
 © 2014, IJCSE All Rights Reserved 238

International Journal of Computer Science and EngineeringInternational Journal of Computer Science and EngineeringInternational Journal of Computer Science and EngineeringInternational Journal of Computer Science and Engineering Open Access
Research Paper Volume-2, Issue-4 E-ISSN: 2347-2693

Hypotheses Verification for High Precision Cohesion Metric

Kayarvizhy N
1*

, Kanmani S
2
 and Rhymend Uthariaraj V

3

1*
Department of Computer Science and Engineering, AMC Engineering College, India
2
 Department of Information Technology, Pondicherry Engineering College, India

3
Ramanujan Computing Centre, India

www.ijcseonline.org

Received: 03/03/2014 Revised: 19/03/2014 Accepted: 15/04/201x4 Published: 30/04/2014

Abstract— Metrics have been used to measure many attributes of software. For object oriented software, cohesion indicates the

level of binding of the class elements. A class with high cohesion is one of the desirable properties of a good object oriented

design. A highly cohesive class is less prone to faults and is easy to develop and maintain. Several object oriented cohesion

metrics have been proposed in the literature. In this paper, we propose a new cohesion metric, the High Precision Cohesion

Metric (HPCM) to overcome the limitations of the existing cohesion metrics. We also propose seven hypotheses to investigate

the relationship between HPCM and other object oriented metrics. The hypotheses are verified with data collected from 500

classes across twelve open source Java projects. We have used Pearson’s coefficient to analyze the correlation between HPCM

and the metrics in the hypotheses. To further bolster our results we have included p-value to confirm the statistical significance

of the findings.

Keywords—Object Oriented Metrics; Cohesion; High Precision

I. INTRODUCTION

Object oriented design and development continues to be the

most widely used methodology for designing high quality

software. Ensuring the quality of such systems is of prime

interest. Eliminating defects that affect quality in early stages

of software development life cycle, like design, saves cost

and effort [1] [2] [3]. Object oriented design-level metrics

and their associated quality prediction techniques attempt to

ensure quality during the design and early coding phase.

Many object oriented metrics have been proposed to

compute an underlying property like cohesion, inheritance

and coupling. Cohesion metrics indicate how well the class

elements bind with each other. Since a class consists of two

basic sets of elements, attributes and methods, all of the

cohesion metrics revolve around the usage of these. A high

cohesion value indicates that the class is well structured and

provides the stated functionality with the help of well-knit

attributes and methods [4]. Conversely a low cohesive value

indicates a class that may need to be split or redesigned. A

non-cohesive class is a maintenance nightmare and is prone

to faults [5] [6] [7].

Several cohesion measures have been proposed in the

literature. Chidamber and Kemerer [8] proposed the first

cohesion metric. They presented an inverse metric, thus

measuring the lack of cohesion (LCOM1). LCOM1

measures the number of pairs of methods that do not have

any common attribute. Chidamber and Kemerer [9] revised

their metric and came up with an altered version (LCOM2)

which found the difference between the number of pairs of

methods not sharing any attribute and those sharing at least

one attribute. LCOM1 and LCOM2 do not have normalized

values. Li and Henry [10] proposed their version of lack of

cohesion (LCOM3) as the number of connected components

in a graph with methods as node and edges between each

pairs of methods with at least one common attribute. Hitz

and Montazeri [11] enhanced the LCOM3 to include edges

for method to method invocations as well and named it

LCOM4. Henderson-Sellers [12] came up with LCOM5

which included the number of distinct attributes accessed by

each method. LCOM3, LCOM4 and LCOM5 show high

values of cohesion even with a single common attribute

among methods. After LCOM5, the cohesion metrics

proposed were direct cohesion metrics compared to the

inverse nature of lack of cohesion metrics proposed till then.

