

 © 2017, IJCSE All Rights Reserved 110

 International Journal of Computer Sciences and Engineering Open Access
Review Paper Volume-5, Issue-3 E-ISSN: 2347-2693

Framework for Object Oriented WWW Applications using

Embedded Concepts

A. Chagi

School of Computing & IT, REVA University, Bangalore, India

*Corresponding Author: anitachagi@reva.edu.in

Available online at: www.ijcseonline.org

Received:27/Feb/2017 Revised: 06/Mar/2017 Accepted: 25/Mar/2017 Published: 31/Mar/2017

Abstract—We present the design of a C++ framework for building custom Web agent applications. Our framework

includes abstractions for networking and communications as well as a format-independent set of classes for representing

document components. We discuss the design and parts of the implementation of the framework and present possible

extensions till date.

Keywords—www; Agent; Abstraction; Object; Class; Framework.

I. INTRODUCTION

Over the last several years, the World-Wide-Web (WWW)

has grown enormously and has become an invaluable source

of information of all kinds. The result is a great deal of

popularity enjoyed by Mosaic, Netscape, internet explorer,

chrome and other browsers. The availability of the Web has

also made HTML (different versions) a common means for

exchanging data. Many corporations are using Web

connections as a standard means from the start for retrieving

information from remote databases located within the

enterprise as well as outside.With the availability of

information in HTML form, it is natural to create custom

applications which do not merely browse the Web but extract

information to perform specific tasks. For example, one can

create a collection of “agent” applications that conduct

routine periodic activities. An agent that synchronizes clocks

might retrieve time information from a global time server; a

sports enthusiast’s personal information manager might

retrieve information about sports events on television and

arrange his schedule to watch them.Building such agents is

eased significantly if a collection of C++ classes is available

that encapsulate the networking and document-specific

aspects of interaction with the Web.

Such classes offer several advantages:

High-level abstractions: They can hide the low-level details

of accessing the Web and Make it possible for the application

programmer to focus on application-specific tasks.

Platform independence: The class interfaces can mask: out all

platform-specific aspects so that the application that uses the

classes is naturally portable across platforms.

Document format independence: We can define the class

interfaces to represent abstract notions relating to documents

rather than specific to a particular representation language

such as HTML. This isolates the application from language

details, thus preserving its extensibility. For example, if a

subsequent version of the application needed support for a

different document format such as Adobe PDF or BTEX [1],

it is only necessary to change the implementations of the

document classes; the rest of the application code is

unaltered.

Embeddability: Unlike other interpreted languages such as

Java and Smalltalk, C++ is usable in conjunction with other

languages such as C or FORTRAN to the extent that one

application can be built using more than one of these

languages.

In this paper, we describe the design and implementation of

such a set of classes. In addition to the above properties, our

classes preserve extensibility and reusability by making full

use of the inheritance and polymorphism available in C++.

They also achieve robustness via utilization of C++

exception-handling facilities. The design of the classes uses

some of the ideas of Booch [2] and design patterns

expounded in [5]. Our classes are designed to leverage the

portability and GUI capabilities of the existing class library

YACL [9].We begin with the considerations that drive the

design and discuss the resulting classes and their methods.

We then show a few examples to illustrate how these classes

may be used. We also address the question of how to support

computations that are not directly performable via HTML.

We also address the question of how to support computations

that are not directly performable via HTML.

II. RELATED WORK

In this section, we briefly discuss two projects whose

contents are related to the work described in this paper.

 International Journal of Computer Sciences and Engineering Vol.5(3), Mar 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 111

The Java project includes a framework for Web access, with

the HotJava application for browsing. Java is an interpreted

language, so that the entire Java interpreter is part of any

Java application. The result is that any Java objects-even

ones that neither the server nor the browser is aware of may

be transmitted across the network via any Web server that

supports the feature. This makes Java a powerful and highly

programmable environment. On the other hand, this also

entails other problems, such as reduced execution speed and

greater difficulty in linking with non-Java libraries. There are

also security concerns arising because entire Java

applications can be transmitted in response to queries. We

choose to use C++ in order to overcome these problems.

However, it is possible to construct custom objects

(discussed later in this paper) to facilitate some of the

programmability offered by interpreted languages such as

Java.

The ASX framework includes classes for distributed

computation, with class abstractions for communication

mechanisms, event demultiplexing, service configuration,

and the like. ASX's emphasis is, however, is on providing a

general-purpose framework for distributed processing. Our

work in this paper is directed specifically at Web client and

agent applications.

The CORBA standard provides a basis for object-oriented

distributed computation. We propose to include support in

subsequent extensions of this work [3].

