o
AXJCSE International Journal of Computer Sciences and Engineering Open Access

Review Paper Volume-2, Issue-5 E-ISSN: 2347-2693

A Study on Variations of Bottlenecks in Software Testing

S.Kannanl; T.Pushparaj2

! Department of Computer Applications, Madurai Kamaraj University, Madurai, Tamil Nadu, India
*'Department of Computer Applications, PSNA College of Engineering and Technology, Dindigul, Tamil Nadu, India
skannanmku @ gmail.com; pusht82 @ gmail.com

www.ijcseonline.org
Received: 28/04/2014 Revised: 11/05/ 2014 Accepted: 22/05/May 2014 Published: 31/05/2014
Abstract-Software testing is a crucial activity in software development and it determines to completeness of a product. Being
a crucial activity it needs to be carried out smoothly without any difficulties. But in reality it is difficult to carry out testing
smoothly. There exists number of factors and issues that alter the smooth happening of testing. Those factors and issues are
collectively called as bottlenecks[8]. This work aims at the process of identifying the bottlenecks that are very common to
testing, bottlenecks that are application specific and testing type specific, analyse the reasons and provide recommendations
that will make Software Testing[1] to happen without bottlenecks or with minimum bottlenecks. This work was carried out
in two phases. Phase 1, was conducted to know and understand the existence of bottlenecks in software testing. Phase 2,

deals with the analysis of bottlenecks and recommendations to avoid or minimize bottlenecks.

General Terms- Bottle Neck

Keywords- 1ST, UAT, SUT, SRS

I. INTRODUCTION

The paper work entitled “Variations of Bottlenecks in
Software Testing — An Analysis “deals with the process
of exploring, bringing out and analyzing the bottlenecks
present is software testing. Followed by that suitable
recommendations are provided based on the findings.
* Emphasizing the need for testing as an important
activity in software development.
= Identification of Umbrella activities that has a direct
impact on delivering a complete product.
= Identification of bottlenecks[42] that are very
common to any type of testing and any kind of
product (Software) developed.
= Identification of bottlenecks that are specific to the
type of testing and specific to the kind of product
developed.
= Analysing the reasons for the existence of these
bottlenecks based upon the data collected.
= Providing suitable recommendations to avoid or to
minimize the presence of bottlenecks[3].
= Identification of further scope of enhancing the
work.
= Identify the various bottlenecks present is software
testing.
= Identify the bottlenecks that have the origin in the
early phases of software development life cycle.
= Analyse the reasons for the existence of bottlenecks.
= (lassify the bottlenecks that are very common and
specific to any kind of product (software) and any
type of testing.
= Co-relate the reasons that act as the source for
various bottlenecks.
= Identify the need for the proper selection,
orientation and employment of Test Engineers[24].
* Emphasize the need for following engineering
principles in software development.
= Making the software team to understand the need
for providing a friendly testing environment.

= Making recommendations to avoid or to minimize
bottlenecks.

II. LEVELS OF TESTING

Unit testing [UT]

Unit testing[5] is the process of testing a program module
and running it in isolation from the rest of the software
product by using prepared input and comparing the actual
results with the results predicted by the specifications and
design of the module.

Integrated System Testing [IST]

Integrated System Testing (IST) is a systematic technique
for verifying the construction of the overall software
structure. It is a set of activity that ensures, that the
software correctly implements a specific function. IST[34]
tests the conformance of the software to specifications.

User Acceptance Testing [UAT]

User Acceptance Testing (UAT) is performed by users or
on behalf of the users to ensure that the application
developed conforms to business requirements[43]. It is a
set of activity that ensures, that software built is traceable
to customer requirements.

Difference between IST and UAT

Particulars IST UAT
Base line | Functional Business
document Specification | Requirement
Data Simulated Live Data
Environment Controlled Simulated Live
Orientation Component Business
Tester Testing Firm | Testing Firm / users
composition
Purpose Verification Validation

Corresponding Author: T.Pushparaj
© 2014, IJCSE All Rights Reserved

International Journal of Computer Sciences and Engineering

III. TYPES OF TESTING

1.1 White-box Testing

Tests are based on coverage of internal code statements,
branches, paths and conditions. Also known as glass-box
testing[20].