The first direct cohesion metric, Connectivity (Co) was

introduced by Hitz and Montazeri [13]. Briand et al [21]

proposed Coh which uses the concept of number of attributes

used by each method. Bieman and Kang [14] introduced

TCC (Tight class cohesion) and LCC (Loose class cohesion)

which captured the methods connected through attributes

directly and indirectly. Badri [15] introduced variations on

TCC and LCC naming them DCD and DCI which includes

method invocations also, directly or in the call trace

respectively. TCC, LCC and their derivatives DCD and DCI

also give skewed cohesion values when a single common

attribute exists in all methods. The metrics that were

proposed further were based on the similarity between

methods based on the number of common attributes used

between them. Bonja and Kidanmariam [16] defined Class

Cohesion (CC) based on this similarity of methods. The

concept was further enhanced by Fernandez and Pena [17] in

their metric Sensitive Class Cohesion Metric (SCOM).

Bansiya et al. [18] defined Cohesion among Methods in a

class (CAMC) as a modified version of Co. Counsell et al Corresponding Author: Kayarvizhy N, kayarvizhy@gmail.com

 International Journal of Computer Sciences and Engineering Vol.-2(4), pp (238-243) April 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 239

[19] also introduced Normalized Hamming Distance (NHD)

and Scaled Normalized Hamming Distance (SNHD) based

on how many attributes each method accesses. Al Dallal and

Briand [20] came up with Low-level design Similarity based

Class Cohesion (LSCC) which finds out how many methods

access each attribute. SCOM, CAMC, NHD, SNHD and

LSCC give high cohesion values in the presence of few

common attributes across methods.

In this paper, we propose a new cohesion metric, the High

Precision Cohesion Metric (HPCM) to address the

limitations in the existing cohesion metrics. HPCM is

designed to give precise cohesion values. We then analyze

the proposed metric with hypotheses. This paper is organized

as follows. Section 2 explains the High Precision Cohesion

Metric (HPCM) in detail. In Section 3 we propose seven

hypotheses capturing the relation between HPCM and other

OO metrics. These hypotheses are verified empirically in

Section 4. Section 5 lists the limitations and future work and

Section 6 concludes the study followed by a list of

references.

II. HIGH PRECISION COHESION METRIC

A. Limitations of existing Cohesion Metrics

LCOM1 and LCOM2 are not normalized in their value and

hence it is difficult to compare their values between two

classes and understand their relative cohesion. Their values

are dependent on the number of methods in a class. Hence

their values can grow to very high values. Consider two

classes, c1 and c2 which have two and four methods each.

The attributes accessed by the methods are listed here - c1m1

{a1}, c1m2 {a2}, c2m1 {a1}, c2m2 {a2}, c2m3 {a3}, c2m4

{a4}. Each method accesses just a single unique attribute in

both the classes. But the values of LCOM1 and LCOM2 are

very different for the classes. LCOM1(c1) = LCOM1(c2) = 1

and LCOM2(c1) = LCOM2(c2) = 6.

LCOM3 and LCOM4 are also not normalized in their value

but the range is improved over LCOM1 and LCOM2. But

LCOM3 and LCOM4 suffer from a different issue. Consider

class c1 with the following method-attribute interactions -

c1m1 {a1, a2, a4}, c1m2 {a3, a5, a4}, c1m3 {a6, a7, a4},

c1m4 {a7, a8, a4}, c1m5 {a9, a10, a4}, c1m6 {a11, a12, a4}.

The methods are not cohesive since they all share just one

common attribute between them and use their own unique

set of attributes otherwise. However LCOM3 and LCOM4

give the class a perfect cohesion value of 1. The same

limitation applies to TCC, LCC, DCD and DCI.

CC and SCOM cohesion metrics vastly improve on the idea

of similarity. They do not consider just one common

attribute sufficient for high level of cohesion. Instead these

metrics account for the number of attributes that are shared

between methods. However they have a limitation as

highlighted here. Consider a class c1 with the following

method-attribute interactions – c1m1 {a1}, c1m2 {a1}, c1m3

{a1}, c1m4 {a1}, c1m5 {a2, a3, a4, a5}. We have CC =

SCOM = 0.6 for this class. However careful observation of

the class would show that most of the attributes are not

shared by majority of its methods. This is not realistically

captured by CC and SCOM.

