4
AXJCSE International Journal of Computer Sciences and Engineering [pen Access

Review Paper

Volume-5, Issue-3

E-ISSN: 2347-2693

Framework for Object Oriented WWW Applications using
Embedded Concepts

A. Chagi

School of Computing & IT, REVA University, Bangalore, India

“Corresponding Author: anitachagi@reva.edu.in

Available online at: www.ijcseonline.org

Received:27/Feb/2017 Revised: 06/Mar/2017

Accepted: 25/Mar/2017 Published: 31/Mar/2017

Abstract—We present the design of a C++ framework for building custom Web agent applications. Our framework
includes abstractions for networking and communications as well as a format-independent set of classes for representing
document components. We discuss the design and parts of the implementation of the framework and present possible

extensions till date.

Keywords—www; Agent; Abstraction; Object; Class; Framework.

l. INTRODUCTION

Over the last several years, the World-Wide-Web (WWW)
has grown enormously and has become an invaluable source
of information of all kinds. The result is a great deal of
popularity enjoyed by Mosaic, Netscape, internet explorer,
chrome and other browsers. The availability of the Web has
also made HTML (different versions) a common means for
exchanging data. Many corporations are using Web
connections as a standard means from the start for retrieving
information from remote databases located within the
enterprise as well as outside.With the availability of
information in HTML form, it is natural to create custom
applications which do not merely browse the Web but extract
information to perform specific tasks. For example, one can
create a collection of “agent” applications that conduct
routine periodic activities. An agent that synchronizes clocks
might retrieve time information from a global time server; a
sports enthusiast’s personal information manager might
retrieve information about sports events on television and
arrange his schedule to watch them.Building such agents is
eased significantly if a collection of C++ classes is available
that encapsulate the networking and document-specific
aspects of interaction with the Web.

Such classes offer several advantages:

High-level abstractions: They can hide the low-level details
of accessing the Web and Make it possible for the application
programmer to focus on application-specific tasks.

Platform independence: The class interfaces can mask: out all
platform-specific aspects so that the application that uses the
classes is naturally portable across platforms.

Document format independence: We can define the class
interfaces to represent abstract notions relating to documents
rather than specific to a particular representation language

© 2017, IJCSE All Rights Reserved

such as HTML. This isolates the application from language
details, thus preserving its extensibility. For example, if a
subsequent version of the application needed support for a
different document format such as Adobe PDF or BTEX [1],
it is only necessary to change the implementations of the
document classes; the rest of the application code is
unaltered.

Embeddability: Unlike other interpreted languages such as
Java and Smalltalk, C++ is usable in conjunction with other
languages such as C or FORTRAN to the extent that one
application can be built using more than one of these
languages.

In this paper, we describe the design and implementation of
such a set of classes. In addition to the above properties, our
classes preserve extensibility and reusability by making full
use of the inheritance and polymorphism available in C++.
They also achieve robustness via utilization of C++
exception-handling facilities. The design of the classes uses
some of the ideas of Booch [2] and design patterns
expounded in [5]. Our classes are designed to leverage the
portability and GUI capabilities of the existing class library
YACL [9].We begin with the considerations that drive the
design and discuss the resulting classes and their methods.
We then show a few examples to illustrate how these classes
may be used. We also address the question of how to support
computations that are not directly performable via HTML.
We also address the question of how to support computations
that are not directly performable via HTML.

1. RELATED WORK

In this section, we briefly discuss two projects whose
contents are related to the work described in this paper.

110

International Journal of Computer Sciences and Engineering

The Java project includes a framework for Web access, with
the HotJava application for browsing. Java is an interpreted
language, so that the entire Java interpreter is part of any
Java application. The result is that any Java objects-even
ones that neither the server nor the browser is aware of may
be transmitted across the network via any Web server that
supports the feature. This makes Java a powerful and highly
programmable environment. On the other hand, this also
entails other problems, such as reduced execution speed and
greater difficulty in linking with non-Java libraries. There are
also security concerns arising because entire Java
applications can be transmitted in response to queries. We
choose to use C++ in order to overcome these problems.
However, it is possible to construct custom objects
(discussed later in this paper) to facilitate some of the
programmability offered by interpreted languages such as
Java.

The ASX framework includes classes for distributed
computation, with class abstractions for communication
mechanisms, event demultiplexing, service configuration,
and the like. ASX's emphasis is, however, is on providing a
general-purpose framework for distributed processing. Our
work in this paper is directed specifically at Web client and
agent applications.

The CORBA standard provides a basis for object-oriented
distributed computation. We propose to include support in
subsequent extensions of this work [3].