1.2 Black-box Testing

Testing focuses on the functional aspects of the
application. It enables the software engineer to derive sets
of input conditions that will fully exercise all functional
requirements for a program.

1.3 Regression Testing

Each time a new module is added as a part of integration
testing, the software changes. Regression testing is the re-
execution of some subset of tests that have already been
conducted to ensure that changes have not propagated
unintended side effects.

1.4 Recovery Testing

This is a system test that forces the software to fail in
variety of ways and verifies that recovery is properly
performed. If recovery is automatic (performed by the
system itself), re-initialization, checkpoint
mechanisms[9], data recovery and restart are evaluated
for correctness. If recovery requires human intervention,
the mean-time-to-repair (MTTR) is evaluated to
determine whether it is within acceptable limits.

1.5 Security Testing

This testing attempt to verify that protection mechanisms
built into a system will, in fact, protect it from improper
penetration.

1.6 Compatibility Testing

The purpose of compatibility testing[10] is to evaluate
how well software performs in a particular hardware,
software, operating system, browser, or network
environment.

1.7 Performance Testing

Performance testing[5] is designed to test the run-time
performance of software within the context of an
integrated system.

The testing process

Comporent
testing testing 38

Integration testing User

€
f&] CSE ©2014, JCSE All Rights Reserved

Vol.-2(5), PP(8-14) May 2014, E-ISSN: 2347-2693

Testing phases

Detailed
design

Requirements
specification

System
specification

System
design

System
integration
test plan

Sub-system
integration
test plan

Module and
unit code
and tess

Acceptance
test plan

System
integration test

Sub-system
integration test

Acceptance
test

40

IV. PUTTING SOFTWARE TESTING IN
CONTEXT

Software testing[6] is the process of exercising a software
product to verify that it satisfies the specified requirements
and to detect errors can be viewed as a part of system
engineering. The relationship is shown in the following
figure.

Systems Engineering

Software Engineering

SoftwareVYerification & Yalidation

Software Testing

The Process Context of Software Testing

Quality context of Software Testing

From a quality perspective, testing as part of verification
and validation can be seen as an integral part of SQA[39].
If software is a part of a large system, then testing can also
be considered as a part of overall quality assurance.
Following is a diagrammatic representation of the same.

Quality Management & Assurance

Software Quality Assurance

Software¥erification & ¥Yalidation

Software Testing

The Quality Context of Software Testing

International Journal of Computer Sciences and Engineering Vol.-2(5), PP(8-14) May 2014, E-ISSN: 2347-2693

&

Terminology context of Software Testing
This is a representation of software testing with a
terminology perspective. It contains natural language at the

highest level. Computing terms and software engineering
terms are at the lower levels. Clieat £opl(LT)
%
Watural Language
System P
- Under C st "') e
Computing Terms Test

Software Engineering Terms

Service Provider Layer

VI. REAL - LIFE SITUATIONS

Software Testing
Terms

Following is a set of real-life situations taken into
consideration for analysing and finding the bottlenecks
pertaining to software testing. Bottleneck[28] is anything
that hinders the process of software testing.
Bottlenecks common to any testing process.
a) One bottleneck is the change in specifications by the
client. (Functionality testing bottleneck)

1. Test Tools Selection b) When the development time is more than expected, it
becomes a general tendency to reduce the testing time.
Testers are asked to test within a short duration of
time. (General testing bottleneck)

¢) Insufficient information in the SRS or test cases

Terminology Context of Software Testing

V. CHALLENGES IN AUTOMATED TESTING

Test tool selection[5] is a critical factor in the success of
test automation. This requires the study of the scope of
testing and test strategy and then selection of the right test
tool, to meet the requirements of automating test-suite for
a particular product and release. The factors to be taken without proper coverage can be a bottleneck at times.
into consideration while selecting a tool are reusability, (Functionality testing bottleneck)
reliability and cost. d) When regression testing[17] is done, generally, the
A test tool should essentially support test cases and test plans may not be clear. When the
= scripting Interface person first develops it, it is understandable by him,
= facility to give invalid input but at a later point of time, the newer testers may not
» facility to Control IUT[17] (Implementation Under understand them.
Test) & Peer e) Test plans[14] and test cases may not be updated. The