The motivation for a new metric is to have a fine grain value

for cohesion. HPCM differentiates classes with similar but

not identical cohesion. HPCM values are normalized on a

scale of 0 to 1.

B. Definition of HPCM

The High Precision Cohesion Metric (HPCM) is based on

two related concepts – Average Attribute Usage (AAU) and

Link Strength (LS). The AAU is a separate metric which

computes the average number of attributes used by each

method of the class directly or indirectly through a method

invocation. We consider only public, non-inherited methods

of a class. Inherited attributes are also not considered for

computation of AAU. Let ’c’ be the class in consideration.

Then �����is the set of non-inherited, overriding or newly

implemented methods of c. Further ������� is the set of

public methods of c. Public non-inherited or overridden

methods are given by ����� ∩ �������. The total number of

methods in our case is the cardinality of such a set. It is

given by	|����� ∩ �������| . The attributes referenced by a

method is given by AR(m) where m is the method. Hence

total attributes referenced is given by ∑
����, for each m

in the set ����� ∩ ������� . Hence the AAU is given in

Equation (1).

� = 	 ∑
����|����� ∩ �������| (1)

Link Strength is a concept to capture the level of interaction

between a pair of methods based on the number of attributes

commonly used between them. Link Strength (LS) is based

on AAU. LS for a pair of methods m1 and m2 is given in

Equation (2).

 	�
���� = 	 |
���1� ∩
���2�|

(2) ������ = 	 �
	�
����

� , ��		�
���� ≤

�
1, ��		�
���� 	>

�

HPCM is defined using Link Strength. We define HPCM as

given in Equation (3)

 � =	 |����� ∩ �������|

(3) !����� = 		 2 ∗ ∑ ���#�$� ∗ �� − 1�

HPCM is an average of Link Strength of all method pairs in

the class. To find the average we first find the total of all LS

in the numerator. Here all public non inherited, overridden

and newly implemented methods are considered, similar to

AAU and their link strengths are summed up. The

 International Journal of Computer Sciences and Engineering Vol.-2(4), pp (238-243) April 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 240

denominator denotes the total available method pairs and is

given by a simple formula of n ∗ (n − 1)/2 where ’n’ is the

total number of methods. In our case the total number of

methods is given by ����� ∩ ������� and hence results in

given denominator.

C. Evaluating HPCM

To evaluate HPCM, we have considered 500 classes from 12

open source projects written in Java. The projects considered

were Apache Mahout, Apache Open Web Beans, Apache

Sling, Apache Synapse, Apache Tobago, Apache Tomcat,

Camel, Castor, Cayene, Eclipse, JDK 7, and Struts. The code

for each of the project was downloaded from their respective

websites [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] [35]

[36]. Classes were chosen such that there they were

comparable in terms of their size ranging from a few

methods to around twenty methods. Classes without

attributes or methods were not considered. The bug

information for the projects was retrieved from Sonar Nemo

website [23]. Only major and critical defects were

considered for the study. The cohesion metrics LCOM1,

LCOM2, LCOM3, LCOM4, LCOM5, TCC, LCC, SCOM,

CC and HPCM were computed using Automated Tool

developed by the authors [24]. Studies have confirmed of a

linear relationship between cohesion metrics and defects [10]

[37] [38]. Univariate Linear regression was used to evaluate

the fault prediction capability of the cohesion metrics. Linear

Regression attempts to fit the data points (in our case the bug

data and each cohesion metric) in a straight line y = α + βx.

