, Accepted: 21/Apr/2017, Published: 30/Apr/2017

Abstract—A cost-effective procedure to surface alloy WCB steel butterfly valve sand castings using mold coatings incorporating metal and ferroalloy powders has been described. The tooling, mold design, and casting conditions similar to top-lain WCB castings were successfully used to produce sound surface alloyed butterfly castings under industrial conditions. The dynamic behaviour control of a butterfly valve is important because, when one of the valve disc natural frequency is close to the frequency of vortex shedding, which appears when the valve is fully open or partially closed, resonance may appear and vibration with significant amplitudes is generated. The surface alloying was achieved by adding powders of Ni, Cr, Fe–Si, Fe–Mn, and Mo to the slurry containing a binder coated on the mold surface. The surface alloyed coatings on the surface of WCB steel butterfly valve castings were enriched in Ni, Cr, Mo, and Mn up to 6.4, 23.2, 3.3, and 1.1%, respectively. The depths of coatings were as high as 420 μm . After normalizing and tempering heat treatment, the surface alloyed layer exhibited an increase in corrosion resistance as compared to base metal WCB steel.

Keywords— surface alloying, corrosion, austenite phase, heat treatment, butterfly valve, nickel, chromium, manganese, silicon, molybdenum

I. INTRODUCTION

Many metallic components used in applications involving exposure to the corrosive aqueous and atmospheric conditions suffer from the degradation of the surface. These problems are especially widespread for castings that are utilized in the water supply industry, including pumps, butterfly valves, valve seats, faucets, and flanges. To prevent corrosion on the surface of these components, water industries rely on coating using casting stainless steel components on account of their corrosion-resistant properties.¹ Since corrosion is a surface phenomenon, mainly the surface of components needs to be corrosion resistant as compared to the core of the material, and therefore, surface alloying techniques can be applied to change the composition of surface in order to improve corrosion resistance. Various surface alloying techniques have been reported in the literature. Jiang et al. performed surface alloying of multi-element Ni–Cr–Mo–Cu surface alloyed layer on low-carbon steel and AISI 304 stainless steel materials using a double glow plasma process.² It was observed that the relative content of Cr_2O_3 in the passive film of the alloying layer formed on the 304 stainless steel is 3.75% more than that in the passive film of the alloying layer formed on the low-carbon steel, and this corrosion-resistant film was in favor of the corrosion resistance. Majumdar et al. investigated the effect of (WC–Ni–NiCr) used as a corrosion-resistant alloying powder that was applied on the surface of AISI 304 stainless steel by laser surface alloying process.³ The microhardness of the alloyed zone was significantly improved to a maximum value of 1350 VHN as compared to 220 VHN of as-received stainless steel. Krishnakumar and Srinivasan used gas tungsten arc for surface alloying stainless steel with titanium and tungsten,⁴ and Fals et. al. used laser

surface alloying on flame sprayed NbC coatings on a stainless steel substrate.⁵ Jeyaprakash et al. used laser cladding to add nickel and cobalt coatings on stainless steel substrates.⁶ Amirsadeghi and Sohi studied the surface melting of a us tempered ductile iron using the TIG process with molybdenum and chromium as alloying elements that leads to the formation of a hardened alloyed layer.⁷ Surface enrichment by ball milling is an alternate technique used to improve the pitting corrosion resistance of stainless steel. 316L stainless steel is enriched with approximately 18% Cr, which helps to prevent surface corrosion, but the addition of Mo can help to prevent pitting corrosion as well.⁸ Electric discharge surface alloying has been conducted with a chromium anode where in an electric arc produced by the anode lead to rapid melting and solidification of chromium on the surface of low-carbon steel.⁹ The surface of 304 as a substrate has been laser clad with 316L stainless steel and WC powders using a 700 W laser to form a surface with improved hardness.¹⁰ Cao, et.al., used a mixture of V, Cr, Ti, and Mo which was applied to the surface of the substrate which was alloyed using a high temperature plasma arc with a maximum energy density of 10^6 W/cm^2 .¹¹ All of these processes showed major improvements in the properties of the substrate, but they are mostly expensive methods and cannot be applied on large components as needed in water distribution system. Surface alloying by casting is a good solution to impart high local wear and corrosion resistance to cheaper and common industrial materials. The idea of surface alloying of mild steel was first patented in 1969 by the International Nickel Company.¹² The process was developed to surface alloy gray iron, alloy cast iron, and alloy ductile iron with nickel and chromium-containing metallic powders, and other nickel alloy powders. Some of the main characteristics of surface alloying during casting

include:

- (1) the surface properties of materials and parts can be tailored to specific requirements (resistance against corrosion, wear, oxidation);
- (2) The alloyed layer is metallurgically bonded to the base metal; and
- (3) Surface finish can be controlled and machining allowance can be provided. Ni and Cr are the frequently used alloying elements for improving the performance of various iron alloys such as the wear resistance, corrosion resistance, and thermal resistance.