= result comparison & verdict declaration facility
= The level of automation targeted should be done
along with the test tool selection

tester will be testing it on a different version and the
test fails because, the test case was for a previous
version. Though the software has failed the test, the

2. Customization of the Tool

The Test Manager should always look for standard tools if
available in the market, and go customize the existing
tools[32]. New tools should be developed only as a last

resort. Customization[9] is a most viable option with f)
provisions for enhancement.

3. Development and Verification of Scripts

Scripting[5] effort includes development and testing of
scripts. This depends upon the two factors. First, skill of
the persons involved and secondly, the capability of the
test tool to provide flexibility to develop scripts for all
valid and invalid scenarios. However, it is recommended
that scripting should always be done in a modular manner
so that the same modules can be reused in different scripts. JDK1.4[22], but the installations were done in JDK
It is always advised that all scripts should be tested with a 1.2. The software did not even get installed in it.
release prior to the actual test execution so that during the h) Generally, testers are not familiar with the technology.
real testing no problems are found in scripts. Software or a module that is developed using a new
4. Implementation of a Test Management system technology always takes larger time to develop and to
This is to facilitate complete automation in terms of test.

managing the scripts at the System Under Test (SUT) and i) The main problem between testers and developers is
tester simultaneously and for consolidating the test results due to lack of communication. Sometimes, the
at one place[30]. developers see the testers as their adversaries. Lack of

software is still working fine. This becomes an issue

and it is sent back to the developer. He comes out

with the result that it is correct and the test case is
wrong.

One or two developers make more than acceptable

mistakes. In that case, though the bug is found, the

testers generally do not report all of them on the same
day, because, doing so will reflect on the developer.

g) Difference in the development and execution
environment. Testing may be done in a different
version and development would have been in a
different version. Thus the software fails. For
example, a data migration tool was developed using

€
;&] CSE ©2014, JCSE All Rights Reserved 10

International Journal of Computer Sciences and Engineering

professionalism among the testers may become a
bottleneck for testing in this case.

VII. PERFORMANCE TESTING RELATED
BOTTLENECK - DATA MIGRATION
TOOL

When a software application is newly installed in a client
location, a particular tool for migrating legacy database of
the client, to the software’s Database is used. This tool
works correctly and the tool can handle a maximum of
10,000 records per minute. But, one of the recent clients,
(perhaps the largest to date) (name is not mentioned
because it is confidential) had a very huge database and
when this tool was used, performance of the tool was very
poor. It took five hours to migrate a single database. There
are 500 such databases. So, the client will take 2500 hours
to migrate everything. It will also take an additional
hundred hours for setup. (325 days). This is a performance
issue. This issue was found, when the tool was subjected to
performance testing before giving it to the client. Now,
this has become a high priority issue. This client uses ASA
(Sybase) database in the legacy system[40] and the new
system.

Now, the performance related issues that should be

addressed are:

1. The database that took five hours for migration was
ASA (Sybase) database and ASA[37] database generally
resides in the client machine only. So, if ASA alone is
going to be used, it is enough if the configuration of the
machine in which the migration is run alone is upgraded.

2. Even if a dedicated server is set up, the speed of
migration is dependent upon the speed of the network.

3. If the ASA database and the application run on the same

machine it is faster than what it will be if the ASA DB and

application run on different machines.

4. If a dedicated DB server has to be used, what DB should
it run is an important concern, because there are three
different Databases in use, Oracle, DB2 and Sybase?

VIII. DATABASE TESTING BOTTLENECK

Database is a major component of any information system.
It is also called as the driving force of an information
system. Database’s performance plays an important role in
the working of an information system. Database
testing[16] is done in various ways. The major activity is
Performance Tuning. Apart from that the verification and
validations to be done is also important. Database tests[26]
are supported via ODBC using the following functions:
SQLOpen, SQLClose, SQLError, SQLRetrieve,
SQLRetrieveToFile, SQLExecQuery, SQLGetSchema and
SQLRequest.

