o
AXJCSE International Journal of Computer Science and Engineering |]|JEI1 Access

Research Paper Volume-2, Issue-4 E-ISSN: 2347-2693

Hypotheses Verification for High Precision Cohesion Metric

Kayarvizhy N'", Kanmani S* and Rhymend Uthariaraj V*

I*Department of Computer Science and Engineering, AMC Engineering College, India
? Department of Information Technology, Pondicherry Engineering College, India
3Ramanujan Computing Centre, India

www.ijcseonline.org

Received: 03/03/2014 Revised: 19/03/2014 Accepted: 15/04/201x4 Published: 30/04/2014

Abstract— Metrics have been used to measure many attributes of software. For object oriented software, cohesion indicates the
level of binding of the class elements. A class with high cohesion is one of the desirable properties of a good object oriented
design. A highly cohesive class is less prone to faults and is easy to develop and maintain. Several object oriented cohesion
metrics have been proposed in the literature. In this paper, we propose a new cohesion metric, the High Precision Cohesion
Metric (HPCM) to overcome the limitations of the existing cohesion metrics. We also propose seven hypotheses to investigate
the relationship between HPCM and other object oriented metrics. The hypotheses are verified with data collected from 500
classes across twelve open source Java projects. We have used Pearson’s coefficient to analyze the correlation between HPCM
and the metrics in the hypotheses. To further bolster our results we have included p-value to confirm the statistical significance

of the findings.

Keywords—Object Oriented Metrics; Cohesion; High Precision

I. INTRODUCTION

Object oriented design and development continues to be the
most widely used methodology for designing high quality
software. Ensuring the quality of such systems is of prime
interest. Eliminating defects that affect quality in early stages
of software development life cycle, like design, saves cost
and effort [1] [2] [3]. Object oriented design-level metrics
and their associated quality prediction techniques attempt to
ensure quality during the design and early coding phase.
Many object oriented metrics have been proposed to
compute an underlying property like cohesion, inheritance
and coupling. Cohesion metrics indicate how well the class
elements bind with each other. Since a class consists of two
basic sets of elements, attributes and methods, all of the
cohesion metrics revolve around the usage of these. A high
cohesion value indicates that the class is well structured and
provides the stated functionality with the help of well-knit
attributes and methods [4]. Conversely a low cohesive value
indicates a class that may need to be split or redesigned. A
non-cohesive class is a maintenance nightmare and is prone
to faults [5] [6] [7].

Several cohesion measures have been proposed in the
literature. Chidamber and Kemerer [8] proposed the first
cohesion metric. They presented an inverse metric, thus
measuring the lack of cohesion (LCOMI1). LCOMI
measures the number of pairs of methods that do not have
any common attribute. Chidamber and Kemerer [9] revised
their metric and came up with an altered version (LCOM?2)
which found the difference between the number of pairs of
methods not sharing any attribute and those sharing at least
one attribute. LCOM1 and LCOM2 do not have normalized