1. DESIGN OF THE CLASSES

A Web agent needs at least four different aspects of Web-

related functionality:

e Determining the resource id's (URL's) of relevant
documents;

e Retrieving documents from a remote server;

e Rendering the documents, in part or whole, on a local
display; and

e Extracting information from retrieved documents for
subsequent use.
Of these, we address the last three aspects. We omit the
issue of determining appropriate URL's, since there are
now several search engines available for this purpose.

Network-related classes

First, consider the aspect of retrieving a document. Ideally, a
programmer would want to simply specify a resource (via its
URL) and ask the library t o retrieve the resource via code
that looks like this:

Document* aDoc ;

ResourceSpec aSpec (**http://nnn.cs.sc.edu™);
aDoc = RetrieveDocument (aSpec);

© 2017, IJCSE All Rights Reserved

Vol.5(3), Mar 2017, E-ISSN: 2347-2693

This suggests the need for ResourceSpec and Document
classes [4]. The RetrieveDocument function retrieves and
returns the document with the specified ResourceSpec
value. (In practice, rather than returning a Document
instance, the function returns a pointer t 0 a Document
object, enabling it to potentially return an instance of a
derived class and thus exploit polymorphism). This code
fragment reinforces the viewpoint that every ResourceSpec
value has a unique Document associated with it. The code
fragment above suggests the view that the application
programmer is only concerned with the document itself, not
the kind of connection used to retrieve the document. This is
not always the case; occasionally, the programmer might
wish to specify the kind of connection t o be used, e.g., ftp or
gopher. This suggests the need for a connector, which is an
object that creates connections. The connector is a factory
that creates other objects. To illustrate its use, here is the
Retrieve Document function.

extern Connector Theconnector;

Document* RetrieveDocument

(const ResourceSpec& spec)

{

/I Get a connection from the factory:

Connection* httpConn = Theconnector
MakeHTTPConnection (spec.Address());

/I Build a stream for the document: HTMLStream&
aStream = httpConn-> Documentstream
(spec.Document());

/I Reconstruct the Document from the stream:

Document* aDoc

aStream>> aDoc; httpConn->Close();

return aDoc;

}

This function assumes the existence of a global instance
Theconnector of Connector, which creates and returns
connections. It also uses the ResourceSpec's Type, Address
and Offset member functions; thus a ResourceSpec object is
thought of as encapsulating the connection type needed to get
the resource (HTTP, FTP, gopher etc.), the address of the
remote machine at which the resource is located, and the
offset (or local URL) on that machine. The HTMLStream
class is discussed later.

The library provides an abstract Connection class. From this
class are derived the concrete classes HTTPConnection,
FTPConnection and Gopherconnection (among others),
which override some of Connection's methods. The abstract
class provides a standard interface through which application
code can interact with every kind of connection. This scheme
decouples the application code from the implementations of
different kinds of connections, so that new Kkinds of
connections can be added, and existing connection types
extended, without breaking application code.

111

International Journal of Computer Sciences and Engineering

Documents and related classes

The document classes represent two broad categories of
objects: documents and their contents, and the media on
which the documents are stored [5].

Storage media classes

We think of documents as stored in a data stream. A data
stream stores a passive representation of a document (in
contrast t o the active representation as a C++ object). Data
streams can be classified according to the format in which
they store data; thus, for example, we distinguish HTML data
streams from LATEX data streams. The class abstractions
naturally mirror these concepts: the HTMLStream class
represents a data stream in HTML form, while the
LaTeXStream class represents a data stream in LATEX form.
The stream classes view their content as character strings, and
include the capabilities for searching the

string by content. This facility allows the application to cull
any data it needs from the passive representation.

Document classes

The classes in the document category represent documents
and their components. The classes are designed so that the
application programmer can think of them as abstractions
rather than in terms of their representations in HTML or some
other language. For example, an OrderedList is a sequence
of strings, while a Table is an object that represents a two-
dimensional array of cells, each containing other document
items. The member functions defined on these classes
correspond in a natural way to the operations performable on
the abstractions they represent. For example, an object of the
Table class can be asked to return the item in a particular
cell of the table, while an OrderedL.ist can be asked to return
one of its contained items.

Abstractly, a document, represented by the class Document,
is a tree of document items. The tree corresponds naturally to
the parse tree of an HTML document. A document item,
represented by the class Documentltem, is a part of a
document. Documentltem is an abstract class which, like
Connection, provides a standard interface through which
application code can access elements of a document. A
document is a sequence of one or more document items.

The Documentltem class provides protocol (via pure-virtual
member functions) for conversion back and forth between
the item and a passive representation on a data stream. This
design requires the Documentltem classes to interact with
data stream classes, not directly with connection classes. This
is natural, since documents can exist independently of
network connections[6]. This design also makes possible the
creation of applications that, manipulate documents without
interaction with a network. Figure 1 shows part of the
Documentltem interface.

To ensure type safety (so that type errors are caught at
compile time), the signatures of these functions include the
kind of data stream involved.