Where ‘α’ is the constant term, ‘β’ is the coefficient, ‘y’ is

the number of bugs in the class and ‘x’ is the cohesion

metric. The Root Mean Square Error (RMSE) was used to

measure the fitness of the resulting plot. A lower RMSE

indicates a good fit whereas a high RMSE indicates poor fit.

Table 1 lists the RMSE for the various cohesion metrics that

were obtained in the linear regression analysis.

Table 1. HPCM Evaluation – RMSE

Metric RMSE Coefficient Constant

LCOM1 0.509 0.001 .54
LCOM2 0.509 0.001 .54
LCOM3 0.481 0.049 .39

LCOM4 0.525 0.049 .46

LCOM5 0.433 0.721 .07

TCC 0.379 -1.19 .95
LCC 0.389 -.910 .92
SCOM 0.391 -1.19 .95
CC 0.410 -1.46 .89

HPCM 0.370 -1.32 .87

We find that RMSE of the metrics TCC, LCC, SCOM and

CC indicate lower error and hence better fit compared to the

traditional cohesion metrics. However HPCM gives the least

RMSE indicating the best fit among the cohesion metrics for

predicting bugs. This indicates that HPCM predicts the faults

better compared to other cohesion metrics

III. HPCM HYPOTHESES

Our goal in this paper is to study specific aspects and

characteristics of HPCM. In the following sections we

propose seven hypotheses investigating the relationship

between HPCM and other object oriented metrics. We limit

the metrics to a class since HPCM is class cohesion metric.

A. HPCM vs. Size Metrics

Size metrics of a class captures how big the class is in terms

of its attributes, methods and lines of code. Research efforts

have gone it to measure the effect the size of a class has on

other OO metrics [22]. A class with more number of

methods tends towards having groups of methods, with each

group concentrated on a different functionality. The same

argument can be extended to attributes as well. Also an

increase in attributes and methods leads to more lines of

code. Hence a cohesive class should depict an inverse

relation to all of these size metrics. We have considered

three size metrics - lines of code (LOC), number of attributes

(NOA) and number of methods (NOM) for our analysis. Our

hypotheses are based on the understanding that bigger

classes tend to be overloaded with more than one core

functionality and hence lead to poor cohesion. The following

hypotheses are proposed for analyzing the relationship

between HPCM and size metrics.

Hypothesis 1. Lesser the number of attributes defined in a

class, higher the value of HPCM of the class

Hypothesis 2. Lesser the number of methods defined in a

class, higher the value of HPCM of the class

Hypothesis 3. Lesser the LOC of a class, higher the value of

HPCM

B. HPCM vs. LCOM

LCOM proposed by Chidamber and Kemerer [8] is one of

the earliest known metric for cohesion of a class. It is an

inverse metric that captures the lack of cohesion. The value

of LCOM is not range bound and tends to get very high for

classes with more methods. Both HPCM and LCOM capture

the underlying property of cohesion in a class. However

HPCM is a precise and finer metric compared to the coarse

LCOM. HPCM is also a direct cohesion metric. Based on

this information we propose the below hypothesis

Hypothesis 4. Higher the value of HPCM, lower would be

the value of LCOM of the class

C. HPCM vs. CBO

Coupling between Objects (CBO) was proposed by

Chidamber and Kemerer [9] to measure the level of

dependency between classes. A well designed class is a self-

contained unit and should have minimum dependency on

other classes to fulfill its functionality. On the other hand, a

highly coupled class has a lot of interaction with other

classes. CBO captures the depth of inter class relationship of

 International Journal of Computer Sciences and Engineering Vol.-2(4), pp (238-243) April 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 241

a class. With this basic premise we propose the next

hypothesis below.