Corresponding Author: Kayarvizhy N, kayarvizhy @ gmail.com

© 2014, IJCSE All Rights Reserved

values. Li and Henry [10] proposed their version of lack of
cohesion (LCOM3) as the number of connected components
in a graph with methods as node and edges between each
pairs of methods with at least one common attribute. Hitz
and Montazeri [11] enhanced the LCOM3 to include edges
for method to method invocations as well and named it
LCOM4. Henderson-Sellers [12] came up with LCOMS
which included the number of distinct attributes accessed by
each method. LCOM3, LCOM4 and LCOMS show high
values of cohesion even with a single common attribute
among methods. After LCOMS, the cohesion metrics
proposed were direct cohesion metrics compared to the
inverse nature of lack of cohesion metrics proposed till then.
The first direct cohesion metric, Connectivity (Co) was
introduced by Hitz and Montazeri [13]. Briand et al [21]
proposed Coh which uses the concept of number of attributes
used by each method. Bieman and Kang [14] introduced
TCC (Tight class cohesion) and LCC (Loose class cohesion)
which captured the methods connected through attributes
directly and indirectly. Badri [15] introduced variations on
TCC and LCC naming them DCD and DCI which includes
method invocations also, directly or in the call trace
respectively. TCC, LCC and their derivatives DCD and DCI
also give skewed cohesion values when a single common
attribute exists in all methods. The metrics that were
proposed further were based on the similarity between
methods based on the number of common attributes used
between them. Bonja and Kidanmariam [16] defined Class
Cohesion (CC) based on this similarity of methods. The
concept was further enhanced by Fernandez and Pena [17] in
their metric Sensitive Class Cohesion Metric (SCOM).
Bansiya et al. [18] defined Cohesion among Methods in a
class (CAMC) as a modified version of Co. Counsell et al

238

International Journal of Computer Sciences and Engineering

[19] also introduced Normalized Hamming Distance (NHD)
and Scaled Normalized Hamming Distance (SNHD) based
on how many attributes each method accesses. Al Dallal and
Briand [20] came up with Low-level design Similarity based
Class Cohesion (LSCC) which finds out how many methods
access each attribute. SCOM, CAMC, NHD, SNHD and
LSCC give high cohesion values in the presence of few
common attributes across methods.

In this paper, we propose a new cohesion metric, the High
Precision Cohesion Metric (HPCM) to address the
limitations in the existing cohesion metrics. HPCM is
designed to give precise cohesion values. We then analyze
the proposed metric with hypotheses. This paper is organized
as follows. Section 2 explains the High Precision Cohesion
Metric (HPCM) in detail. In Section 3 we propose seven
hypotheses capturing the relation between HPCM and other
OO metrics. These hypotheses are verified empirically in
Section 4. Section 5 lists the limitations and future work and
Section 6 concludes the study followed by a list of
references.

II. HIGH PRECISION COHESION METRIC

A. Limitations of existing Cohesion Metrics

LCOMI and LCOM2 are not normalized in their value and
hence it is difficult to compare their values between two
classes and understand their relative cohesion. Their values
are dependent on the number of methods in a class. Hence
their values can grow to very high values. Consider two
classes, c1 and ¢2 which have two and four methods each.
The attributes accessed by the methods are listed here - clml
{al}, clm2 {a2}, c2ml {al}, c2m2 {a2}, c2m3 {a3}, c2m4
{a4}. Each method accesses just a single unique attribute in
both the classes. But the values of LCOM1 and LCOM2 are
very different for the classes. LCOM1(cl) = LCOM1(c2) =1
and LCOM2(c1) = LCOM2(c2) = 6.

LCOM3 and LCOM4 are also not normalized in their value
but the range is improved over LCOM1 and LCOM?2. But
LCOM3 and LCOM4 suffer from a different issue. Consider
class cl with the following method-attribute interactions -
clml {al, a2, a4}, clm2 {a3, a5, a4}, cIlm3 {a6, a7, a4},
clm4 {a7, a8, a4}, clm5 {a9, al0, a4}, clm6 {all, al2, ad}.
The methods are not cohesive since they all share just one
common attribute between them and use their own unique
set of attributes otherwise. However LCOM3 and LCOM4
give the class a perfect cohesion value of 1. The same
limitation applies to TCC, LCC, DCD and DCI.

CC and SCOM cohesion metrics vastly improve on the idea
of similarity. They do not consider just one common
attribute sufficient for high level of cohesion. Instead these
metrics account for the number of attributes that are shared
between methods. However they have a limitation as
highlighted here. Consider a class cl with the following
method-attribute interactions —clml {al}, clm2 {al}, cIm3
{al}, clm4 {al}, clm5 {a2, a3, a4, a5}. We have CC =
SCOM = 0.6 for this class. However careful observation of
the class would show that most of the attributes are not

.
;’&] CSE ©2014, IICSE All Rights Reserved

Vol.-2(4), pp (238-243) April 2014, E-ISSN: 2347-2693

shared by majority of its methods. This is not realistically
captured by CC and SCOM.