Ni can dramatically improve the chemical stability of the iron alloys so as to increase their corrosion resistance. Cr leads to the formation of an oxide layer, which is highly protective against corrosion reaction. In the present study, we developed targeted multi-element Ni, Cr, Fe–Mn, Fe–Si, and Mo enriched surface alloyed layer coatings on the WCB steel butterfly valve on industrial scale using gravity sand casting process for improving its hardness and corrosion resistance properties. These elements for enrichment were picked since they are present in super duplex stainless steels, which have very high corrosion resistance. A butterfly valve is a quarter-turn rotational motion valve, which is used to stop, regulate, and start the flow. This valve can be used in many different fluid services such as cooling water, air, gases, and fire protection; slurry and similar services; vacuum service; and high-pressure and high-temperature water and steam services. Characterization of the microstructures and phases in the surface alloyed layer has been carried out to understand the effect of process parameters. Micro hardness and corrosion resistance have been measured.

II. EXPERIMENTAL PROCEDURE CASTING PROCEDURE

The industrial butterfly valves casting molds (Figure 1) were obtained from an industrial foundry (hereby referred to as the industry) to demonstrate surface alloying. Figure 1a, c shows pictures of the actual molds. The molds were made from 80-grain fineness silica sand. A phenol cure than organic binder system (binder level*1.2%) was used to ensure good gas permeability and surface finish during casting. The catalyst used was set to allow for an 8–10-minute work-strip time. The sand and binder / catalyst chemicals were mixed in an Omega Tinker industry mixer and then dumped onto the pattern. The sand was manually smoothed, as well as with a strike-off bar, and allowed to set for 10 minutes. After the curing was complete, and the old halves were extracted from the pattern by flipping inversion of the pattern using a manipulator crane. The mold cavities were coated with a factory wash (REFCOTECREFCOHOL1010) to avoid any reaction between the molten metal and the sand. After applying binder and surface alloying elements on mold and allowing the slurry to dry and harden (Figure 1b, d), the molds were closed, and a zircon filter was placed in the down sprue.

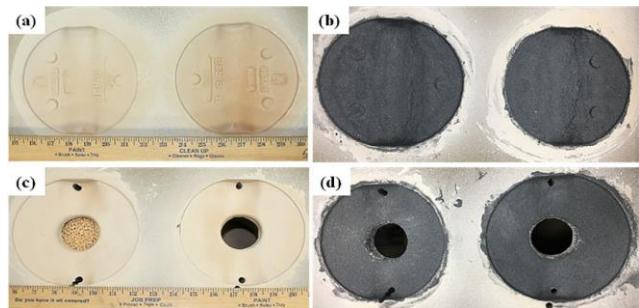


Figure 1. Butterfly valve molds for industrial casting. (a, c): Bare and cleaned surface coated with zircon; (b, d): multi-element powder-coated mold surface using sodium polyacrylate.

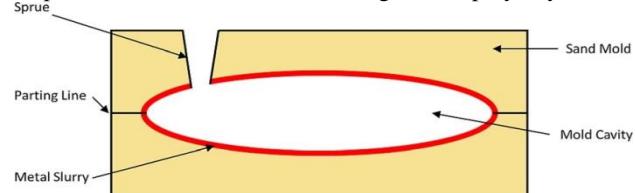


Figure 2. Schematic diagram of the sand mold with the alloying powder slurry applied on the inner surface of the mold cavity. The alloying slurry is a combination of the alloying powders and the binder medium.

