
© 2014, IJCSE All Rights Reserved  8 

International Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer ScienceInternational Journal of Computer Sciencessss    and Engineeringand Engineeringand Engineeringand Engineering            Open Access

Review   Paper  Volume-2, Issue-5 E-ISSN: 2347-2693

A Study on Variations of Bottlenecks in Software Testing 

S.Kannan
1
; T.Pushparaj

2

1
 Department of Computer Applications, Madurai Kamaraj University, Madurai, Tamil Nadu, India 

2*
Department of Computer Applications, PSNA College of Engineering and Technology, Dindigul, Tamil Nadu, India

skannanmku@gmail.com; pusht82@gmail.com

www.ijcseonline.org

Received: 28/04/2014  Revised: 11/05/ 2014   Accepted: 22/05/May 2014    Published: 31/05/2014 

Abstract-Software testing is a crucial activity in software development and it determines to completeness of a product. Being 

a crucial activity it needs to be carried out smoothly without any difficulties. But in reality it is difficult to carry out testing 

smoothly. There exists number of factors and issues that alter the smooth happening of testing. Those factors and issues are 

collectively called as bottlenecks[8]. This work aims at the process of identifying the bottlenecks that are very common to 

testing, bottlenecks that are application specific and testing type specific, analyse the reasons and provide recommendations 

that will make Software Testing[1] to happen without bottlenecks or with minimum bottlenecks. This work was carried out 

in two phases. Phase 1, was conducted to know and understand the existence of bottlenecks in software testing. Phase 2, 

deals with the analysis of bottlenecks and recommendations to avoid or minimize bottlenecks. 

General Terms- Bottle Neck 

Keywords- IST, UAT, SUT, SRS 

I. INTRODUCTION

The paper work entitled “Variations of Bottlenecks in 

Software Testing – An Analysis “deals with the process 

of exploring, bringing out and analyzing the bottlenecks 

present is software testing. Followed by that suitable 

recommendations are provided based on the findings. 

� Emphasizing the need for testing as an important 

activity in software development. 

� Identification of Umbrella activities that has a direct 

impact on delivering a complete product. 

� Identification of bottlenecks[42] that are very 

common to any type of testing and any kind of 

product (Software) developed. 

� Identification of bottlenecks that are specific to the 

type of testing and specific to the kind of product 

developed. 

� Analysing the reasons for the existence of these 

bottlenecks based upon the data collected. 

� Providing suitable recommendations to avoid or to 

minimize the presence of bottlenecks[3]. 

� Identification of further scope of enhancing the 

work. 

� Identify the various bottlenecks present is software 

testing. 

� Identify the bottlenecks that have the origin in the 

early phases of software development life cycle. 

� Analyse the reasons for the existence of bottlenecks. 

� Classify the bottlenecks that are very common and 

specific to any kind of product (software) and any 

type of testing. 

� Co-relate the reasons that act as the source for 

various bottlenecks. 

� Identify the need for the proper selection, 

orientation and employment of Test Engineers[24]. 

� Emphasize the need for following engineering 

principles in software development. 

� Making the software team to understand the need 

for providing a friendly testing environment. 

� Making recommendations to avoid or to minimize 

bottlenecks. 

II. LEVELS OF TESTING

Unit testing [UT] 

Unit testing[5] is the process of testing a program module 

and running it in isolation from the rest of the software 

product by using prepared input and comparing the actual 

results with the results predicted by the specifications and 

design of the module. 

Integrated System Testing [IST] 

Integrated System Testing (IST) is a systematic technique 

for verifying the construction of the overall software 

structure. It is a set of activity that ensures, that the 

software correctly implements a specific function. IST[34] 

tests the conformance of the software to specifications. 

User Acceptance Testing [UAT] 
User Acceptance Testing (UAT) is performed by users or 

on behalf of the users to ensure that the application 

developed conforms to business requirements[43].  It is a 

set of activity that ensures, that software built is traceable 

to customer requirements.  