The motivation for a new metric is to have a fine grain value
for cohesion. HPCM differentiates classes with similar but
not identical cohesion. HPCM values are normalized on a
scale of O to 1.

B. Definition of HPCM

The High Precision Cohesion Metric (HPCM) is based on
two related concepts — Average Attribute Usage (AAU) and
Link Strength (LS). The AAU is a separate metric which
computes the average number of attributes used by each
method of the class directly or indirectly through a method
invocation. We consider only public, non-inherited methods
of a class. Inherited attributes are also not considered for
computation of AAU. Let ’c’ be the class in consideration.
Then M, (c)is the set of non-inherited, overriding or newly
implemented methods of c. Further My, (c) is the set of
public methods of c. Public non-inherited or overridden
methods are given by M;(c) N Mp,,;,(c). The total number of
methods in our case is the cardinality of such a set. It is
given by |[M;(c) N My, (c)| . The attributes referenced by a
method is given by AR(m) where m is the method. Hence
total attributes referenced is given by), AR(1m), for each m
in the set M;(c) N My, (c) . Hence the AAU is given in
Equation (1).

_ T4R(m)
AU = O 0 My @] W

Link Strength is a concept to capture the level of interaction
between a pair of methods based on the number of attributes
commonly used between them. Link Strength (LS) is based
on AAU. LS for a pair of methods ml and m2 is given in
Equation (2).

CAmumz = |AR(M1) N AR(mM2)|

2

CAmlmZ

1S, = A aay Y CAmima < AAU
1, if CApimg > AAU

HPCM is defined using Link Strength. We define HPCM as
given in Equation (3)

M= |M;(c)Nn Mpub(c)l

2% % LSmym, 3

HPCM(C) = m

HPCM is an average of Link Strength of all method pairs in
the class. To find the average we first find the total of all LS
in the numerator. Here all public non inherited, overridden
and newly implemented methods are considered, similar to
AAU and their link strengths are summed up. The

239

International Journal of Computer Sciences and Engineering

denominator denotes the total available method pairs and is
given by a simple formula of n * (n — 1)/2 where 'n’ is the
total number of methods. In our case the total number of
methods is given by M;(c) N My,,;,(c) and hence results in
given denominator.

C. Evaluating HPCM

To evaluate HPCM, we have considered 500 classes from 12
open source projects written in Java. The projects considered
were Apache Mahout, Apache Open Web Beans, Apache
Sling, Apache Synapse, Apache Tobago, Apache Tomcat,
Camel, Castor, Cayene, Eclipse, JDK 7, and Struts. The code
for each of the project was downloaded from their respective
websites [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35]
[36]. Classes were chosen such that there they were
comparable in terms of their size ranging from a few
methods to around twenty methods. Classes without
attributes or methods were not considered. The bug
information for the projects was retrieved from Sonar Nemo
website [23]. Only major and critical defects were
considered for the study. The cohesion metrics LCOMI,
LCOM2, LCOM3, LCOM4, LCOMS, TCC, LCC, SCOM,
CC and HPCM were computed using Automated Tool
developed by the authors [24]. Studies have confirmed of a
linear relationship between cohesion metrics and defects [10]
[37] [38]. Univariate Linear regression was used to evaluate
the fault prediction capability of the cohesion metrics. Linear
Regression attempts to fit the data points (in our case the bug
data and each cohesion metric) in a straight line y = a + Bx.
Where ‘o’ is the constant term, ‘B’ is the coefficient, ‘y’ is
the number of bugs in the class and ‘x’ is the cohesion
metric. The Root Mean Square Error (RMSE) was used to
measure the fitness of the resulting plot. A lower RMSE
indicates a good fit whereas a high RMSE indicates poor fit.
Table 1 lists the RMSE for the various cohesion metrics that
were obtained in the linear regression analysis.

