o
/&]CSE International Journal of Computer Sciences and Engineering Open Access

Research Paper Volume-2, Issue-4 E-ISSN: 2347-2693

Design and Implementation of Web Crawler

Prashant Dahiwale', Ankita Dangre® , Puja Kolpyakwar’, Vishakha Wankhede* and Priyanka Akre’

L2343 Dept.of Computer Science and Engineering, RTMNU, India

www.ijcseonline.org

Received: 11/03/2014 Revised: 23/03/2014 Accepted: 20/04/201x4 Published: 30/04/2014

Abstract — As the number of Internet users and the number of accessible Web pages grows, it is becoming increasingly difficult
for users to find documents that are relevant to their particular needs. The key factors for the success of the World Wide Web are
its large size and the lack of a centralized control over its contents. Users must either browse through a large hierarchy of
concepts to find the information for which they are looking or submit a query to a publicly available search engine and wade
through hundreds of results, most of them irrelevant[5]. Web crawling is the process used by search engines to collect pages
from the Web. Web crawlers are one of the most crucial components in search engines and their optimization would have a great
effect on improving the searching efficiency. This paper, introduces web crawler that uses a concept of irrelevant pages for
improving its crawling performance. [5] Despite their conceptual simplicity, implementing high-performance web crawlers
poses major engineering challenges due to the scale of the web. This crawler computes the weights for the pages we come across
during the crawling process and hence decide how much a particular page is important to us. Both issues are also the most
important source of problems for locating information. The Web is a context in which traditional Information Retrieval methods
are challenged, and given the volume of the Web and its speed of change, the coverage of modern search engines is relatively
small. Moreover, the distribution of quality is very skewed, and interesting pages are scarce in comparison with the rest of the

content.

Index Term— Web Crawler , Seed , Frontier, Page Weight, Threshold Value

L INTRODUCTION :

Internet is the shared global computing network.
The Internet is a global systemof interconnected computer
networks that use the standard Internet protocol
suite (TCP/IP) to serve several billion users worldwide. It
enables global communications between all connected
computing devices.[2] It is anetwork of networks that
consists of millions of private, public, academic, business,
and government networks, of local to global scope, that are
linked by a broad array of electronic, wireless, and optical
networking technologies. It provides the platform for web
services and the World Wide Web. Web is the totality of
web pages stored on web servers. There is a spectacular
growth in web-based information sources and services. The
Internet carries

an extensive range of information resources and services,
such as the inter-linked hypertext documents of the World
Wide Web (WWW), the infrastructure to support email,
and peer-to-peer networks. It is estimated that, there is
approximately doubling of web pages each year. As the Web
grows grander and more diverse, search engines also have
assumed a central role in the World Wide Web’s
infrastructure as its scale and impact have escalated. In
Internet data are highly unstructured which makes it
extremely difficult to search and retrieve valuable
information. Search engines define content by keywords.

Corresponding Author: Ankita Dangre
Dept.of Computer Science and Engineering,, RTMNU,India

© 2014, IJCSE All Rights Reserved

A Web crawler starts with a list of URLs to visit, called
the seeds. As the crawler visits these URLs, it identifies all
the hyperlinks in the page and adds them to the list of URLSs
to visit, called the crawl frontier. URLs from the frontier
are recursively visited according to a set of policies.

The large volume implies that the crawler can only
download a limited number of the Web pages within a given
time, so it needs to prioritize its downloads.[4] The high rate
of change implies that the pages might have already been
updated or even deleted.

The number of possible URLs crawled being generated by
server-side software has also made it difficult for web
crawlers to avoid retrieving duplicate content. Endless
combinations of HTTP GET(URL-based) parameters exist,
of which only a small selection will actually return unique
content.[4] For example, a simple online photo gallery may
offer three options to users, as specified through HTTP GET
parameters in the URL. If there exist four ways to sort
images, three choices of thumbnail size, two file formats,
and an option to disable user-provided content, then the same
set of content can be accessed with 48 different URLs, all of
which may be linked on the site. [2]

As Edwards et al. noted, "Given that the bandwidth for
conducting crawls is neither infinite nor free, it is becoming
essential to crawl the Web in not only a scalable, but
efficient way, if some reasonable measure of quality or

190

International Journal of Computer Sciences and Engineering

freshness is to be maintained. A crawler must carefully
choose at each step which pages to visit next.[3]

A. Crawling policy
The behaviour of a web crawler is the outcome of
combination of policies:

= aselection policy that states which pages to download,

= are-visit policy that states when to check for changes to
the pages,

= apoliteness policy that states how to avoid
overloading Web sites, and

= a parallelization policy that states how to
coordinate distributed web crawlers.