Then, three samples were made using two different techniques. The first two samples were prepared by adding the Ni and Cr powders onto a wet refractory wash coating, and the third sample was made using a slurry containing Ni, Cr, Fe–Mn, Fe–Si, and Mo mixed with sodium polyacrylate (NaPA) binder. Figure 2 shows a schematic representation of the sand mold before the WCB steel melt is poured. Once the mold surfaces were coated, they were sealed using Sonic STIK®—core and mold adhesive. The molds were then transported back to the industrial foundry for casting. Once the casting shad was poured, they were shaken out and shot blasted with steel shot, and risers and gating were cut off at the industry and were then transported back to the laboratory for analysis.

Figure 3 shows a commercially available butterfly valve, and the surface alloyed butterfly valve prototypes cast at the industrial foundry in the present study. The objective was to quantify the levels of enrichment that could be achieved in an industrial setting for casting a component which requires high quantities of alloying elements on the surface for wear and corrosion resistance. The chemical composition of the WCB base alloy is presented in Table 1. Table 2 presents the composition of the alloying elements used for the surface alloying of the industrially cast butterfly valves.

Figure 3. (a) A commercially available butterfly valve, (b) surface alloyed butterfly valve prototypes cast at the industrial foundry and UWM.

III. LINEAR POLARIZATION TEST

Linear polarization testing was carried out to measure the corrosion current of the surface of the sample. The material is polarized during this test on the order of 225mV on an open-circuit potential, and the potential is measured when no net current is flowing. As the potential of the working electrode is changed, a current will be induced to flow between the working and counter electrodes, and the sample's resistance to polarization is found by taking the slope of the potential vs. current curve. The advantage of this test is that it is non-destructive, unlike the potentiodynamic polarization test, and it does not change the chemistry of the surface. The samples were conditioned in an ASTM G61 3.56% salt water solution for one hour and then underwent a linear polarization test for 10 minutes. A potentiostat, SP-200 BioLogic, was used to run the test. The electrolyte used for the corrosion test was 3.5% NaCl solution. The surface alloyed samples and graphite rod were used as the working electrodes and counter electrodes, respectively. For the reference electrode, Ag / AgCl electrode was used.

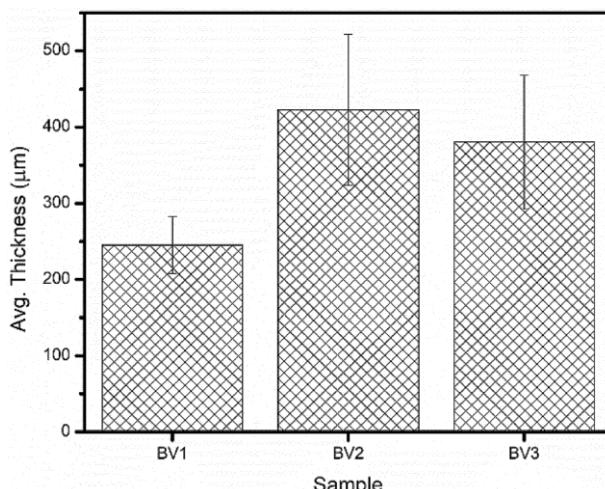


Figure 4. Average thickness of the surface alloyed layer in three castings of surface alloyed butterfly valves.

Optical micrographs of the cross section of surface alloyed as cast samples are shown in Figure 4. A relatively uniform and continuous surface alloyed layer was observed in all samples. Occasional microporosity is observed in the surface alloyed layer. The average thickness of the surface alloyed layer is given in Figure 5. Electro-etching of the surface alloyed layer was performed using an etchant made with 15% HCl and 85% ethanol and passing a 2 Amp current using an electrode placed on the surface alloyed layer. The base metal (Figure 6a) shows after etching its microstructure, which is typical of WCB steel. Figure 6 b-d demonstrates the cross-sectional macro-morphology of the surface alloyed layer, indicating a surface alloyed layer free of cracks or porosity. The interface layer between the base metal and the surface alloyed layer does not show the presence of cracks.

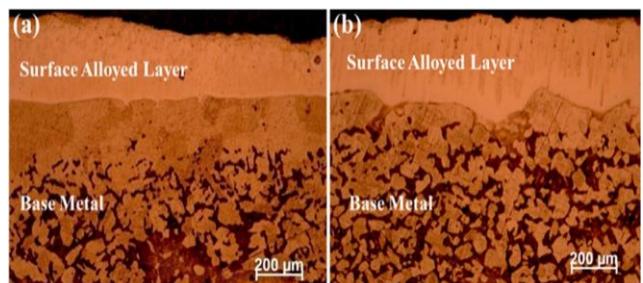


Figure 4. Optical images of the as-cast (a) BV1 and (b) BV2.