Table 1. HPCM Evaluation — RMSE

Metric RMSE Coefficient Constant

LCOMI 0.509 0.001 .54
LCOM2 0.509 0.001 .54
LCOM3 0.481 0.049 .39
LCOM4 0.525 0.049 46
LCOMS 0.433 0.721 .07
TCC 0.379 -1.19 .95
LCC 0.389 -910 92
SCOM 0.391 -1.19 .95
CcC 0.410 -1.46 .89
HPCM 0.370 -1.32 .87

We find that RMSE of the metrics TCC, LCC, SCOM and
CC indicate lower error and hence better fit compared to the
traditional cohesion metrics. However HPCM gives the least
RMSE indicating the best fit among the cohesion metrics for
predicting bugs. This indicates that HPCM predicts the faults
better compared to other cohesion metrics

.
;’&] CSE ©2014, IICSE All Rights Reserved

Vol.-2(4), pp (238-243) April 2014, E-ISSN: 2347-2693

III. HPCM HYPOTHESES

Our goal in this paper is to study specific aspects and
characteristics of HPCM. In the following sections we
propose seven hypotheses investigating the relationship
between HPCM and other object oriented metrics. We limit
the metrics to a class since HPCM is class cohesion metric.

A. HPCM vs. Size Metrics

Size metrics of a class captures how big the class is in terms
of its attributes, methods and lines of code. Research efforts
have gone it to measure the effect the size of a class has on
other OO metrics [22]. A class with more number of
methods tends towards having groups of methods, with each
group concentrated on a different functionality. The same
argument can be extended to attributes as well. Also an
increase in attributes and methods leads to more lines of
code. Hence a cohesive class should depict an inverse
relation to all of these size metrics. We have considered
three size metrics - lines of code (LOC), number of attributes
(NOA) and number of methods (NOM) for our analysis. Our
hypotheses are based on the understanding that bigger
classes tend to be overloaded with more than one core
functionality and hence lead to poor cohesion. The following
hypotheses are proposed for analyzing the relationship
between HPCM and size metrics.

Hypothesis 1. Lesser the number of attributes defined in a
class, higher the value of HPCM of the class

Hypothesis 2. Lesser the number of methods defined in a
class, higher the value of HPCM of the class

Hypothesis 3. Lesser the LOC of a class, higher the value of
HPCM

B. HPCM vs. LCOM

LCOM proposed by Chidamber and Kemerer [8] is one of
the earliest known metric for cohesion of a class. It is an
inverse metric that captures the lack of cohesion. The value
of LCOM is not range bound and tends to get very high for
classes with more methods. Both HPCM and LCOM capture
the underlying property of cohesion in a class. However
HPCM is a precise and finer metric compared to the coarse
LCOM. HPCM is also a direct cohesion metric. Based on
this information we propose the below hypothesis

Hypothesis 4. Higher the value of HPCM, lower would be
the value of LCOM of the class

C. HPCM vs. CBO

Coupling between Objects (CBO) was proposed by
Chidamber and Kemerer [9] to measure the level of
dependency between classes. A well designed class is a self-
contained unit and should have minimum dependency on
other classes to fulfill its functionality. On the other hand, a
highly coupled class has a lot of interaction with other
classes. CBO captures the depth of inter class relationship of

240

International Journal of Computer Sciences and Engineering

a class. With this basic premise we propose the next
hypothesis below.