1) Selection policy

Given the current size of the Web, even large search engines
cover only a portion of the publicly available part. A 2005
study showed that large-scale search engines index no more
than 40-70% of the indexable Web a previous study by Steve
Lawrence and Lee Giles showed that no search engine
indexed more than 16% of the Web in 1999. As a crawler
always downloads just a fraction of the Web pages, it is
highly desirable that the downloaded fraction contains the
most relevant pages and not just a random sample of the
Web.

Designing a good selection policy has an added difficulty: it
must work with partial information, as the complete set of
Web pages is not known during crawling.

a) Restricting followed links
b) URL normalization
c) Path-ascending crawling

d) Focused crawling

2) Re-visit policy
The Web has a very dynamic nature, and crawling a fraction
of the Web can take weeks or months. By the time a Web
crawler has finished its crawl, many events could have
happened, including creations, updates and deletions.
From the search engine's point of view, there is a cost
associated with not detecting an event, and thus having an
outdated copy of a resource. The most-used cost functions
are freshness and age

Freshness: This is a binary measure that indicates whether
the local copy is accurate or not.

The objective of the crawler is to keep the average freshness
of pages in its collection as high as possible, or to keep the
average age of pages as low as possible. These objectives are
not equivalent: in the first case, the crawler is just concerned
with how many pages are out-dated, while in the second
case, the crawler is concerned with how old the local copies
of pages are.

@
f&] CSE ©2014, IICSE All Rights Reserved

Vol.-2(4), pp (190-193) April 2014, E-ISSN: 2347-2693

Two simple re-visiting policies were studied by Cho and
Garcia-Molina:

Uniform policy: This involves re-visiting all pages in the
collection with the same frequency, regardless of their rates
of change.

Proportional policy: This involves re-visiting more often
the pages that change more frequently. The visiting
frequency is directly proportional to the (estimated) change
frequency.

3) Politeness policy:

Crawlers can retrieve data much quicker and in greater depth
than human searchers, so they can have a crippling impact
on the performance of a site. Needless to say, if a single
crawler is performing multiple requests per second and/or
downloading large files, a server would have a hard time
keeping up with requests from multiple crawlers.

4) Parallelisation policy:

A parallel crawler is a crawler that runs multiple
processes in parallel. The goal is to maximize the download
rate while minimizing the overhead from parallelization and
to avoid repeated downloads of the same page. To avoid
downloading the same page more than once, the crawling
system requires a policy for assigning the new URLs
discovered during the crawling process, as the same URL
can be found by two different crawling processes.[3]

Earlier work was based on how the web crawler works, the
process of web crawler and how the sequence of accepting
the URL, fetching the page, parsing the page, extracting all
the hyperlinks is performed. While performing the following
sequence, we are downloading the page we need to verify for
the evaluation. Hence, while downloading the page we
anyways use up the bandwidth. It will be even more
beneficial if we utilize the used bandwidth and get more out
of it. than once, the crawling system requires a policy for
assigning the new URLs discovered during the crawling
process, as the same URL can be found by two different
crawling processes.[3]

Earlier work was based on how the web crawler works, the
process of web crawler and how the sequence of accepting
the URL, fetching the page, parsing the page, extracting all
the hyperlinks is performed. While performing the following
sequence, we are downloading the page we need to verify for
the evaluation. Hence, while downloading the page we
anyways use up the bandwidth. It will be even more
beneficial if we utilize the used bandwidth and get more out
of it.

Thus implementing the following method, we use the
downloaded pages’ bandwidth and get the same bandwidth
to get the title, body and the number of outgoing links on
that particular page.

191

International Journal of Computer Sciences and Engineering

II. METHODOLOGY

Architectures[3]
] UL~ Rull-1hrazizkel
[T TR LT - HERTe Y B I | .
| | Taal aed
H i limaiazhaiz
i y L —
LR | I
| PiRT = I
J Sl :
i

High-level architecture of a standard Web crawler

A crawler must not only have a good crawling strategy, as
noted in the previous sections, but it should also have a
highly optimized architecture.[2] While it is fairly easy to
build a slow crawler that downloads a few pages per second
for a short period of time, building a high-performance
system that can download hundreds of millions of pages over
several weeks presents a number of challenges in system
design, I/O and network efficiency, and robustness and
manageability. Web crawlers are a central part of search
engines, and details on their algorithms and architecture are
kept as business secrets. When crawler designs are
published, there is often an important lack of detail that
prevents others from reproducing the work. There are also
emerging concerns about "search engine spamming", which
prevent major search engines from publishing their ranking
algorithms.

We define the factors for which we specify the page
importance:

weight(page) = weight(URL) + weight(outlinks) +
weight(title) + weight(body)
where,
1) if (search string present in URL)
{
weight(URL) returns a predefined weight
}
Else
{
Return 0
}

This will return the weight assigned for the URL
occurrence. If the search string is found in the URL, the page
acquires certain importance.