Difference between IST and UAT 

Particulars IST UAT 

Base line 

document 

Functional 

Specification 

Business 

Requirement 

Data Simulated Live Data 

Environment Controlled Simulated Live 

Orientation Component Business 

Tester 

composition 

Testing Firm Testing Firm / users 

Purpose Verification Validation 

Corresponding Author: T.Pushparaj 



   International Journal of Computer Sciences and Engineering               Vol.-2(5), PP(8-14)  May 2014, E-ISSN: 2347-2693 

                             © 2014, IJCSE All Rights Reserved                                                                                                           9 

III. TYPES OF TESTING 

1.1 White-box Testing  
Tests are based on coverage of internal code statements, 

branches, paths and conditions. Also known as glass-box 

testing[20]. 

1.2 Black-box Testing 
Testing focuses on the functional aspects of the 

application. It enables the software engineer to derive sets 

of input conditions that will fully exercise all functional 

requirements for a program.  

1.3 Regression Testing 
Each time a new module is added as a part of integration 

testing, the software changes. Regression testing is the re-

execution of some subset of tests that have already been 

conducted to ensure that changes have not propagated 

unintended side effects.  

1.4 Recovery Testing 

This is a system test that forces the software to fail in 

variety of ways and verifies that recovery is properly 

performed. If recovery is automatic (performed by the 

system itself), re-initialization, checkpoint 

mechanisms[9], data recovery and restart are evaluated 

for correctness. If recovery requires human intervention, 

the mean-time-to-repair (MTTR) is evaluated to 

determine whether it is within acceptable limits. 

1.5 Security Testing 
This testing attempt to verify that protection mechanisms 

built into a system will, in fact, protect it from improper 

penetration. 

1.6 Compatibility Testing 
The purpose of compatibility testing[10] is to evaluate 

how well software performs in a particular hardware, 

software, operating system, browser, or network 

environment. 

1.7 Performance Testing 
Performance testing[5] is designed to test the run-time 

performance of software within the context of an 

integrated system.  

38

The testing process

Sub-system
testing

Module
testing

Unit
testing

System
testing

Acceptance
testing

Component

testing

Integration testing User

testing

 

40

Testing phases

Requirements
specification

System
specification

System
design

Detailed
design

Module and
unit code
and tess

Sub-system
integration
test plan

System
integration
test plan

Acceptance
test plan

Service
Acceptance

test
System

integration test
Sub-system

integration test

 
IV. PUTTING SOFTWARE TESTING IN 

CONTEXT 
 

Software testing[6] is the process of exercising a software 

product to verify that it satisfies the specified requirements 

and to detect errors can be viewed as a part of system 

engineering. The relationship is shown in the following 

figure.  

 
Quality context of Software Testing 
 From a quality perspective, testing as part of verification 

and validation can be seen as an integral part of SQA[39]. 

If software is a part of a large system, then testing can also 

be considered as a part of overall quality assurance. 

Following is a diagrammatic representation of the same. 

 



   International Journal of Computer Sciences and Engineering               Vol.-2(5), PP(8-14)  May 2014, E-ISSN: 2347-2693 

                             © 2014, IJCSE All Rights Reserved                                                                                                           10 

Terminology context of Software Testing 

This is a representation of software testing with a 

terminology perspective. It contains natural language at the 

highest level. Computing terms and software engineering 

terms are at the lower levels. 

 
 

V. CHALLENGES IN AUTOMATED TESTING 

 

1. Test Tools Selection 
Test tool selection[5] is a critical factor in the success of 

test automation. This requires the study of the scope of 

testing and test strategy and then selection of the right test 

tool, to meet the requirements of automating test-suite for 

a particular product and release. The factors to be taken 

into consideration while selecting a tool are reusability, 

reliability and cost. 

A test tool should essentially support 

� scripting Interface  

� facility to give invalid input  

� facility to Control IUT[17] (Implementation Under 

Test) & Peer 

� result comparison & verdict declaration facility 

� The level of automation targeted should be done 

along with the test tool selection 

2. Customization of the Tool 
The Test Manager should always look for standard tools if 

available in the market, and go customize the existing 

tools[32]. New tools should be developed only as a last 

resort. Customization[9] is a most viable option with 

provisions for enhancement. 

3. Development and Verification of Scripts 

Scripting[5] effort includes development and testing of 

scripts. This depends upon the two factors. First, skill of 

the persons involved and secondly, the capability of the 

test tool to provide flexibility to develop scripts for all 

valid and invalid scenarios. However, it is recommended 

that scripting should always be done in a modular manner 

so that the same modules can be reused in different scripts. 