Cursor type operations[12] can be carried out by
incrementing arrays of returned datasets. All SQL queries
are supplied as a string. Stored procedures can be

executed.

In Database testing we need to check for
1. The field size validation[19]

€
f&] CSE ©2014, JCSE All Rights Reserved

Vol.-2(5), PP(8-14) May 2014, E-ISSN: 2347-2693

2. Check constraints.

3. Indexes[25] are done or not (for performance related
issues)

4. Stored procedures[35]

5. The field size defined in the application is
with that in the database.

matching

The database component is a critical piece of any data-
enabled application. Today’s intricate mix of client-
server[31] and Web-enabled database[21] applications are
extremely difficult to Test productively. Testing at the data
access layer is the point at which the application
communicates with the database. Tests at this level are
vital to improve not only the overall Test strategy, but also
the product’s quality.

IX. CLIENT / SERVER APPLICATION
RELATED BOTTLENECK

In a client server environment a client may get its
requested processed by a server. At a particular moment a
client may request and utilize a set of services from the
server application. For this purpose, a linking file / thread
will be maintained. This thread maintains the list of active
applications / services requested and used by a client. The
thread should maintain the programs that are currently in
use, others should be removed from the active list by
properly disconnecting them. Normally the developers /
programmers miss this concept. This leads to a major
performance bottleneck in-term of poor performance and
more response time from the server, sometimes leading to
server hangovers and crashes. This issue will be noticed
only during User-acceptance testing[13] carried out with
real data which is huge in amount and invokes all the
services provided by the server.

X. REASONS OF BOTTLENECKS IN
SOFTWARE TESTING
Bottlenecks occur in software testing for various reasons.
Those bottlenecks are classified into the following four
categories. Process Related[11], People Related, Planning
Related and Technology related bottlenecks.

1. Process Related: It contains the bottlenecks that arise
from the Software Development Life Cycle activities
like Analysis, Design, Coding and other Umbrella
Activities.

2. People Related: It contains the bottlenecks that arise
because of personnel related issues. The success of
any task depends upon the members to whom the
responsibility of doing that is given. Good
understanding is a major factor that breaks any
obstacles in the path of success.

3. Planning Related: It contains the bottlenecks that
have their origin from planning related mistakes. Any
task carried out without a proper plan will fail
miserably. Being a customer centric industry, software
development is more dependent on plans.

4. Technology Related: It contains the bottlenecks[19]
that arise because of technology related issues like
non-availability of required environment, tools and so
on.

11

International Journal of Computer Sciences and Engineering

Software Testing contains more number of Process and
People related bottlenecks. Most of the bottlenecks are
interdependent.

1. Process Related: Process related bottlenecks have their
origin from the early phases of SDLC[7] like requirements
gathering, SRS preparation[8] and other background or
umbrella activities like project planning, scheduling, test
planning and team structure formation.

1.1 Incomplete SRS: System Requirement
Preparation[12] is the very basic activity that needs
utmost care. If the fact finding methods are not
adopted properly, then the resultant will be an
incomplete and incorrect specification. Even effective
validations[35] and reviews cannot identify these
errors. Requirements that are wrongly specified will
serve as the root cause for further problems. Testing a
product that is developed by using an incomplete base
will be definitely very tedious. It will result in lot of
rework that will almost lead to re-initiation of the
work from the scratch.

1.2 Lack of Communication: In most of the cases the
communication gap between the client and the
developer (Team) will be enormous. This gap needs
proper attention[10]. If proper steps are not taken to
remove or reduce the gap, the result will be a set of
activities that are highly ambiguous in nature. These
confusions will come right from the user specification
to test cases.

1.3 Improper selection and usage of tools: The decision
making activity[9] in the selection and usage of tools
that are relevant to the different activities of software
development like fact finding techniques, design and
test tools will have a major impact.