2) if (search string present in title)
{
weight(title) returns a predefined weight
}
Else

)))«

] CSE ©2014, ICSE All Rights Reserved

Vol.-2(4), pp (190-193) April 2014, E-ISSN: 2347-2693

{
}

Return O

This will return the weight assigned for the title occurrence.
If the search string is found in the title, the page acquires
certain importance.

3) Occurrence of search string in the body
{
weight(body)=occurrence*weight for each
occurence
}

This will return the weight assigned for the body occurrence.
If the search string is found in the body, the page acquires
certain importance. When the search string occurs certain
number of times in the body, the occurrence is noted and the
page importance is calculated using the occurrence count.

4) Number of hyperlinks on the page

{

weight(outlinks)=occurrence*weight for each
occurence

}

This will return the weight assigned for the out-
links occurrence. The number of links linking to the other
page has also been assigned some importance.

Giving importance to each component of the parsed page, we
have assigned weight to each component and hence acquired
the page importance in totality. As we get the page weight,
we will compare it with the threshold frequency implicitly
provided to the algorithm. Depending on the result of
comparison, the links are either added to the output or they
may be discarded.

Thus, we get the search more focused to the search string
eliminating the least important topic.

Proposed Algorithm (Pseudo Copde):
. Start

. Initialize frontier with seed URL.
. While (frontier is not empty)

~ W N =

Pick URL from frontier
Fetch page
Parse page
calculate weight(page).

. if(weight(page) > (threshold_value))

N N

Add to output.

N -

. Stop

192

International Journal of Computer Sciences and Engineering

III. RESULT & DISCUSSION

= Relevant count

u Total count

No. of URLs to crawl(*10)

20 30 i 50
Links count

=)
e
&

= As the number of URL to crawl increases,the links
count also increases.

= When the total links increases, the relevant links don’t
increase with same speed.

= As we go far away from the seed URL,the frequency
of finding relevant links decreases.

700
600
500
400

300

Elapsed time(in sec)

200

100

No.of URLs to crawl

= As the number of URLs to crawl increases,the
elapsed time also increases.

= As we go far away from seed, the time for finding
relevant links also increases respectively.

IV. CONCLUSION

Hence by using the concept of Page Weight, we scan web
pages as well as compute the weight of page and hence we
can increase efficiency of web crawler as output set of URL
generated by this way will always be of better importance
than what traditional web crawler is generating.

V. SCOPE FOR FURTHER RESEARCH

As we parse the page, we have only extracted the hyperlinks
on the page. We can proceed the work by extracting the
images, videos and other non textual content and hence carry
out the further process.

@
/ﬂ\] CSE ©2014, IICSE All Rights Reserved

Vol.-2(4), pp (190-193) April 2014, E-ISSN: 2347-2693

VI .ACKNOWLEDGMENT

We would like to express my special thanks of gratitude to
our Guide Prof. Rahul Sathawane as well as our Co-guide
Prof. Prashant Dahiwale who gave us the golden opportunity
to do this wonderful project on the topic “Design and
Implementation of Web Crawler”, which also helped us in
doing a lot of Research and we came to know about so many
new things we are really thankful to them.

VII REFERENCES

[1] Prashant Dahiwale, Anil Mokhade, M.M. Raghuwanshi,
Intelligent Web Crawlers, ICWET, ACM New York, NY,
USA, pp. 613-617, 2010.

[2] Brian Pinkerton, Finding what people want: Experiences with
the Web Crawler, Proceedings of first World Wide Web
conference, Geneva, Switzerland, 1994

[3] Gautam Pant, Padmini Srinivasan, Filippo Menczer, Crawling
the Web, pp. 153-178, Mark Levene, Alexandra Poulovassilis
(Ed.), Web Dynamics: Adapting to Change in Content, Size,
Topology and Use, Springer-Verlag, Berlin, Germany,
November 2004.

[4] Christopher Olston, Marc Najork, Web Crawler Architecture,
Journal Foundations and Trends in Information Retrieval
archive, Volume 4 Issue 3, pp. 175-246, March 2010.

[5] B. Pinkerton, “Finding what people want: Experiences with the
WebCrawler,” in Proceedings of the 2nd International
World Wide Web Conference ,1994.

[6] en.wikipedia.org/wiki/

AUTHORS PROFILE
Name: Prof. Prashant Dahiwale

E-Mail:prashant.dahiwale @ gmail.com
Institute:RGCER,Nagpur

Name: Ankita Dangre
E-Mail:ankitavd92 @gmail.com
Institute:RGCER,Nagpur

Name: Puja Kolpyakwar
E-Mail:puja.kolpyakwar @ gmail.com
Institute:RGCER,Nagpur

Name: Vishakha Wankhede
E-Mail:wankhede.vishakha @ gmail.com
Institute:RGCER,Nagpur

Name: Priyanka Akre
E-Mail:priyankaakre779 @ gmail.com
Institute:RGCER,Nagpur

4D D O DD

193