It is always advised that all scripts should be tested with a 

release prior to the actual test execution so that during the 

real testing no problems are found in scripts. 

4. Implementation of a Test Management system 

This is to facilitate complete automation in terms of 

managing the scripts at the System Under Test (SUT) and 

tester simultaneously and for consolidating the test results 

at one place[30].  

      

VI. REAL – LIFE SITUATIONS 

 
Following is a set of real-life situations taken into 

consideration for analysing and finding the bottlenecks 

pertaining to software testing. Bottleneck[28] is anything 

that hinders the process of software testing. 

Bottlenecks common to any testing process. 

a) One bottleneck is the change in specifications by   the   

client. (Functionality testing bottleneck) 

b) When the development time is more than expected, it 

becomes a general tendency to reduce the testing time. 

Testers are asked to test within a short duration of 

time. (General testing bottleneck) 

c) Insufficient information in the SRS or test cases  

without proper coverage can be a bottleneck at times. 

(Functionality testing bottleneck) 

d) When regression testing[17] is done, generally, the 

test cases and test plans may not be clear. When the 

person first develops it, it is understandable by him, 

but at a later point of time, the newer testers may not 

understand them. 

e) Test plans[14] and test cases may not be updated. The 

tester will be testing it on a different version and the 

test fails because, the test case was for a previous 

version.  Though the software has failed the test, the 

software is still working fine. This becomes an issue 

and it is sent back to the developer.  He comes out 

with the result that it is correct and the test case is 

wrong.  

f) One or two developers make more than acceptable 

mistakes.  In that case, though the bug is found, the 

testers generally do not report all of them on the same 

day, because, doing so will reflect on the developer.   

g) Difference in the development and execution 

environment. Testing may be done in a different 

version and development would have been in a 

different version. Thus the software fails. For 

example,  a data migration tool was developed using 

JDK1.4[22], but the installations were done in JDK 

1.2. The software did not even get installed in it. 

h) Generally, testers are not familiar with the technology. 

Software or a module that is developed using a new 

technology always takes larger time to develop and to 

test.  

i) The main problem between testers and developers is 

due to lack of communication. Sometimes, the 

developers see the testers as their adversaries. Lack of 



   International Journal of Computer Sciences and Engineering               Vol.-2(5), PP(8-14)  May 2014, E-ISSN: 2347-2693 

                             © 2014, IJCSE All Rights Reserved                                                                                                           11 

professionalism among the testers may become a 

bottleneck for testing in this case.  

 

VII. PERFORMANCE TESTING RELATED 

              BOTTLENECK – DATA MIGRATION 

TOOL 

When a software application is newly installed in   a client 

location, a particular tool for migrating legacy database of 

the client, to the software’s Database is used. This tool 

works correctly and the tool can handle a maximum of 

10,000 records per minute. But, one of the recent clients, 

(perhaps the largest to date) (name is not mentioned 

because it is confidential) had a very huge database and 

when this tool was used, performance of the tool was very 

poor.  It took five hours to migrate a single database. There 

are 500 such databases. So, the client will take 2500 hours 

to migrate everything. It will also take an additional 

hundred hours for setup. (325 days). This is a performance 

issue. This issue was found, when the tool was subjected to 

performance testing before giving it to the client.  Now, 

this has become a high priority issue. This client uses ASA 

(Sybase) database in the legacy system[40] and the new 

system. 

 

Now, the performance related issues that should be 

addressed are: 

1. The database that took five hours for migration was 

ASA (Sybase) database and ASA[37] database generally 

resides in the client machine only. So, if ASA alone is 

going to be used, it is enough if the configuration of the 

machine in which the migration is run alone is upgraded.  

2. Even if a dedicated server is set up, the speed of 

migration is dependent upon the speed of the network.  

3. If the ASA database and the application run on the same 

machine it is faster than what it will be if the ASA DB and 

application run on different machines.  

4. If a dedicated DB server has to be used, what DB should 

it run is an important concern, because there are three 

different Databases in use, Oracle, DB2 and Sybase?  

 

VIII. DATABASE TESTING BOTTLENECK 

 

Database is a major component of any information system. 