Document items can be simple t.ext strings or composite
entities such as ordered or unordered lists. They can also be

© 2017, IJCSE All Rights Reserved

Vol.5(3), Mar 2017, E-ISSN: 2347-2693

text strings qualified with font changes (such as the HTML
 item) or emphasis change (such as the
HTML <I>and items or the LATEX {\tt } group). Thus
each kind of document item has a corresponding class
derived from Documentltem.

The containment relationship that, exists among document
items (e.g., an ordered list contains a sequence of items
representing the elements of the list) carries over naturally t o
this model. Thus the OrderedList class contains a sequence
of Documentltem objects; each of these may itself be of a
class derived from Document Item, thus providing for nested
structures to exist.

Class Documentltem{
public:

bool ReadFrom (HTMLStream& astream) =0 ;
bool WriteTo (HTMLStream& aStream) = 0 ; bool
DisplayOn (VisualObject* v,

const Rectangle& aRect)=0;

Figure 1: The Documentltem protocol

The Documentltem class also includes a standard means for
displaying the item on a part of the user’s screen. Every
Documentltem subclass determines its own visual
representation, and therefore carries its own implementation
of the DisplayOn function, using polymorphism[7]. The
Documentltem class also includes support for layout of
items in a visually pleasing manner. This includes algorithms
for typesetting the item on the display. The visual and
graphic aspects of the classes, however, are not addressed in
this paper.

There are two special kinds of document items: linkable
items and forms. Both are represented by classes derived
from Documentltem. The Linkableltem class represents a
document item that is tagged as a hyperlink, with an
associated URL. The Hyperlink class encapsulates an actual
link; it contains a Linkableltem and a ResourceSpec. The
Hyperlink encapsulates the knowledge of how to retrieve
and utilize the resource associated with the URL in the link.
The Hyperlink class also includes the (GUI-related) ability t
o notify the application when the user clicks on its visual
representation[8].

The Form is a class representing forms on a browser’s
display, representing the Form entity in HTML. Most of the
Form’s capability is built using YACL’s GUI classes, with
text entry regions, buttons and other graphical user interface
elements.

Customizing Documentltem classes
As pointed out earlier, the Documentltem class represents
the abstract notion of an item in a document and need not be

112

International Journal of Computer Sciences and Engineering

tied to any particular passive representation. Therefore, an
agent application can derive customized classes from
Documentltem for its own needs[9][10]. This provides a
natural way of extending the framework of classes, and
mitigates the dependence on any particular passive form such
as HTML or PDF.

V. CONCLUSION

Over the last several years, the WWW has grown enormously
and has become an invaluable source of information of all
kinds. We focused on describing an object-oriented
framework designed to ease the task of building customized
WWW agents. Our framework exploits C++’s object-oriented
features of encapsulation and polymorphism to achieve
extensibility while preserving efficiency and ease of use.

We described the design and implementation of set of classes.
In addition to the some properties, our classes preserve
extensibility and reusability by making full use of the
inheritance and polymorphism available in C++.

We also discussed about the framework which included
networking capabilities. It does not yet provide distributed
processing facilities in the style of CORBA. In subsequent
work, we will investigate this issue to provide more focused
work. Another aspect to be investigated is the design of a
toolkit of custom Web objects to illustrate our ideas.

REFERENCES

[1] The Adobe Portable Document Format (PDF) IEEE
Explore Version 4.01B, May 1995.

[2] Grady Booch, Object-Oriented Design with Applications,
Benjamin-Cummings, 1995.

[3] Booch, G., “Object-Oriented Development”, IEEE
Transactions on Software Engineering 12(2), February
1996.

[4] Coad, P. and Yourdon, E., Object-Oriented Analysis,
Prentice Hall, 1998.

[5] A. Dave, M . Sefika and R. Campbell, “Proxies,
application interfaces, and distributed systems,” Proc.
Second Annual Workshop on Object Orientation an
Operating Systems, Paris, France, September 2000, pp.
212-220.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley, 2005.

[71 L. Lamport, BQY: A Document Preparation System,
Addison-Wesley, 2009.

[8] D.C . Schmidt and T . Suda, “An object-oriented
framework for dynamically configuring extensible.

[9] Distributed systems,” 1EE Distributed Systems
Engineering Journal, 2011.

[10] M. A . Sridhar, Building Portable C++ Applications with
YACL, Addison-Wesley, 2015.

© 2017, IJCSE All Rights Reserved

Vol.5(3), Mar 2017, E-ISSN: 2347-2693

Authors Profile

Anita Chagi, an Assistant Professor,
School of Computing & IT, REVA
University, Bangalore. Her research
interest is in the area of Object
Orientation with several languages, 10T
and Machine Learning. She is also a
Research contributor at RU.

113