Hypothesis 5. Higher the value of HPCM, lower would be

the value of CBO of the class

D. HPCM vs. DIT

The Depth of Inheritance Tree was proposed by Chidamber

and Kemerer [9] to measure the level of inheritance of a

class. It is the length of the maximal path from the node to

the root of the tree. A class’s cohesion and its depth of

inheritance are unrelated properties. The depth of inheritance

(DIT) of a class should not have any effect in the way the

class’s elements are bound together. With this assumption

we propose the following hypothesis

Hypothesis 6. The DIT of a class should not have an effect

on the HPCM of the class

IV. HYPOTHESES VERIFICATION

In this section we perform the empirical analyses for the

hypotheses that were formulated in the previous section

A. Data Set

To evaluate the proposed hypotheses, we have considered

the same dataset that was used in evaluating HPCM in

section 2.3

B. Metrics

The metrics listed in Table 2 were computed to evaluate the

proposed hypotheses. All the metrics were computed from

the dataset using the Automated Tool developed by the

authors [24]

Table 2. Metrics considered for the study

Metric Detail

HPCM High Precision Cohesion Metric
LCOM Lack of Cohesion
LOC Lines of Code
NOA Number of Attributes
NOM Number of Methods
CBO Coupling Between Objects
DIT Depth of Inheritance

C. Pearson Coefficient and p-value

We have used Pearson’s coefficient to estimate the

relationship between the variables in our hypotheses.

Pearson’s coefficient of correlation (r) is a widely used

measure of correlation. It gives the extent and direction of

relation between the two variables under consideration.

Given variables X and Y and ‘n’ data points for them,

Pearson’s coefficient is given as in Equation (4)

& = ' �() − (*��+) − +*�,
)-.

/' �() − (*��,
)-. /' �+) − +*��,

)-.
 (4)

Pearson’s coefficient can take a value from -1 to +1, both

inclusive. The larger the value of ‘r’, ignoring sign, the

stronger the association between the two variables and hence

more accurately one can predict the value of one variable

from the knowledge of other. A value of -1 or +1 suggests

that the variables have perfect correlation. An ‘r’

value of 0 suggests the absence of correlation between the

variables – there is no relationship between the two

variables. The sign of ‘r’ gives information on the direction

of the association. A positive value suggests that relatively

high values of one variable are paired with relatively high

values of another variable and low values are paired with

low values of the second variable. A negative correlation

means that relatively high values of the first variable are

paired with relatively low values of the second variable and

vice versa.

The p-value is the probability of getting the correlation by

chance. When the p-value is low, the confidence in the

obtained Pearson coefficient is high. Generally p-value less

than 0.05 are considered statistically significant and we have

taken the same cut-off in our experiment as well.

D. Results and Interpretation

The results of the empirical analysis are summarized in this

section.

Projects HPCM LCOM LOC NOA NOM CBO DIT

Mahout 0.461 24.18 133.12 4.72 7.66 8.38 0.59

OWB 0.489 29.81 163.63 4.31 7.95 7.5 0.86

Sling 0.416 18.66 125.59 4.61 8.38 4.07 0.48

Synapse 0.271 318.8 382.3 10.4 13.7 24.7 1.1

Tobago 0.355 69.57 141.76 6.09 7.86 6.24 0.57

Tomcat 0.189 176.6 378.58 8.9 13.03 12.4 0.73

Camel 0.279 156.0 160.0 5.15 10.46 14.9 0.36

Castor 0.205 50.76 149.76 4.57 9.73 6.66 0.61

Cayene 0.314 73.33 168.71 7.52 11.62 12 0.86

Eclipse 0.236 105.4 172.52 10.2 6.66 20.4 0.42

JDK7 0.330 35.15 185.87 7.33 7.37 2.38 1.86

Struts 0.292 51.45 138.8 4.45 6.27 7.63 0.36

Table 4 provides the correlation coefficient values for

HPCM with size metrics. We find that HPCM is negatively

correlated with all the size metrics as proposed in the

hypotheses

Table 4. Pearson Coefficients for HPCM vs. Size Metrics

Projects
HPCM vs.
LOC

HPCM vs.
NOA

HPCM vs.
NOM

Mahout -0.28712 -0.37333 -0.15952

OWB -0.37087 -0.45170 -0.36659

Sling -0.16793 -0.31734 -0.30214

Synapse -0.24568 -0.40196 -0.10998

Tobago -0.49601 -0.37482 -0.35987

Tomcat -0.21269 -0.28263 -0.13176

Camel -0.52366 -0.46848 -0.20135

 International Journal of Computer Sciences and Engineering Vol.-2(4), pp (238-243) April 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 242