Hypothesis 5. Higher the value of HPCM, lower would be
the value of CBO of the class

D. HPCM vs. DIT

The Depth of Inheritance Tree was proposed by Chidamber
and Kemerer [9] to measure the level of inheritance of a
class. It is the length of the maximal path from the node to
the root of the tree. A class’s cohesion and its depth of
inheritance are unrelated properties. The depth of inheritance
(DIT) of a class should not have any effect in the way the
class’s elements are bound together. With this assumption

Vol.-2(4), pp (238-243) April 2014, E-ISSN: 2347-2693

Pearson’s coefficient can take a value from -1 to +1, both
inclusive. The larger the value of ‘r’, ignoring sign, the
stronger the association between the two variables and hence
more accurately one can predict the value of one variable
from the knowledge of other. A value of -1 or +1 suggests
that the variables have perfect correlation. An ‘v’
value of 0 suggests the absence of correlation between the
variables — there is no relationship between the two
variables. The sign of ‘r’ gives information on the direction
of the association. A positive value suggests that relatively
high values of one variable are paired with relatively high
values of another variable and low values are paired with
low values of the second variable. A negative correlation
means that relatively high values of the first variable are

we propose the following hypothesis paired with relatively low values of the second variable and

vice versa.

The p-value is the probability of getting the correlation by
chance. When the p-value is low, the confidence in the
obtained Pearson coefficient is high. Generally p-value less
than 0.05 are considered statistically significant and we have
taken the same cut-off in our experiment as well.

Hypothesis 6. The DIT of a class should not have an effect
on the HPCM of the class

IV. HYPOTHESES VERIFICATION

In this section we perform the empirical analyses for the
hypotheses that were formulated in the previous section

A. Data Set

To evaluate the proposed hypotheses, we have considered

D. Results and Interpretation

The results of the empirical analysis are summarized in this
section.

the same dataset that was used in evaluating HPCM in Projects HPCM LCOM LOC NOA NOM CBO DIT

section 2.3 Mahout 0461 2418 133.12 472 7.66 838 059

OWB 0489 29.81 163.63 431 795 7.5 0.86
Sling 0416 18.66 12559 4.61 838 4.07 048
Synapse 0.271 318.8 382.3 104 137 247 1.1

Tobago 0.355 69.57 141.76 6.09 7.86 6.24 0.57
Tomcat 0.189 176.6 378.58 89 13.03 124 0.73

B. Metrics

The metrics listed in Table 2 were computed to evaluate the
proposed hypotheses. All the metrics were computed from
the dataset using the Automated Tool developed by the
authors [24]

Table 2. Metrics considered for the study Camel = 0.279 1560 160.0 5.15 1046 149 036
Castor 0.205 50.76 149.76 457 9.73 6.66 0.61
Metric Detail Cayene (0314 7333 16871 7.52 11.62 12 0.86
HPCM High Precision Cohesion Metric Eclipse 0.236 1054 17252 102 6.66 204 0.42
LCOM Lack of Cohesion JDK7 0330 35.15 185.87 7.33 737 238 1.86
LOC Lines of Code Struts ~ 0.292 5145 138.8 445 627 7.63 0.36
NOA Number of Attributes
NOM Number of Methods Table 4 provides the correlation coefficient values for
CBO Coupling Between Objects HPCM with size metrics. We find that HPCM is negatively
DIT Depth of Inheritance correlated with all the size metrics as proposed in the

C. Pearson Coefficient and p-value hypotheses

We have used Pearson’s coefficient to estimate the
relationship between the variables in our hypotheses.
Pearson’s coefficient of correlation (r) is a widely used

Table 4. Pearson Coefficients for HPCM vs. Size Metrics

measure of correlation. It gives the extent and direction of Projects E(P;(C:M Vs EgiM VS Egi/[M VS

re}ation bf:tween the two variables under 'consideration. Mahout 028712 037333 0.15952
Given variables X and Y and ‘n’ data points for them,))