III. DESIGN OF THE CLASSES

A Web agent needs at least four different aspects of Web-

related functionality:

 Determining the resource id's (URL's) of relevant

documents;

 Retrieving documents from a remote server;

 Rendering the documents, in part or whole, on a local

display; and

 Extracting information from retrieved documents for

subsequent use.

Of these, we address the last three aspects. We omit the

issue of determining appropriate URL's, since there are

now several search engines available for this purpose.

Network-related classes
First, consider the aspect of retrieving a document. Ideally, a

programmer would want to simply specify a resource (via its

URL) and ask the library t o retrieve the resource via code

that looks like this:

Document* aDoc ;

ResourceSpec aSpec ("http://nnn.cs.sc.edu");

aDoc = RetrieveDocument (aSpec);

This suggests the need for ResourceSpec and Document

classes [4]. The RetrieveDocument function retrieves and

returns the document with the specified ResourceSpec

value. (In practice, rather than returning a Document

instance, the function returns a pointer t o a Document

object, enabling it to potentially return an instance of a

derived class and thus exploit polymorphism). This code

fragment reinforces the viewpoint that every ResourceSpec

value has a unique Document associated with it. The code

fragment above suggests the view that the application

programmer is only concerned with the document itself, not

the kind of connection used to retrieve the document. This is

not always the case; occasionally, the programmer might

wish to specify the kind of connection t o be used, e.g., ftp or

gopher. This suggests the need for a connector, which is an

object that creates connections. The connector is a factory

that creates other objects. To illustrate its use, here is the

Retrieve Document function.

extern Connector Theconnector;

Document* RetrieveDocument

(const ResourceSpec& spec)

{

// Get a connection from the factory:

Connection* httpConn = Theconnector

MakeHTTPConnection (spec.Address());

// Build a stream for the document: HTMLStream&

aStream = httpConn-> Documentstream

(spec.Document());

// Reconstruct the Document from the stream:

Document* aDoc

aStream>> aDoc; httpConn->Close();

return aDoc;

}

This function assumes the existence of a global instance

Theconnector of Connector, which creates and returns

connections. It also uses the ResourceSpec's Type, Address

and Offset member functions; thus a ResourceSpec object is

thought of as encapsulating the connection type needed to get

the resource (HTTP, FTP, gopher etc.), the address of the

remote machine at which the resource is located, and the

offset (or local URL) on that machine. The HTMLStream

class is discussed later.

The library provides an abstract Connection class. From this

class are derived the concrete classes HTTPConnection,

FTPConnection and Gopherconnection (among others),

which override some of Connection's methods. The abstract

class provides a standard interface through which application

code can interact with every kind of connection. This scheme

decouples the application code from the implementations of

different kinds of connections, so that new kinds of

connections can be added, and existing connection types

extended, without breaking application code.

 International Journal of Computer Sciences and Engineering Vol.5(3), Mar 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 112

Documents and related classes

The document classes represent two broad categories of

objects: documents and their contents, and the media on

which the documents are stored [5].

Storage media classes

We think of documents as stored in a data stream. A data

stream stores a passive representation of a document (in

contrast t o the active representation as a C++ object). Data

streams can be classified according to the format in which

they store data; thus, for example, we distinguish HTML data

streams from LATEX data streams. The class abstractions

naturally mirror these concepts: the HTMLStream class

represents a data stream in HTML form, while the

LaTeXStream class represents a data stream in LATEX form.

The stream classes view their content as character strings, and

include the capabilities for searching the

string by content. This facility allows the application to cull

any data it needs from the passive representation.

Document classes
The classes in the document category represent documents

and their components. The classes are designed so that the

application programmer can think of them as abstractions

rather than in terms of their representations in HTML or some

other language. For example, an OrderedList is a sequence

of strings, while a Table is an object that represents a two-

dimensional array of cells, each containing other document

items. The member functions defined on these classes

correspond in a natural way to the operations performable on

the abstractions they represent. For example, an object of the

Table class can be asked to return the item in a particular

cell of the table, while an OrderedList can be asked to return

one of its contained items.

Abstractly, a document, represented by the class Document,

is a tree of document items. The tree corresponds naturally to

the parse tree of an HTML document. A document item,

represented by the class DocumentItem, is a part of a

document. DocumentItem is an abstract class which, like

Connection, provides a standard interface through which

application code can access elements of a document. A

document is a sequence of one or more document items.

The DocumentItem class provides protocol (via pure-virtual

member functions) for conversion back and forth between

the item and a passive representation on a data stream. This

design requires the DocumentItem classes to interact with

data stream classes, not directly with connection classes. This

is natural, since documents can exist independently of

network connections[6]. This design also makes possible the

creation of applications that, manipulate documents without

interaction with a network. Figure 1 shows part of the

DocumentItem interface.

To ensure type safety (so that type errors are caught at

compile time), the signatures of these functions include the

kind of data stream involved.