It is also called as the driving force of an information 

system. Database’s performance plays an important role in 

the working of an information system. Database 

testing[16] is done in various ways. The major activity is 

Performance Tuning. Apart from that the verification and 

validations to be done is also important. Database tests[26] 

are supported via ODBC using the following functions: 

SQLOpen, SQLClose, SQLError, SQLRetrieve, 

SQLRetrieveToFile, SQLExecQuery, SQLGetSchema and 

SQLRequest.  

 

Cursor type operations[12] can be carried out by 

incrementing arrays of returned datasets. All SQL queries 

are supplied as a string. Stored procedures can be 

executed. 

 

In Database testing we need to check for  
1. The field size validation[19]  

2. Check constraints.  

3. Indexes[25] are done or not (for performance related    

issues)  

4. Stored procedures[35] 

5. The field size defined in the application is   matching 

with that in the database. 

 

The database component is a critical piece of any data-

enabled application. Today’s intricate mix of client-

server[31] and Web-enabled database[21] applications are 

extremely difficult to Test productively. Testing at the data 

access layer is the point at which the application 

communicates with the database. Tests at this level are 

vital to improve not only the overall Test strategy, but also 

the  product’s quality.  

 

IX. CLIENT / SERVER APPLICATION 

RELATED BOTTLENECK 

   In a client server environment a client may get its 

requested processed by a server. At a particular moment a 

client may request and utilize a set of services from the 

server application. For this purpose, a linking file / thread 

will be maintained. This thread maintains the list of active 

applications / services requested and used by a client. The 

thread should maintain the programs that are currently in 

use, others should be removed from the active list by 

properly disconnecting them. Normally the developers / 

programmers miss this concept. This leads to a major 

performance bottleneck in-term of poor performance and 

more response time from the server, sometimes leading to 

server hangovers and crashes. This issue will be noticed 

only during User-acceptance testing[13] carried out with 

real data which is huge in amount and invokes all the 

services provided by the server. 

 

X.   REASONS OF BOTTLENECKS IN 

SOFTWARE TESTING 

Bottlenecks occur in software testing for various reasons. 

Those bottlenecks are classified into the following four 

categories. Process Related[11], People Related, Planning 

Related and Technology related bottlenecks. 

 

1. Process Related: It contains the bottlenecks that arise 

from the Software Development Life Cycle activities 

like Analysis, Design, Coding and other Umbrella 

Activities. 

2. People Related: It contains the bottlenecks that arise 

because of personnel related issues. The success of 

any task depends upon the members to whom the 

responsibility of doing that is given. Good 

understanding is a major factor that breaks any 

obstacles in the path of success.  

3. Planning Related: It contains the bottlenecks that 

have their origin from planning related mistakes. Any 

task carried out without a proper plan will fail 

miserably. Being a customer centric industry, software 

development is more dependent on plans. 

4. Technology Related: It contains the bottlenecks[19] 

that arise because of technology related issues like 

non-availability of required environment, tools and so 

on. 



   International Journal of Computer Sciences and Engineering               Vol.-2(5), PP(8-14)  May 2014, E-ISSN: 2347-2693 

                             © 2014, IJCSE All Rights Reserved                                                                                                           12 

 

Software Testing contains more number of Process and 

People related bottlenecks. Most of the bottlenecks are 

interdependent. 

 

1. Process Related: Process related bottlenecks have their 

origin from the early phases of SDLC[7] like requirements 

gathering, SRS preparation[8] and other background or 

umbrella activities like project planning, scheduling, test 

planning and team structure formation. 

1.1 Incomplete SRS: System Requirement 

Preparation[12] is the very basic activity that needs 

utmost care. If the fact finding methods are not 

adopted properly, then the resultant will be an 

incomplete and incorrect specification. Even effective 

validations[35] and reviews cannot identify these 

errors. Requirements that are wrongly specified will 

serve as the root cause for further problems. Testing a 

product that is developed by using an incomplete base 

will be definitely very tedious. It will result in lot of 

rework that will almost lead to re-initiation of the 

work from the scratch. 

1.2 Lack of Communication: In most of the cases the 

communication gap between the client and the 

developer (Team) will be enormous. This gap needs 

proper attention[10]. If proper steps are not taken to 

remove or reduce the gap, the result will be a set of 

activities that are highly ambiguous in nature. These 

confusions will come right from the user specification 

to test cases. 

1.3 Improper selection and usage of tools: The decision 

making activity[9] in the selection and usage of tools 

that are relevant to the different activities of software 

development like fact finding techniques, design and 

test tools will have a major impact. 