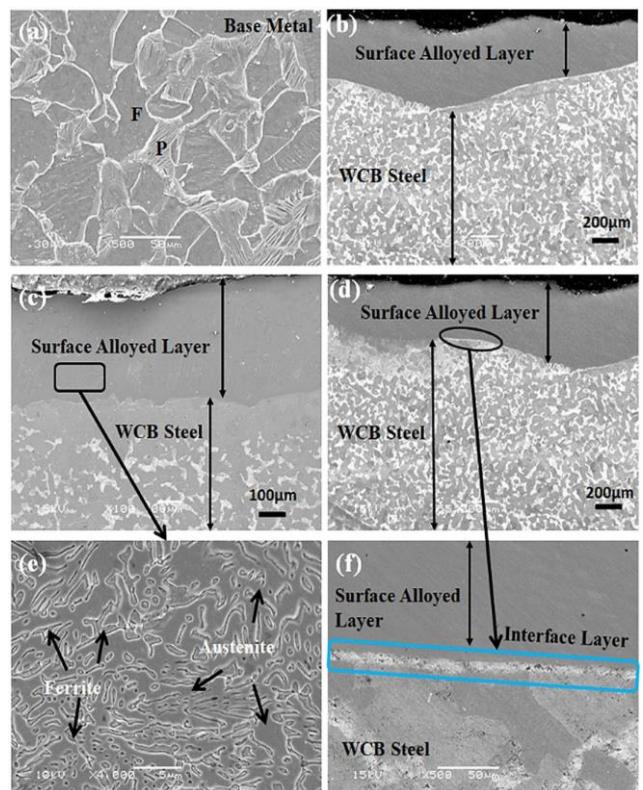


Figure 5. SEM micrograph of a base metal, (b-d) BV1 surface alloyed layer, (c) BV2 surface alloyed layer in as-cast condition, (e) austenite-ferrite microstructure of the surface alloyed layer, (f) interface layer between surface alloyed layer and the base metal. All samples were in the as-cast condition.

The microstructure at the interface of the surface alloyed layer and the base metal suggests a good metallurgical bond. The microstructure in a typical surface alloyed layer (Figure 6e) is composed of austenite (c) phases in the shape of elongated islands dispersed in the ferritic (a) matrix and free of precipitates. In addition, the morphology of the austenite phase ranged from elongate disclands to an equiaxed form. The EDS line scan results of surface alloyed sample BV3 (Figure 7) show the change in the gradient of various alloying element content from the substrate to the surface alloyed layer. Table 3 lists the composition of the surface alloyed layer and the interface. Compared with the original composition of the WCB steel, a significant increase of nickel, chromium, Mo, Mn, and Si has been detected in a surface alloyed layer. The analyses were performed in regions ferrite (a phase) and austenite (c phase), indicated in the micrographs (Figure 6e). It was

observed that the elements chromium and molybdenum are present in a higher percentage in the ferrite phase, since they are ferritizing elements, and nickel is present in a higher percentage in the austenite phases incert dissolves and stabilizes a austenite.¹³

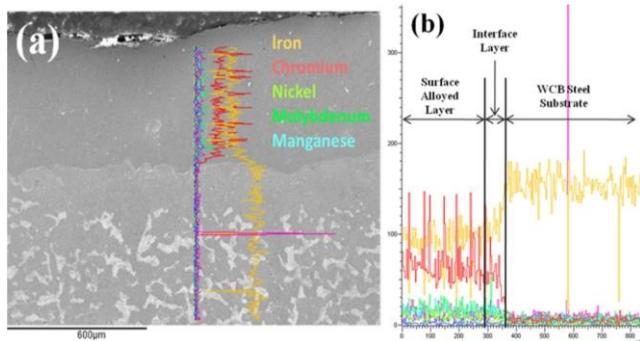


Figure 6.(a) Location of the EDS linescan on the cross-section of the BV3 surface alloyed sample across the base metal and surface alloyed layer. (b) Plot of elemental intensity vs distance in the EDS linescan.