Castor 0.029200 -0.24433 -0.06038

Cayene -0.14734 -0.42173 -0.24623

Eclipse -0.42998 -0.08017 -0.23754

JDK7 -0.27492 -0.19197 -0.22159

Struts 0.315460 0.170510 -0.34170

Table 5 provides the correlation coefficient values for

HPCM with LCOM, CBO and DIT. HPCM has negative

correlation with LCOM and CBO as proposed earlier.

HPCM does not show a clear correlation direction with DIT.

Some projects show non-trivial positive correlation (like

0.44169 in Synapse) while others show a non-trivial negative

correlation (-0.2933 in Sling). Hence there is no clear

conclusion on the effect of DIT on HPCM

Table 5 – Pearson Coefficients for HPCM vs. LCOM, CBO

and DIT

Projects HPCM Vs

LCOM

HPCM Vs

CBO

HPCM Vs

DIT

Mahout -0.50256 -0.38886 0.3572

OWB -0.43935 -0.16926 -0.0151

Sling -0.37584 0.02919 -0.2933

Synapse -0.38714 -0.28206 0.44169

Tobago -0.51058 -0.70940 0.10882

Tomcat -0.15733 -0.17478 0.08981

Camel -0.48129 -0.51830 0.05387

Castor -0.33969 -0.13932 0.40893

Cayene -0.34952 -0.27688 -0.2077

Eclipse -0.11025 -0.20351 -0.2022

JDK7 -0.44104 -0.14557 -0.0741

Struts -0.39241 -0.08755 -0.0002

Table 6 gives the overall correlation results for the various

metrics along with their statistical significance (p-value). We

find that all the metrics except DIT are negatively correlated

as proposed in the hypotheses. The correlation coefficient

between HPCM and DIT is close to zero, indicating near

absence of correlation. However since the correlation

between HPCM and DIT was not conclusive in section 4.4.

Additional experiments are suggested before drawing

conclusions on hypothesis 6. Also in all the cases we find p-

value less than 0.05 confirming the statistical significance of

the coefficients. The p-value is less than 0.01 for 6 cases

shows high statistical significance.

Table 6 – Overall Pearson Coefficients

Hypotheses Pearson Coefficient p-value

HPCM Vs LOC -0.2662179 0.00000115

HPCM Vs NOA -0.2768793 0.00000043

HPCM Vs NOM -0.2307795 0.00002290

HPCM Vs LCOM -0.2494641 0.00000501

HPCM Vs CBO -0.2274472 0.00002965

HPCM Vs DIT 0.0044887 0.00468834

V. LIMITATIONS AND FUTURE WORK

The study is prone to certain limitations which can be

investigated and addressed in related future work. Fault

modeling based on one metric might not yield the best

results. Faults could be contributed by other metrics too. For

the scope of this study we have considered that metrics other

than cohesion have a constant impact on faults. The

relationship between HPCM and DIT is inconclusive. Some

projects presented a positive correlation and some indicated

negative correlation. This requires additional experiments to

arrive at a conclusion. We have considered data from open

source Java projects. This data set is representative of a

small population of projects. A large real time object-

oriented system from industry will serve as a better data set

and can be considered for future study. The metric could be

deployed in an industry setup and feedback from industry

users can be used to further refine the metric. Future studies

could also consider fault prediction models based on HPCM

and other metrics to further understand their relationship and

their contribution to the overall defect prevention

VI. CONCLUSIONS

In this paper we analyzed the limitations of existing cohesion

metrics. A new cohesion metric, the High Precision

Cohesion Metric has been proposed to address the

limitations. The characteristics of HPCM have been

investigated and validated with the help of seven hypotheses.