1.4 Bad source code: The source code[8] that is
developed by violating prescribed coding format and
practices may result in a solution doing the intended
function by consuming the resources unnecessarily,
leading to an unmanageable code. Such a bad code
will generate enormous bottlenecks at the time of
testing.

1.5 Module not doing its intended function: A
module[41] that is expected to do a particular function
won’t do so. This happens because of many reasons.
But the test engineers will suffer a lot because of the
mismatch between the specification and the
implementation.

1.6 Improper integration of modules: If modules[32]
that produce expected results are wrongly integrated,
then the process of testing it to identify the mistake
committed while integrating will be a major
bottleneck.

1.7 Regression test Limits: Limits should be set for
regression tests. Testing carried out even after
reaching the prescribed limits will make the testing
process to start as a fresh one. This will waste the
resources in all aspects. Such a situation is an
important bottleneck in software testing.

1.8 Lack of formal testing procedures: If the
procedure adopted for testing software is not framed

€
f&] CSE ©2014, JCSE All Rights Reserved

Vol.-2(5), PP(8-14) May 2014, E-ISSN: 2347-2693

and followed in a formal way, chances of facing
bottlenecks are more. This is because a test procedure
that is not in a standard form will pave way for
unwanted headaches.

1.9 Absence of system or functional specification:
Software Requirements Specification is the base using
which all the other phases of SDLC[31] can precede.
Other activities of software development will get
affected badly if such a base is not available. Testing
will be a difficult task if performed without a proper
system specification.

1.10 In-correct test cases: Test Case[37] is a triplet, that
states the input, state and output of a system subject
to testing. If these test cases are not designed properly,
then the results may not be as expected. This leads to
major setbacks in testing

1.11 Ambiguous test conditions: Test conditions that
contain ambiguity[11] will misguide the test
engineers. They won’t be able to achieve their
goals.

1.12 Frequent changes in requirements: Requirement
specification[19] that gets altered due to frequent
changes in customer requirements will affect the
early activities of testing process very seriously.
Frequent change request[8] is a major problem
faced by test planners.

1.13 Implementation Compromises: Compromises that
are made during the development stage in-order to
meet the deadlines, to minimize resource usage, etc
will create lot of bottlenecks in testing phase.

2. People related: Software development is teamwork.
There exists a need for human beings in-spite of the
availability of CASE Tools[17]. People related issues have
its own impact on the success rate of any activity. Software
testing has no exemption from this. Human Resources
related issues also play a major role in determining the
success of software testing.
2.1 Test engineers having no exposure to the work
domain: People recruited, as test engineers should have
prior hands-on exposure in the related work domain.
Otherwise the process of training and making the people to
get accommodated to the work environment will be a
major bottleneck.
2.2 Misunderstood facts: “To err is human”. Actual
facts that are misunderstood by testers will direct them to
perform activities in a wrong direction. This is applicable
to the people involved in requirements gathering and
specification development also. Realizing and correcting
misunderstood facts is a major bottleneck.
2.3 Lack of objectives: The members of testing
teamneeds a proper orientation[12] about the task assigned
to them. If this is not done properly, then testers won’t be
aware of the expected results. This will make them to act
as they like by moving away from the planned path. The
process of identifying and taking corrective measures after
a period of time is a cumbersome task.
2.4 Test engineers doing code coverage tests: Code
coverage[14] is an activity that has to be performed by
the person who developed it. Making test engineers to
perform is not advisable. The reason is that an outsider

12

International Journal of Computer Sciences and Engineering

cannot perform code coverage test without knowing the
logic applied to arrive at the solution.

3. Planning related: The success of any activity with an
objective is determined by the planning done in order to
make things to happen as expected. Activities that are not
planned properly won’t yield desired results. Also the
process of rectifying an outcome of a planned activity is
very difficult to achieve.

3.1 Poor quality test plan: Test plan[23] is a
document that serves as a guideline for carrying out
testing smoothly. Quality of the test plan is a major factor
that determines the smooth happening of software testing.
Testing performed with a poor quality test plan will lead
to lot of problems.