Pearson’s coefficient is given as in Equation (4) OWB -0.37087 -0.45170 -0.36659

Sling -0.16793 -0.31734 -0.30214

Z?zo(Xi -, -7 Synapse -0.24568 -0.40196 -0.10998

r= 4) Tobago -0.49601 -0.37482 -0.35987

\/Z’;O(Xi - X)? \/ Y (Y=)2 Tomecat -0.21269 -0.28263 -0.13176

Camel -0.52366 -0.46848 -0.20135

€
f&] CSE ©2014, ICSE All Rights Reserved 241

International Journal of Computer Sciences and Engineering

Castor 0.029200 -0.24433 -0.06038
Cayene -0.14734 -0.42173 -0.24623
Eclipse -0.42998 -0.08017 -0.23754
JDK7 -0.27492 -0.19197 -0.22159
Struts 0.315460 0.170510 -0.34170

Table 5 provides the correlation coefficient values for
HPCM with LCOM, CBO and DIT. HPCM has negative
correlation with LCOM and CBO as proposed earlier.
HPCM does not show a clear correlation direction with DIT.
Some projects show non-trivial positive correlation (like
0.44169 in Synapse) while others show a non-trivial negative
correlation (-0.2933 in Sling). Hence there is no clear
conclusion on the effect of DIT on HPCM

Table 5 — Pearson Coefficients for HPCM vs. LCOM, CBO

and DIT
Projects HPCM Vs HPCM Vs HPCM Vs
LCOM CBO DIT

Mahout -0.50256 -0.38886 0.3572
OWB -0.43935 -0.16926 -0.0151
Sling -0.37584 0.02919 -0.2933
Synapse -0.38714 -0.28206 0.44169
Tobago -0.51058 -0.70940 0.10882
Tomcat -0.15733 -0.17478 0.08981
Camel -0.48129 -0.51830 0.05387
Castor -0.33969 -0.13932 0.40893
Cayene -0.34952 -0.27688 -0.2077
Eclipse -0.11025 -0.20351 -0.2022
JDK7 -0.44104 -0.14557 -0.0741
Struts -0.39241 -0.08755 -0.0002

Table 6 gives the overall correlation results for the various
metrics along with their statistical significance (p-value). We
find that all the metrics except DIT are negatively correlated
as proposed in the hypotheses. The correlation coefficient
between HPCM and DIT is close to zero, indicating near
absence of correlation. However since the correlation
between HPCM and DIT was not conclusive in section 4.4.
Additional experiments are suggested before drawing
conclusions on hypothesis 6. Also in all the cases we find p-
value less than 0.05 confirming the statistical significance of
the coefficients. The p-value is less than 0.01 for 6 cases
shows high statistical significance.

Table 6 — Overall Pearson Coefficients

Hypotheses Pearson Coefficient p-value

HPCM Vs LOC -0.2662179 0.00000115
HPCM Vs NOA -0.2768793 0.00000043
HPCM Vs NOM -0.2307795 0.00002290
HPCM Vs LCOM -0.2494641 0.00000501
HPCM Vs CBO -0.2274472 0.00002965
HPCM Vs DIT 0.0044887 0.00468834

@
f&] CSE ©2014, IICSE All Rights Reserved

Vol.-2(4), pp (238-243) April 2014, E-ISSN: 2347-2693

V. LIMITATIONS AND FUTURE WORK

The study is prone to certain limitations which can be
investigated and addressed in related future work. Fault
modeling based on one metric might not yield the best
results. Faults could be contributed by other metrics too. For
the scope of this study we have considered that metrics other
than cohesion have a constant impact on faults. The
relationship between HPCM and DIT is inconclusive. Some
projects presented a positive correlation and some indicated
negative correlation. This requires additional experiments to
arrive at a conclusion. We have considered data from open
source Java projects. This data set is representative of a
small population of projects. A large real time object-
oriented system from industry will serve as a better data set
and can be considered for future study. The metric could be
deployed in an industry setup and feedback from industry
users can be used to further refine the metric. Future studies
could also consider fault prediction models based on HPCM
and other metrics to further understand their relationship and
their contribution to the overall defect prevention

VI. CONCLUSIONS

In this paper we analyzed the limitations of existing cohesion
metrics. A new cohesion metric, the High Precision
Cohesion Metric has been proposed to address the
limitations. The characteristics of HPCM have been
investigated and validated with the help of seven hypotheses.
The empirical study was done using data from 500 classes
taken from 12 open source projects in Java. The hypothesis
gives an insight on the relationship between HPCM with
other object oriented metrics.