1.4  Bad source code: The source code[8] that is 

developed by violating prescribed coding format and 

practices may result in a solution doing the intended 

function by consuming the resources unnecessarily, 

leading to an unmanageable code. Such a bad code 

will generate enormous bottlenecks at the time of 

testing.  

1.5 Module not doing its intended function: A 

module[41] that is expected to do a particular function 

won’t do so. This happens because of many reasons. 

But the test engineers will suffer a lot because of the 

mismatch between the specification and the 

implementation. 

1.6 Improper integration of modules: If modules[32] 

that produce expected results are wrongly integrated, 

then the process of testing it to identify the mistake 

committed while integrating will be a major 

bottleneck.  

1.7 Regression test Limits: Limits should be set for 

regression tests. Testing carried out even after 

reaching the prescribed limits will make the testing 

process to start as a fresh one. This will waste the 

resources in all aspects. Such a situation is an 

important bottleneck in software testing.  

1.8  Lack of formal testing procedures:  If the 

procedure adopted for testing software is not framed 

and followed in a formal way, chances of facing 

bottlenecks are more. This is because a test procedure 

that is not in a standard form will pave way for 

unwanted headaches. 

1.9  Absence of system or functional specification: 

Software Requirements Specification is the base using 

which all the other phases of SDLC[31] can precede. 

Other activities of software development will get 

affected badly if such a base is not available. Testing 

will be a difficult task if performed without a proper 

system specification. 

1.10  In-correct test cases: Test Case[37] is a triplet, that 

states the input, state and output of a system    subject 

to testing. If these test cases are not designed properly, 

then the results   may not be as expected. This leads to 

major setbacks in  testing 

1.11 Ambiguous test conditions: Test conditions that 

contain ambiguity[11] will misguide the test 

engineers. They won’t be able to achieve their 

goals. 

1.12 Frequent changes in requirements: Requirement 

specification[19] that gets altered due to frequent 

changes in customer requirements will affect the 

early activities of testing process very seriously. 

Frequent change request[8] is a major problem 

faced by test planners. 

1.13 Implementation Compromises: Compromises that 

are made during the development stage in-order to 

meet the deadlines, to minimize resource usage, etc 

will create lot of bottlenecks in testing phase. 

 
2. People related: Software development is teamwork. 

There exists a need for human beings in-spite of the 

availability of CASE Tools[17]. People related issues have 

its own impact on the success rate of any activity. Software 

testing has no exemption from this. Human Resources 

related issues also play a major role in determining the 

success of software testing. 

2.1 Test engineers having no exposure to the work 
domain: People recruited, as test engineers should have 

prior hands-on exposure in the related work domain. 

Otherwise the process of training and making the people to 

get accommodated to the work environment will be a 

major bottleneck. 

2.2  Misunderstood facts: “To err is human”. Actual 

facts that are misunderstood by testers will direct them to 

perform activities in a wrong direction. This is applicable 

to the people involved in requirements gathering and 

specification development also. Realizing and correcting 

misunderstood facts is a major bottleneck. 

2.3  Lack of objectives: The members of testing 

teamneeds a proper orientation[12] about the task assigned 

to them. If this is not done properly, then testers won’t be 

aware of the expected results. This will make them to act 

as they like by moving away from the planned path. The 

process of identifying and taking corrective measures after 

a period of time is a cumbersome task. 

2.4  Test engineers doing code coverage tests: Code 

coverage[14] is an activity that has to be performed by 

the person who developed it. Making test engineers to 

perform is not advisable. The reason is that an outsider 



   International Journal of Computer Sciences and Engineering               Vol.-2(5), PP(8-14)  May 2014, E-ISSN: 2347-2693 

                             © 2014, IJCSE All Rights Reserved                                                                                                           13 

cannot perform code coverage test without knowing the 

logic applied to arrive at the solution. 

 
3. Planning related: The success of any activity with an 

objective is determined by the planning done in order to 

make things to happen as expected. Activities that are not 

planned properly won’t yield desired results. Also the 

process of rectifying an outcome of a planned activity is 

very difficult to achieve. 

3.1  Poor quality test plan: Test plan[23] is a 

document that serves as a guideline for carrying out 

testing smoothly. Quality of the test plan is a major factor 

that determines the smooth happening of software testing. 