3.2 Usage of tools in a wrong manner: Software
testing tools are meant for enhancing the productivity of a
tester. Any tool that is not used properly will definitely
damage the work done. The process of restoring the
normal state after a wrong usage of a tool is a very difficult
process.

33 Unorganized team structure: Team
formation[38] is an important planning activity having a
direct impact on the successful outcome of any activity. If
proper planning is not done for identifying, selecting and
forming team, the chances of getting into troubles are
more. A team containing people with different perceptions
about the assigned task and goal will have very low or no
productivity at all. The code created by the members of
such a team will be of bad quality. An unorganized testing
team will also create problems leading to bottlenecks.
Most of the bottlenecks created because of unorganized
team structure are related to human factors, lack of
understanding between members, lack of orientation about
the assigned task, ego and other relates aspects.

34 Narrow Deadlines: Any activity possessing a
goal, guidelines and a deadline[42] will lead to success.
Proper understanding of the problem and resource
requirements will enable the planner to identify a possible
date and time for completing the task.

If deadlines are very short than the actual one,
implementation compromises may occur, leading to poor
quality code. Such compromises are the main source of
bottlenecks for the quality assurance personnel. Test
engineers will get pressure from the project head to finish
testing in a short period of time because of the delay
caused in the previous phases of SDLC.

3.5 Lack of training to team members:

Members of a testing team should have some prior
knowledge about the work they are going to do. If team
members are selected in the last minute without giving
importance to their competency in the work to be allotted,
their productivity will be very less. Sometimes having
untrained people will create bottlenecks like
misinterpretation of the problem[19], wrong usage of the
tools and resources and lack of co-operation among the
team members.

3.6 Target user not known: Testing team members
should be made aware of the target users of the system
under development. Providing complete information about
the product, its target user etc will help the tester to have a

€
f&] CSE ©2014, JCSE All Rights Reserved

Vol.-2(5), PP(8-14) May 2014, E-ISSN: 2347-2693

better understanding about their task. In most of the cases,
the information about the target user of the proposed
system is either provided partially or not at all provided to
the testing team members. This will make the test
engineers to have their own assumptions about the target
user and will proceed according to this. Such a proceeding
will bring a mismatch between the actual system’s features
and the assumed features of the tester leading to unwanted
and harmful bottlenecks[8].

4. Technology Related: Software testing is an activity that
is more dependent on the technology used. Technology
related issues like meeting the performance requirements,
availability and stability of necessary hardware and
environment are some of the factors that decide the success
rate of testing[11].

Performance Bottlenecks: Performance testing[9] is
conducted to measure the performance related issues of the
software. Availability of the required environment,
memory usage, etc., are the major factors. Performance
tests conducted in an environment with insufficient
resources will make the test engineers to face lot of
bottlenecks.

Hardware Failures: A hardware failure during testing
process is a major bottleneck[8]. This will lead to content
loss, time loss, resource damage etc. This may happen
because of executing the software in an environment
having insufficient resources, improper handling of
resources, damaged hardware elements etc.

Problems in simulation: Simulated software[25] like
numeric controllers, flight simulators etc needs an
environment that resembles the real-time situation.
Creating and maintaining an exact replica of the real-time
environment is a difficult task. Test engineers may have
some constraints in working in such an environment.

XI. CONCLUSION

From the above mentioned findings, it is very clear that
software testing[41] is an important activity in the software
development process and it has got a strong relation with
the other phases of software development. These phases
may be both the core and umbrella activities. Making the
members of the software development team to i)
understand the importance of delivering high quality
software and their responsibilities in the concerned phases
of software development, ii) posses interest and
involvement in the responsibilities assigned and iii) have a
broader and in-depth view of he over-all objective of
delivering a high quality product that meets the user
requirements will definitely make the software
development activity in general and software testing in
particular a cake-walk[23].

This work explains the bottlenecks related to software
testing, the reasons for the occurrence of such bottlenecks
and the possibilities of avoiding such bottlenecks[8]. This
report also analyses the causes for such bottlenecks and
provides suggestions to avoid the bottlenecks.