The empirical study was done using data from 500 classes

taken from 12 open source projects in Java. The hypothesis

gives an insight on the relationship between HPCM with

other object oriented metrics.

REFERENCES

[1] G. Concas, M. Marchest, G. Destefanis and R. Tonelli, An

empirical study of software metrics for assessing the phases of

an agile product, International Journal of Software

Engineering and Knowledge Engineering, June 2012, vol. 22,

no. 04, pp. 525-548

[2] E. Paikari, M. M. Ritcher and G. Ruhe, Defect Prevention

using case based reasoning: An attribute weighing technique

based upon sensitivity analysis in neural networks,

International Journal of Software Engineering and Knowledge

Engineering, Sep. 2012, vol. 22, no. 06, pp. 747-768

[3] M. Khoshgoftaar, K. Gao and A. Napolitano, An empirical

study of feature ranking techniques for software quality

prediction, International Journal of Software Engineering and

Knowledge Engineering, Mar. 2012, vol. 22, no. 02, pp. 161-

183

[4] C. Z. Zhou and Y. B. Xu, A novel approach to measuring

class cohesion based on dependence analysis, Proceedings of

the International Conference on Software Maintenance, 2002,

pp. 377-384.

[5] L. C. Briand, C. Bunse and C. J. Daly, A controlled

experiment for evaluating quality guidelines on the

maintainability of object-oriented designs, IEEE Transactions

on Software Engineering, 2001, pp. 513-530.

[6] J. Bieman and L. Ott, Measuring functional cohesion, IEEE

Transactions on Software Engineering, 1994, pp. 644-657.

 International Journal of Computer Sciences and Engineering Vol.-2(4), pp (238-243) April 2014, E-ISSN: 2347-2693

 © 2014, IJCSE All Rights Reserved 243

[7] T. Mens and S. Demeyer, Future trends in software evolution

metrics, Proceedings of IWPSE2001, ACM, 2002, pp. 83-86.

[8] S. R. Chidamber and C. F. Kemerer, Towards a metrics suite

for object-oriented design, Proceedings of Conference on

Object-Oriented Programming Systems, Languages and

Applications, 1991, pp. 476-493.

[9] S. R. Chidamber and C. F. Kemerer, A metrics suite for

object-oriented design, IEEE Transactions on Software

Engineering, 1994, pp. 476-493.

[10] W. Li and S. Henry, Object-oriented metrics that predict

maintainability, Journal of Systems and Software, 1993, pp.

111-122.

[11] M. Hitz and B. Montazeri, Chidamber and Kemerer metric

suite - a measurement theory perspective, IEEE Transactions

on Software Engineering, 1996, pp. 267-271.

[12] B. S. Henderson, Object-oriented Metrics: Measure of

Complexity. New Jersey, Prentice Hall, 1996, pp. 142-147.

[13] M. Hitz and B. Montazeri, Measuring coupling and cohesion

in object oriented systems, Proceedings of the Int. Symposium

on Applied Corporate Computing, 1995, 25-27.

[14] M. M. Bieman, B. K. Kang and W. Melo, Cohesion and reuse

in an object oriented system, Proceedings of the symposium

on software reliability, 1995, pp. 259-262.

[15] L. Badri and M. Badri, A Proposal of a new class cohesion

criterion, an empirical study, Journal of Object Technology,

2004

[16] C. Bonja and E. Kidanmariam, Metrics for class cohesion and

similarity between methods, Proceedings of the 44th Annual

ACM Southeast Regional Conference, 2006, pp. 91-95.

[17] L. Fernandez and R. Pena, A sensitive metric of class

cohesion, International Journal of Information Theories and

Applications, 2006, pp. 82-91.