The XRD analysis of the surface alloyed layer of the surface alloyed sample BV3 is shown in Figure 8. It confirms the presence of ferrite, austenite, and chromium oxide (Cr_2O_3) in the surface alloyed layer. The presence of Cr_2O_3 is known to improve the corrosion resistance of the alloy. This oxide can form in ambient conditions; however, heat treatment of the alloy leads to the acceleration of the oxide formation. It should be noted that while there is a chance that all elements present in the system can form oxides (such as FeO , Fe_2O_3 , Fe_3O_4 , NiO) at high temperature, not all of these oxides can exist simultaneously in equilibrium with one another. The selective oxidation of chromium can be explained by the standard free energy of formation and Ellingham's oxidation curve, as shown in Figure 9. It shows that Cr_2O_3 is more chemically stable than iron oxide. Significant scatter within the surface alloyed layer, suggesting that the distribution of alloying elements in the surface alloyed layer is quite uniform (Figure 7).

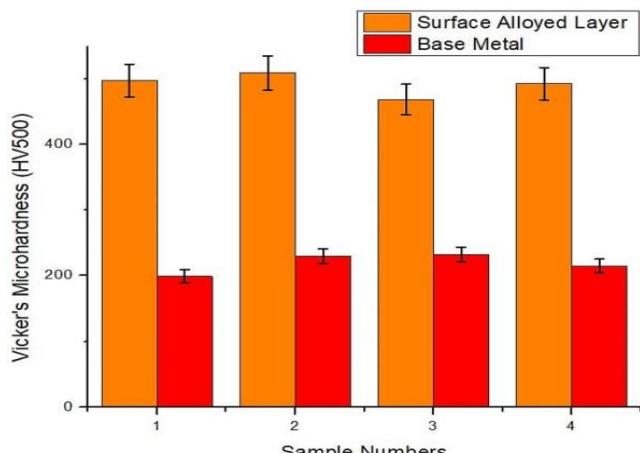


Figure 7. Comparison of the hardness of the surface alloyed layer and the base metal indicating a consistent increase in the as-cast condition.

IV. CORROSION RESISTANCE

There are two ways to improve the corrosion resistance of iron-based alloys: (1) to improve its thermodynamic stability by adding some alloying elements with higher thermodynamic stability like Ni and Cr to the solid solution to increase its electrode potential and to decrease the anodic activation and (2) to promote the formation of stable passivation on the surface and to improve its resistance on corrosion reaction by adding elements like Cr and Mo. Therefore, the large increases in the Ni and Cr content in the surface alloyed layers as a result of surface alloying significantly improve its corrosion resistance. In addition, the rise in austenite in the microstructure of the alloyed layer will also improve the corrosion resistance.

Table 1. Corrosion Rate Values for Surface Alloyed Samples and WCB

Elemental composition (in wt%)	Surface alloyed layer	Interface layer	WCB base metal
Cr	23.2	3.80	0.5
Ni	6.4	3.89	0.5
Mo	3.3	-	0.2
Mn	1.1	1.04	1
Si	0.7	0.54	0.6
Fe	Balance	Balance	Balance

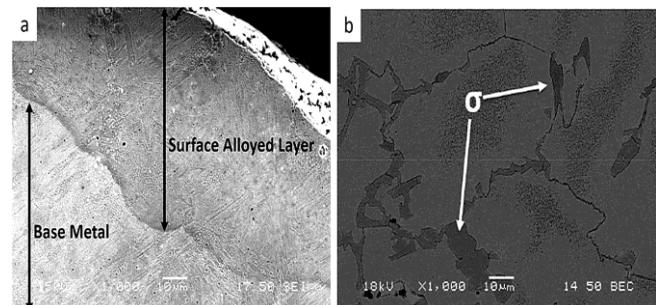


Figure 8.(a) The absence of other phases in the surface alloyed layer of surface alloyed sample BV3 after solution annealing at 850°C for a period of 100 seconds.

(b) The presence of intermetallic Cr phase in the surface alloyed layer of surface alloyed sample BV3 before heat treatment.