Document items can be simple t.ext strings or composite

entities such as ordered or unordered lists. They can also be

text strings qualified with font changes (such as the HTML

 item) or emphasis change (such as the

HTML <I>and items or the LATEX {\tt } group). Thus

each kind of document item has a corresponding class

derived from DocumentItem.

The containment relationship that, exists among document

items (e.g., an ordered list contains a sequence of items

representing the elements of the list) carries over naturally t o

this model. Thus the OrderedList class contains a sequence

of DocumentItem objects; each of these may itself be of a

class derived from Document Item, thus providing for nested

structures to exist.

Class DocumentItem{

public:

bool ReadFrom (HTMLStream& astream) =0 ;

bool WriteTo (HTMLStream& aStream) = 0 ; bool

DisplayOn (VisualObject* v ,

const Rectangle& aRect)= 0 ;

};

Figure 1: The DocumentItem protocol

The DocumentItem class also includes a standard means for

displaying the item on a part of the user’s screen. Every

DocumentItem subclass determines its own visual

representation, and therefore carries its own implementation

of the DisplayOn function, using polymorphism[7]. The

DocumentItem class also includes support for layout of

items in a visually pleasing manner. This includes algorithms

for typesetting the item on the display. The visual and

graphic aspects of the classes, however, are not addressed in

this paper.

There are two special kinds of document items: linkable

items and forms. Both are represented by classes derived

from DocumentItem. The LinkableItem class represents a

document item that is tagged as a hyperlink, with an

associated URL. The Hyperlink class encapsulates an actual

link; it contains a LinkableItem and a ResourceSpec. The

Hyperlink encapsulates the knowledge of how to retrieve

and utilize the resource associated with the URL in the link.

The Hyperlink class also includes the (GUI-related) ability t

o notify the application when the user clicks on its visual

representation[8].

The Form is a class representing forms on a browser’s

display, representing the Form entity in HTML. Most of the

Form’s capability is built using YACL’s GUI classes, with

text entry regions, buttons and other graphical user interface

elements.

Customizing DocumentItem classes
As pointed out earlier, the DocumentItem class represents

the abstract notion of an item in a document and need not be

 International Journal of Computer Sciences and Engineering Vol.5(3), Mar 2017, E-ISSN: 2347-2693

 © 2017, IJCSE All Rights Reserved 113

tied to any particular passive representation. Therefore, an

agent application can derive customized classes from

DocumentItem for its own needs[9][10]. This provides a

natural way of extending the framework of classes, and

mitigates the dependence on any particular passive form such

as HTML or PDF.

IV. CONCLUSION

Over the last several years, the WWW has grown enormously

and has become an invaluable source of information of all

kinds. We focused on describing an object-oriented

framework designed to ease the task of building customized

WWW agents. Our framework exploits C++’s object-oriented

features of encapsulation and polymorphism to achieve

extensibility while preserving efficiency and ease of use.

We described the design and implementation of set of classes.

In addition to the some properties, our classes preserve

extensibility and reusability by making full use of the

inheritance and polymorphism available in C++.

We also discussed about the framework which included

networking capabilities. It does not yet provide distributed

processing facilities in the style of CORBA. In subsequent

work, we will investigate this issue to provide more focused

work. Another aspect to be investigated is the design of a

toolkit of custom Web objects to illustrate our ideas.

REFERENCES

[1] The Adobe Portable Document Format (PDF) IEEE

Explore Version 4.01B, May 1995.

[2] Grady Booch, Object-Oriented Design with Applications,

Benjamin-Cummings, 1995.

[3] Booch, G., “Object-Oriented Development”, IEEE

Transactions on Software Engineering 12(2), February

1996.

[4] Coad, P. and Yourdon, E., Object-Oriented Analysis,

Prentice Hall, 1998.

[5] A. Dave, M . Sefika and R. Campbell, “Proxies,

application interfaces, and distributed systems,” Proc.

Second Annual Workshop on Object Orientation an

Operating Systems, Paris, France, September 2000, pp.

212-220.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides, Design Patterns: Elements of Reusable

Object-Oriented Software, Addison-Wesley, 2005.

[7] L. Lamport, BQY: A Document Preparation System,

Addison-Wesley, 2009.

[8] D.C . Schmidt and T . Suda, “An object-oriented

framework for dynamically configuring extensible.

[9] Distributed systems,” 1EE Distributed Systems

Engineering Journal, 2011.

[10] M. A . Sridhar, Building Portable C++ Applications with

YACL, Addison-Wesley, 2015.

 Authors Profile

Anita Chagi, an Assistant Professor,

School of Computing & IT, REVA

University, Bangalore. Her research

interest is in the area of Object

Orientation with several languages, IoT

and Machine Learning. She is also a

Research contributor at RU.