[18] J. Bansiya, L. Etzkorn, C. Davis and W. Li, A class cohesion

metric for object-oriented designs, Journal of Object Oriented

Program, 1999, pp. 47-52.

[19] S. Counsell, S. Swift and J. Crampton, The interpretation and

utility of three cohesion metrics for object-oriented design,

ACM Transactions on Software Engineering and

Methodology, 2006, pp. 15:123-149.

[20] A. J. Dallal and L. Briand, A Precise method-method

interaction based cohesion metric for object oriented classes,

Simula Research Laboratory, Simula Technical Report, 2009

[21] L. C. Briand, J. Daly, J. Wuest, A unified framework for

cohesion measurement in object-oriented systems, Empirical

Software Engineering, An International Journal, 1999, pp. 65-

117

[22] K. E. Emam, The confounding effect of class size on the

validity of object oriented metrics, IEEE Transactions on

Software Engineering, 2001, pp. 630-650

[23] Sonar Bug Repository (2012) http://nemo.sonarsource.org,

September

[24] N. Kayarvizhy and S. Kanmani, An Automated Tool for

Computing Object Oriented Metrics using XML. Proceedings

of International Conference on Advances in Computing and

Communication ACC2011, Springer, 2011, pp. 69-79.

[25] The Apache Mahout project, http://mahout.apache.org.

[26] The Apache OpenWebBeans project,

http://openwebbeans.apache.org.

[27] The Apache Sling project, http://sling.apache.org.

[28] The Apache Synapse project, http://synapse.apache.org.

[29] The Apache Tobago project,

http://myfaces.apache.org/tobago/index.html.

[30] The Apache Tomcat project, http://tomcat.apache.org.

[31] The Apache Camel project, http://camel.apache.org.

[32] The Castor project, http://www.castor.org.

[33] The Apache Cayene project, http://cayenne.apache.org.

[34] The Eclipse project, http://www.eclipse.org.

[35] The JDK7 project, http://jdk7.java.net.

[36] The Apache Struts project, http://struts.apache.org.

[37] Basili, Victor R., Lionel C. Briand, and Walcélio L. Melo, A

validation of object-oriented design metrics as quality

indicators. IEEE Transactions on Software Engineering, 1996,

pp. 751-761.

[38] Subramanyam, Ramanath, and Mayuram S. Krishnan,

Empirical analysis of ck metrics for object-oriented design

complexity: Implications for software defects. IEEE

Transactions on Software Engineering, 2003, pp. 297-310.

AUTHORS PROFILE

Kayarvizhy N received her B.Tech and

M.Tech degree from Pondicherry University,

Puducherry in the year 2001 and 2004

respectively in computer science and

engineering. She is working as Associate

Professor in AMC Engineering College,

Bangalore since 2006. She is pursuing her PhD

at Anna University, Chennai. Her research interest includes object

oriented software metrics, neural network models and swarm

intelligence algorithms.

Kanmani S received her B.E in 1991 and M.E in

1992 in computer science and engineering from

Bharathiar University, Coimbatore and PhD in

information and communication engineering

from Anna University, Chennai in 2006.

Currently she is a Professor in Pondicherry

Engineering College, Puducherry. Her research area includes

software systems, software metrics, object oriented systems,

algorithms and data structures. Dr. Kanmani’s professional

affiliations are with Indian Society for Technical Education (ISTE)

and Computer Society of India (CSI).

 Rhymend Uthariaraj V has done his M.E and

PhD in Computer Science and Engineering, Anna

University, Chennai. His areas of expertise include

Network Security, Pervasive Computing,

Distributed Computing, Operations Research, and

Computer Algorithms. He has an overall experience

of 27 years. He holds the position of Secretary,

Tamil Nadu Engineering Admissions and

Coordinator, AICTE-MCA QIP Program at Anna University,

Chennai. He is the Director of Ramanujan Computing Centre, Anna

University, Chennai and has professional affiliations with Indian

Society for Technical Education (ISTE).

.