Applications

It has been demonstrated that the novel cast surface alloying process produces a surface alloyed layer enriched in several elements (including Ni, Cr, Mo, and Mn) on butterfly valve WCB steels and castings. The surface alloyed WCB castings are slightly more expensive compared to WCB steel castings, but they are much lower in cost compared to through section stainless steel (as much as \$10-12 per pound). The scalable and more economical techniques for coatings and molds and cores with a refractory wash containing metal and ferroalloy powder for surface alloying could include flow coating, spray coating, dipping, and brush coating. This demonstrates the potential of reducing production costs of using surface alloyed WCB steels compared to through section stainless steel components. It also demonstrates

that surface alloyed steel castings provide much more improved corrosion resistance, with only a marginal increase in the cost over plain WCB steel castings. This suggests several other potential applications of surface alloyed WCB castings in addition to butterfly valves, where corrosion and wear resistance higher than that of WCB steel are required.

V. CONCLUSIONS

The WCB steel butterfly valve sand castings were successfully surface alloyed with Ni, Cr, Mn, Si, and Mo by adding powders of nickel, chromium, ferrosilicon, ferro-manganese, and molybdenum to the mold coating. The surface of the WCB steel butterfly valve casting was enriched with up to 23.2 weight % Cr, 6.4 weight % Ni, 1.1 weight % Mn, and 3.3 weight % Mo, during sand casting as a result of mixing of nickel, chromium, ferromanganese, and molybdenum powders to mold coatings. Austenite and ferrite were the primary phases observed in the as-cast surface alloyed layer. Samples from normalized and tempered surface alloyed butterfly valve castings made in this study are likely to exhibit a 50% decrease in corrosion rate as compared to base metal WCB steel, as suggested by the linear polarization test conducted in this study. The surface alloyed WCB alloy castings are likely to have much higher wear resistance, as suggested by the higher hardness of the surface alloyed layer on the castings. The following are as require further work: developing quantitative relationships between processing parameters and the thickness, composition, phase structure, residual stresses, adhesion, surface finish of surface alloyed layers, and their influence on corrosion and hardness. The mechanisms of melting and dissolution of powders in mold coatings, formation of optimum solidification.