Testing performed with a poor quality test plan will lead 

to lot of problems. 

3.2  Usage of tools in a wrong manner: Software 

testing tools are meant for enhancing the productivity of a 

tester. Any tool that is not used properly will definitely 

damage the work done. The process of restoring the 

normal state after a wrong usage of a tool is a very difficult 

process. 

3.3  Unorganized team structure:  Team 

formation[38] is an important planning activity having a 

direct impact on the successful outcome of any activity. If 

proper planning is not done for identifying, selecting and 

forming team, the chances of getting into troubles are 

more. A team containing people with different perceptions 

about the assigned task and goal will have very low or no 

productivity at all. The code created by the members of 

such a team will be of bad quality. An unorganized testing 

team will also create problems leading to bottlenecks. 

Most of the bottlenecks created because of unorganized 

team structure are related to human factors, lack of 

understanding between members, lack of orientation about 

the assigned task, ego and other relates aspects. 

3.4  Narrow Deadlines:  Any activity possessing a 

goal, guidelines and a deadline[42] will lead to success. 

Proper understanding of the problem and resource 

requirements will enable the planner to identify a possible 

date and time for completing the task.   

If deadlines are very short than the actual one, 

implementation compromises may occur, leading to poor 

quality code. Such compromises are the main source of 

bottlenecks for the quality assurance personnel. Test 

engineers will get pressure from the project head to finish 

testing in a short period of time because of the delay 

caused in the previous phases of SDLC. 

3.5       Lack of training to team members:  
Members of a  testing team should  have some prior 

knowledge about the work they are going to do. If team 

members are selected in the last minute without giving 

importance to their competency in the work to be allotted, 

their productivity will be very less. Sometimes having 

untrained people will create bottlenecks like 

misinterpretation of the problem[19], wrong usage of the 

tools and resources and lack of co-operation among the 

team members. 

3.6 Target user not known: Testing team members 

should be made aware of the target users of the system 

under development. Providing complete information about 

the product, its target user etc will help the tester to have a 

better understanding about their task. In most of the cases, 

the information about the target user of the proposed 

system is either provided partially or not at all provided to 

the testing team members. This will make the test 

engineers to have their own assumptions about the target 

user and will proceed according to this. Such a proceeding 

will bring a mismatch between the actual system’s features 

and the assumed features of the tester leading to unwanted 

and harmful bottlenecks[8]. 

 

4. Technology Related: Software testing is an activity that 

is more dependent on the technology used. Technology 

related issues like meeting the performance requirements, 

availability and stability of necessary hardware and 

environment are some of the factors that decide the success 

rate of testing[11]. 

 

Performance Bottlenecks: Performance testing[9] is 

conducted to measure the performance related issues of the 

software. Availability of the required environment, 

memory usage, etc., are the major factors. Performance 

tests conducted in an environment with insufficient 

resources will make the test engineers to face lot of 

bottlenecks. 

 

Hardware Failures: A hardware failure during testing 

process is a major bottleneck[8]. This will lead to content 

loss, time loss, resource damage etc. This may happen 

because of executing the software in an environment 

having insufficient resources, improper handling of 

resources, damaged hardware elements etc. 

 
Problems in simulation: Simulated software[25] like 

numeric controllers, flight simulators etc needs an 

environment that resembles the real-time situation. 

Creating and maintaining an exact replica of the real-time 

environment is a difficult task. Test engineers may have 

some constraints in working in such an environment.  

 

XI. CONCLUSION 
 

From the above mentioned findings, it is very clear that 

software testing[41] is an important activity in the software 

development process and it has got a strong relation with 

the other phases of software development. These phases 

may be both the core and umbrella activities. Making the 

members of the software development team to i) 

understand the importance of delivering high quality 

software and their responsibilities in the concerned phases 

of software development, ii) posses interest and 

involvement in the responsibilities assigned and iii) have a 

broader and in-depth view of he over-all objective of 

delivering a high quality product that meets the user 

requirements will definitely make the software 

development activity in general and software testing in 

particular a cake-walk[23]. 

This work explains the bottlenecks related to software 

testing, the reasons for the occurrence of such bottlenecks 

and the possibilities of avoiding such bottlenecks[8]. This 

report also analyses the causes for such bottlenecks and 

provides suggestions to avoid the bottlenecks. 