13

International Journal of Computer Sciences and Engineering

The growth of any filed is purely based on the research
made in that field. The filed of Computer Science will
never go for any end process, it will always continue
forever. This work can be extended to develop a set of
guidelines for carrying out software testing in a smooth
manner without any major bottlenecks. These guidelines
will be based on the four major classifications of the
bottlenecks identified and discussed here.

REFERENCES
[1]. Brain Marick, Classic Testing Mistakes, RSTAR97
conference.

[2]. Amit Paradkar, Automated Generation of Self-
Checking Function Tests, ISSRE, July 2002.

[3]. Clay Williams, Thresa Kratschmer, A Technique for
Generating Optimized System Test Suites, FSE 1o*
Symposium, November 2002.

[4]. B.Hailpern and P.Santhanam, Software Debugging,
testing and verification IBM Systems Journal, Vol. 41,
No. 1, February 2002.

[5]. Hongxia Jin and P.Santhanam, An approach to higher
reliability using software components, ISSRE,
November 2001.

[6]. Clay Williams and Amit Paradkar, Efficient
Regression Testing of Multi-Panel Systems, ISSRE,
November 1999.

[7]. Jeff Dunmall and Keith Clarke, Real-World Load
Testing Tips to Avoid Bottlenecks when Your Web
Apps Goes Live, MSDN , January 2003.

[8]. Jeff Straathorf, Load Testing Intranet Applications
Finding Hidden Bottlenecks, www.pureatria.com.

[9]. [9] Nina Godbole, Try Not to Make these Classic
Mistakes, Information Technology October 2000.

[10]. Mark Johnson,How to do good testing — an interview,
STQE Magazine.

[11]. Doug Nickerson, Software Quality Assurance — not for
Dummies, www.computerbits.com/archive/2000

[12]. BS 7925-1-1998, Software Testing Vocabulary

[13]. IEEE 610, Standard Computer Dictionary.

[14]. IEEE Std 1028-1997, Standard for software reviews.

[15]. www.stickyminds.com

[16]. www.rational.com

[17]. www.mercury-interactive.com

[18]. www.vlib.org

[19]. www.thinkquest.org

[20]. www.reality-test.com

[21]. www.riceconsulting.com

[22]. www.aptest.com

[23]. www.worksoft.com

[24]. www.computer.org

[25]. www.sqatester.com

[26]. www.stqgemagazine.com

[27]. www.softwareqatest.com

[28]. www.rspa.com

[29]. www.qalinks.com

[30]. www.ibm.com

[31]. www.sdmagazine.com

[32]. www.cmu.edu

[33]. www.tamingthebeast.com

[34]. www.testing.com

[35]. www.unicomm.co.uk

[36]. www.testingreflections.com

[37]. www.perftestplus.com

€
f&] CSE ©2014, JCSE All Rights Reserved

Vol.-2(5), PP(8-14) May 2014, E-ISSN: 2347-2693

[38]. http://www.sisqa.com/SISQA_downloads.htm

[39]. http://weblogs.asp.net/rosherove/articles

[40]. http://www.theserverside.com/articles

[41]. Roger S.Pressman, Software
Practitioner’s Approach, TMH

[42]. W.E.Howden, A functional Approach to Program
Testing and Analysis, IEEE Trans, Vol. SE- 12,
No.10, October 1986

[43]. Mordechai Ben-menachem / Garry s.Marliss, Software
Quality Producting Practical, Consistent Software,
Thomson Learning

Engineering a

AUTHORS PROFILE

Prof. T.Pushparaj M.C.A., M.Phil.,, M.B.A.,
(Ph.D)., is working in PSNACET. He has
rich experience in handling System
Software, DBMS, Computer Organization,
Software Engineering, Software Project
Management. His hobbies are playing
cricket, reading books and listening
melodies. He is a member in ISTE, IAENG.
He has rich teaching experience of 7 years from a reputed
esteemed Institution. He is currently pursuing Ph.D in M.K.U
in the area of Software Testing.

14