REFERENCES

- [1]. H.C.Fals, A.S.Roca, J.B.Fogagnolo, L.Fanton, M.J.X.Belém, C.R.C.Lima, Erosion-corrosion resistance of laser surface alloying of NbC thermal spray coatings on AISI304L steel. *J. Therm. SprayTech.* 29(1), 319–329 (Jan.2020). <https://doi.org/10.1007/s11666-019-00973-y>
- [2]. N.Jeyaprakash, C.-H.Yang, S.Sivasankaran, Laser cladding process of cobalt and nickel based hard micron-layer on 316L-stainless-steel-substrate. *Mater. Manuf. Process.* 35(2), 142–151 (Jan.2020).
- [3]. M.Krishnakumar, R.Saravanan, Surface alloying on austenitic stainless steel with titanium and tungsten using gas tungsten arc. *Eng. Res. Express* 1 (2), 025005 (Oct.2019). <https://doi.org/10.1088/26318695/ab47b5>
- [4]. S.C.deRezende, I.Dainezi, R.C.Apolinario, L.L.deSousa, and N.A.Mariano, “Influence of Molybdenum on microstructure and pitting corrosion behavior of solution treated duplex stainless steel in a lithium chloride solution. *Mater. Res.* 22, 2019.
- [5]. L.Jinlong, L.Tongxiang, W.Chen, Surface enriched molybdenum enhancing the corrosion resistance of 316L stainless steel. *Mater. Lett.* 171, 38–41 (2016)
- [6]. B.N.Mordyuk, G.I.Prokopenko, P.Yu.Volosevich, L.E.Matokhnyuk, A.V.Byalonovich, T.V. Popova, Improved fatigue behavior of low-carbon steel 20GL by applying ultrasonic impact treatment combined with electric discharge surface alloying. *Mater. Sci. Eng. A* 659, 119–129 (Apr.2016). <https://doi.org/10.1016/j.msea.2016.02.036>
- [7]. L.Song, G.Zeng, H.Xiao, X.Xiao, S.Li, Repair of 304 stainless steel by laser cladding with 316L stainless steel powders followed by laser surface alloying with WC powders. *J.Manuf. Process.* 24, 116124 (Oct.2016). <https://doi.org/10.1016/j.jmapro.2016.08.004>
- [8]. H.T.Cao, X.P.Dong, Z.Pan, X.W.Wu, Q.W.Huang, Y.T.Pei, Surface alloying of high-vanadium high speed steel on ductile iron using plasma transferred arc technique: Microstructure and wear properties. *Mater. Des.* 100, 223234 (Jun.2016). <https://doi.org/10.1010/16/j.matdes.2016.03.114>
- [9]. M.Hasegawa, Ellingham diagram in Treat is on *Process Metallurgy* (Elsevier, London, 2014). pp.507–516.
- [10]. S.Anandan, S.Pityana, and J.DuttaMajumdar, Structure–property-correlation in laser surface alloyed AISI304 stainless steel with WC, Ni, NiCr. *Mater. Sci. Eng. A*, 536, 159169. Doi:<https://doi.org/10.1016/j.msea.2011.12.095>.
- [11]. A.Wiengmoon, J.T.H. Pearce, T.Chairuangsri, Relationship between microstructure, hardness and corrosion resistance in 20wt.Cr, 27wt.Cr and 36wt. Cr highchromium castirons. *Mater. Chem. Phys.* 125(3), 739–748 (Feb.2011). <https://doi.org/10.1016/j.matchemphys.2010.09.064>
- [12]. M.Dutta, A.K. Halder, S.B. Singh, Morphology and properties of hot dip Zn–Mg and Zn–Mg–Al alloy coatings on steel sheet. *Surf. Coat. Technol.* 205(7), 2578–2584 (Dec.2010). <https://doi.org/10.1016/j.surfcoat.2010.10.006>
- [13]. A.Amirsadeghi, M.H.Sohi, Comparison of the influence of molybdenum and chromium TIG surface alloying on the microstructure, hardness and wear resistance of ADI. *J.Mater. Process. Technol.* 201(1–3), 673–677 (2008)
- [14]. R. W. Revie, Corrosion and corrosion control: an introduction to corrosion science and engineering. (John Wiley& Sons, London, 2008).
- [15]. C.X.Shan, X.Hou, K.-L.Choy, Corrosion resistance of TiO₂ films grown on stainless steel by atomic layer deposition. *Surf. Coat. Technol.* 202(11), 23992402 (Feb.2008). <https://doi.org/10.1016/j.surfcoat.2007.08.066>
- [16]. N.C.Hosking, M.A.Ström, P.H.Shipway, C.D.Rudd, Corrosion resistance of zinc–magnesium coated steel. *Corros. Sci.* 49(9), 3669–3695 (Sep. 2007). <https://doi.org/10.1016/j.corsci.2007.03.032>
- [17]. X.Jiang, A.Jiahe, X.Xie, Z.Xu, Multi-element Ni–Cr–Mo–Cu surface alloyed layer on steel using a double glow plasma process. *Surf. Coat. Technol.* 168(2), 142147 (May 2003). [https://doi.org/10.1016/S0257-8972\(03\)00008-2](https://doi.org/10.1016/S0257-8972(03)00008-2)
- [18]. J. R.Davis, Alloving Understanding the Basics. (ASM International, Geauga County, 2001).
- [19]. T.Ohmi, Y.Nakagawa, M.Nakamura, A.Ohki, T.Koyama, Formation of chromium oxide on 316 Laustenitic stainless steel. *J. Vac. Sci. Technol.* A14(4), 2505–2510 (Jul.1996). <https://doi.org/10.1116/1.580010>
- [20]. P.Jayaweera, D.M.Lowe, A.Sanjurjo, K.H.Lau, L.Jiang, Corrosion-resistant metallic coatings on low carbon steel. *Surf. Coat. Technol.* 86–87, 522–525 (Dec.1996). [https://doi.org/10.1016/S0257-8972\(96\)03087-3](https://doi.org/10.1016/S0257-8972(96)03087-3)
- [21]. N.Ohkubo, K.Miyakusu, Y.Uematsu, H.Kimura, Effect of alloying elements on the mechanical properties of the stable austenitic stainless steel. *ISIJ Int.* 34(9), 764–772 (1994)
- [22]. F.D. Richardson, J.H.E.Jeffes, Free energies of formation of metal oxides as a function of temperature. *J. Iron Steel Inst.* 160, 261–273 (1948)
- [23]. H.J.T.Ellingham, Reducibility of oxides and sulphides in metallurgical processes. *J. Soc. Chem. Ind.* 63(5), 125–133 (1944).
- [24]. D.F.Macdonald, Process of coating metal castings US3450189A. Jun17, 1969.
- [25]. S. K. Behera, A. Kumar P, N. Dogra, M. Nosonovsky, and P.Rohatgi, Effect of Microstructure on Contact.