   International Journal of Computer Sciences and Engineering               Vol.-2(5), PP(8-14)  May 2014, E-ISSN: 2347-2693 

                             © 2014, IJCSE All Rights Reserved                                                                                                           14 

The growth of any filed is purely based on the research 

made in that field. The filed of Computer Science will 

never go for any end process, it will always continue 

forever. This work can be extended to develop a set of 

guidelines for carrying out software testing in a smooth 

manner without any major bottlenecks. These guidelines 

will be based on the four major classifications of the 

bottlenecks identified and discussed here. 

 

REFERENCES 

[1]. Brain Marick, Classic Testing Mistakes,  RSTAR97 

conference. 

[2]. Amit Paradkar, Automated Generation of Self-

Checking Function Tests, ISSRE, July 2002. 

[3]. Clay Williams, Thresa Kratschmer, A Technique for 

Generating Optimized System Test Suites, FSE 10
th

 

Symposium, November 2002. 

[4]. B.Hailpern and P.Santhanam, Software Debugging, 

testing and verification IBM Systems Journal, Vol. 41, 

No. 1, February 2002. 

[5]. Hongxia Jin and P.Santhanam, An approach to higher 

reliability using software components, ISSRE, 

November 2001. 

[6]. Clay Williams and Amit Paradkar, Efficient 

Regression Testing of Multi-Panel Systems, ISSRE, 

November 1999. 

[7]. Jeff Dunmall and Keith Clarke, Real-World Load 

Testing Tips to Avoid Bottlenecks when Your Web 

Apps Goes Live, MSDN , January 2003. 

[8]. Jeff Straathorf, Load Testing Intranet Applications 

Finding Hidden Bottlenecks, www.pureatria.com. 

[9]. [9] Nina Godbole, Try Not to Make these Classic 

Mistakes,  Information Technology October 2000. 

[10]. Mark Johnson,How to do good testing – an interview, 

STQE Magazine. 

[11]. Doug Nickerson, Software Quality Assurance – not for 

Dummies,  www.computerbits.com/archive/2000 

[12]. BS 7925-1-1998, Software Testing Vocabulary 

[13]. IEEE 610, Standard Computer Dictionary. 

[14]. IEEE Std 1028-1997, Standard for software reviews. 

[15].  www.stickyminds.com 

[16]. www.rational.com 

[17]. www.mercury-interactive.com 

[18]. www.vlib.org 

[19]. www.thinkquest.org 

[20]. www.reality-test.com 

[21]. www.riceconsulting.com 

[22]. www.aptest.com 

[23]. www.worksoft.com 

[24]. www.computer.org 

[25]. www.sqatester.com 

[26]. www.stqemagazine.com 

[27]. www.softwareqatest.com 

[28]. www.rspa.com 

[29]. www.qalinks.com 

[30]. www.ibm.com 

[31]. www.sdmagazine.com 

[32]. www.cmu.edu 

[33]. www.tamingthebeast.com 

[34]. www.testing.com 

[35]. www.unicomm.co.uk 

[36]. www.testingreflections.com 

[37]. www.perftestplus.com 

[38]. http://www.sisqa.com/SISQA_downloads.htm 

[39]. http://weblogs.asp.net/rosherove/articles 

[40]. http://www.theserverside.com/articles 

[41]. Roger S.Pressman, Software Engineering a 

Practitioner’s Approach, TMH 

[42]. W.E.Howden, A functional Approach to Program 

Testing and Analysis, IEEE Trans, Vol. SE-     12, 

No.10, October 1986 

[43]. Mordechai Ben-menachem / Garry s.Marliss, Software 

Quality Producting Practical, Consistent Software, 

Thomson Learning 

 
AUTHORS PROFILE 
   

Prof. T.Pushparaj M.C.A., M.Phil., M.B.A., 

(Ph.D)., is working in PSNACET. He has 

rich experience in handling System 

Software, DBMS, Computer Organization, 

Software Engineering, Software Project 

Management. His hobbies are playing 

cricket, reading books and listening 

melodies. He is a  member in ISTE, IAENG. 

He has rich teaching experience of 7 years from a reputed 

esteemed Institution. He is currently pursuing Ph.D in M.K.U 

in the area of Software Testing. 

         

 