REFERENCES

[1] G. Concas, M. Marchest, G. Destefanis and R. Tonelli, An
empirical study of software metrics for assessing the phases of
an agile product, International Journal of Software
Engineering and Knowledge Engineering, June 2012, vol. 22,
no. 04, pp. 525-548

[2] E. Paikari, M. M. Ritcher and G. Ruhe, Defect Prevention
using case based reasoning: An attribute weighing technique
based upon sensitivity analysis in neural networks,
International Journal of Software Engineering and Knowledge
Engineering, Sep. 2012, vol. 22, no. 06, pp. 747-768

[3] M. Khoshgoftaar, K. Gao and A. Napolitano, An empirical
study of feature ranking techniques for software quality
prediction, International Journal of Software Engineering and
Knowledge Engineering, Mar. 2012, vol. 22, no. 02, pp. 161-
183

[4] C. Z. Zhou and Y. B. Xu, A novel approach to measuring
class cohesion based on dependence analysis, Proceedings of
the International Conference on Software Maintenance, 2002,
pp- 377-384.

[5] L. C. Briand, C. Bunse and C. J. Daly, A controlled
experiment for evaluating quality guidelines on the
maintainability of object-oriented designs, IEEE Transactions
on Software Engineering, 2001, pp. 513-530.

[6] J. Bieman and L. Ott, Measuring functional cohesion, IEEE
Transactions on Software Engineering, 1994, pp. 644-657.

242

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

[25]
[26]

[27]
(28]

International Journal of Computer Sciences and Engineering

T. Mens and S. Demeyer, Future trends in software evolution
metrics, Proceedings of IWPSE2001, ACM, 2002, pp. 83-86.
S. R. Chidamber and C. F. Kemerer, Towards a metrics suite
for object-oriented design, Proceedings of Conference on
Object-Oriented Programming Systems, Languages and
Applications, 1991, pp. 476-493.

S. R. Chidamber and C. F. Kemerer, A metrics suite for
object-oriented design, IEEE Transactions on Software
Engineering, 1994, pp. 476-493.

W. Li and S. Henry, Object-oriented metrics that predict
maintainability, Journal of Systems and Software, 1993, pp.
111-122.

M. Hitz and B. Montazeri, Chidamber and Kemerer metric
suite - a measurement theory perspective, IEEE Transactions
on Software Engineering, 1996, pp. 267-271.

B. S. Henderson, Object-oriented Metrics: Measure of
Complexity. New Jersey, Prentice Hall, 1996, pp. 142-147.
M. Hitz and B. Montazeri, Measuring coupling and cohesion
in object oriented systems, Proceedings of the Int. Symposium
on Applied Corporate Computing, 1995, 25-27.

M. M. Bieman, B. K. Kang and W. Melo, Cohesion and reuse
in an object oriented system, Proceedings of the symposium
on software reliability, 1995, pp. 259-262.

L. Badri and M. Badri, A Proposal of a new class cohesion
criterion, an empirical study, Journal of Object Technology,
2004

C. Bonja and E. Kidanmariam, Metrics for class cohesion and
similarity between methods, Proceedings of the 44th Annual
ACM Southeast Regional Conference, 2006, pp. 91-95.

L. Fernandez and R. Pena, A sensitive metric of class
cohesion, International Journal of Information Theories and
Applications, 2006, pp. 82-91.

J. Bansiya, L. Etzkorn, C. Davis and W. Li, A class cohesion
metric for object-oriented designs, Journal of Object Oriented
Program, 1999, pp. 47-52.

S. Counsell, S. Swift and J. Crampton, The interpretation and
utility of three cohesion metrics for object-oriented design,
ACM Transactions on Software Engineering and
Methodology, 2006, pp. 15:123-149.

A. J. Dallal and L. Briand, A Precise method-method
interaction based cohesion metric for object oriented classes,
Simula Research Laboratory, Simula Technical Report, 2009
L. C. Briand, J. Daly, J. Wuest, A unified framework for
cohesion measurement in object-oriented systems, Empirical
Software Engineering, An International Journal, 1999, pp. 65-
117

K. E. Emam, The confounding effect of class size on the
validity of object oriented metrics, IEEE Transactions on
Software Engineering, 2001, pp. 630-650

Sonar Bug Repository (2012) http://nemo.sonarsource.org,
September

N. Kayarvizhy and S. Kanmani, An Automated Tool for
Computing Object Oriented Metrics using XML. Proceedings
of International Conference on Advances in Computing and
Communication ACC2011, Springer, 2011, pp. 69-79.
The Apache Mahout project, http://mahout.apache.org.
The Apache OpenWebBeans
http://openwebbeans.apache.org.

The Apache Sling project, http://sling.apache.org.

The Apache Synapse project, http://synapse.apache.org.

project,

///&] CSE ©2014, IICSE All Rights Reserved

Vol.-2(4), pp (238-243) April 2014, E-ISSN: 2347-2693

[29] The Apache Tobago
http://myfaces.apache.org/tobago/index.html.

[30] The Apache Tomcat project, http://tomcat.apache.org.

[31] The Apache Camel project, http://camel.apache.org.

[32] The Castor project, http://www.castor.org.

[33] The Apache Cayene project, http:/cayenne.apache.org.

[34] The Eclipse project, http://www.eclipse.org.

[35] The JDK7 project, http://jdk7 java.net.

[36] The Apache Struts project, http://struts.apache.org.

[37] Basili, Victor R., Lionel C. Briand, and Walcélio L. Melo, A
validation of object-oriented design metrics as quality
indicators. IEEE Transactions on Software Engineering, 1996,
pp- 751-761.

[38] Subramanyam, Ramanath, and Mayuram S. Krishnan,
Empirical analysis of ck metrics for object-oriented design
complexity: Implications for software defects. IEEE
Transactions on Software Engineering, 2003, pp. 297-310.

project,

AUTHORS PROFILE

Kayarvizhy N received her B.Tech and
M.Tech degree from Pondicherry University,
Puducherry in the year 2001 and 2004
respectively in computer science and
engineering. She is working as Associate
Professor in AMC Engineering College,
Bangalore since 2006. She is pursuing her PhD
at Anna University, Chennai. Her research interest includes object
oriented software metrics, neural network models and swarm
intelligence algorithms.

Kanmani S received her B.E in 1991 and M.E in
1992 in computer science and engineering from
Bharathiar University, Coimbatore and PhD in
information and communication engineering
from Anna University, Chennai in 2006.
Currently she is a Professor in Pondicherry L
Engineering College, Puducherry. Her research area 1ncludes
software systems, software metrics, object oriented systems,
algorithms and data structures. Dr. Kanmani’s professional
affiliations are with Indian Society for Technical Education (ISTE)
and Computer Society of India (CSI).

of 27 years. He holds the position of Secretary, &
Tamil Nadu Engineering Admissions and

Coordinator, AICTE-MCA QIP Program at Anna University,
Chennai. He is the Director of Ramanujan Computing Centre, Anna

University, Chennai and has professional affiliations with Indian
Society for Technical Education (ISTE).

Rhymend Uthariaraj V has done his M.E and
PhD in Computer Science and Engineering, Anna
University, Chennai. His areas of expertise include
Network Security, Pervasive = Computing,
Distributed Computing, Operations Research, and
Computer Algorithms. He has an overall experience

243

