
 © 2016, IJCSE All Rights Reserved 21

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Survey Paper Volume-4, Special Issue-5, Jul 2016 E-ISSN: 2347-2693

Twelve-Factor application pattern with Spring Framework

Dinkar Thakur
1*

, Arvind Kalia
2

1
Department of Computer Science, Himachal Pradesh University, India

2
Professor, Department of Computer Science, Himachal Pradesh University, India

Available online at: www.ijcseonline.org

Abstract— The world of software development is moving from monoliths to micro-service architecture. Instead of having one

big application, handling all tasks, there is a paradigm shift towards creating many small applications doing just a unit of work.

When we build software-as-a-service we have to look into development, maintenance, and scalability of the application. Over

the time it has been observed that the post development tasks of an application are inhibited because application is not just

doing one task that it is supposed to do but all the activities that can be delegated. With twelve-factor pattern we can come

close to create micro-services that can reduce cost of development, have maximum portability when deploying on different

environment, are cloud ready and most importantly scale up. Spring.io provide a rich underlying framework, which can help in

creating applications that are twelve-factor compliance, with Spring Boot they took it to a whole new level. With twelve-factor

methodology in mind, in this research paper we will try to look into how spring can help covering each point in twelve-factors.

Index Terms—Twelve-factor application; Cloud native; Spring-framework; Micro-services

I. INTRODUCTION

The twelve-factor
1
application pattern is a new way of

creating software application such that the applications

created by following this methodology ease the process of

deploying, maintaining, and scaling and graceful degradation.

In short application created with these factors in mind are

close to the cloud native application.

A cloud native application can be packaged in containers,

allow dynamic scaling and most importantly micro-service

based [1]. With the advancement of the cloud computing,

there is more emphasis on creating software that can take full

advantage of the hardware and services provided by the cloud

[2]. In an ideal cloud environment every application behaves

as a service, which can be attached from outside of the

consumer application and hence are cloud native. The benefit

of creating such application is that, these services can utilize

other services being provided by the cloud platforms such as

Amazon, Azure, and Cloud Foundry to name a few.

The twelve factor methodology provides some guidelines,

checkpoint to ensure that when we create an application for

the cloud we know what things we have to look up, and what

points we need to keep in mind so that we are not developing

application every time we need to deploy or changing

configuration. Like all the patterns and methodologies its not

compulsory to follow these guidelines to run an application in

the cloud, but to make full use of the cloud, knowingly or

unknowingly we will be following these.

1http://12factor.net/admin-processes

With the evolution of software applications from simple

hello-world to complex booking or stock trading application,

frameworks facilitating software development have also been

improved. One such framework for Java application is spring

framework
2
. Developed by Rod Johnson, first released on 1

October 2002, this framework was at core build on principles

of dependency injection and aspect-oriented programing with

a unit of work in mind. Fast forward to the age of cloud,

developers as spring have evolved this framework to provide

a comprehensive tool for developing cloud native

applications. From creating to monolith war files, spring with

its spring-boot frameworks now created micro-services as fat-

jars. Spring-Boot
3
 has changed the way we develop Java web

application, instead of deploying the war in a tomcat

container, now we have a fat-jar containing all the necessary

components within even the web servers like tomcat or jetty.

Hence making it a good choice to create cloud native

applications.

II. TWELVE FACTORS AND SPRING

A. CodeBase: One Code Base, Many Deployments.

Tracking of the changes in a twelve-factor application is done

using a version control system. All the changes made in the

code create a revision and are maintained by the code

repository.Git, Subversion and Mercurial are some examples

of version control systems [3].

According to the twelve-factors, one application must

correspond to one code base and vice-versa. Meaning that

one micro-service should have its one code repository. The

need for having this is that the changes in micro-services

2https://spring.io/
3http://projects.spring.io/spring-boot/

 International Journal of Computer Sciences and Engineering Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 22

must be local to it.

One may question that what is the problem in having one

codebase and many applications? Well, that’s true in the case

of monoliths applications where one application is not doing

a single task, but a group of tasks. If we look further, we will

find thatthese applications have many independent

components, but still are in one application as their code base

is same forming an Anti-pattern. The main drawback arising

from such structure of having a single code base is that for a

change in one component we have to deploy complete

application, hence we have to test complete application even

the component that are not part of the change [6].

Secondly, if we say that we have many code-base constituting

a single application, then each codebase itself constitutes to

individual application and they should be in compliance with

the twelve factors guidelines. Such an arrangement of the

code will result in distributed structure and consumption of

these applications/micro-services can be either by APIs or by

using dependency management systems like maven or ruby

gems.

The application can have many deployments, meaning hereby

that application might be deployed many times in cloud as

separate instances of the same service. Even while under

development there might be different instances of the

application running on staging environment, on developers

machine all referring to same codebase but different version

maintained by the version control system.

With spring boot providing the needed underlying framework

through dependency management, and passing configuration

as environment variable, building and deploying application

is just one command. All we need to do is checkout the code,

built it and run. No changes other than environment variables

like database path, log path are required, these changes are

provided by the springconfiguration server. So, we have one

codebase per application/service and many deployments.

B. Dependencies: Explicit and Isolated Dependencies.

No application can run in isolation and it depends on the

libraries. Some libraries are provided by the language runtime

like the system library in Java and the header files in C, but

there are many other libraries that don’t come as a package

and are installed explicitly like some database connector, or

image processing libraries. In an application following

twelve-factor itis required to explicitly declare all the external

dependencies. One must not depend on the libraries or

packages being provided by the underlying system. Even if

the underlying system on which the application has to run

provides those libraries.

The main reason for this is that while creating the application

for the cloud one cannot always have the same operating

system, same environment for execution. A cloud native

application must declare its dependencies completely and

exactly. Also, it should not allow any implicit dependency to

get in during the execution of the application.

One of the key benefits of declaring dependencies explicitly

is that all we need to do is check out the code and run

package/builder command and dependency management

module will download all the libraries required to run [4].

Instead of looking for the code for dependencies developer

only have to go though the manifest, like pom.xml,

build.gradle in Java or a gemfile in ruby-on-rails.

Spring-boot comes very handy in this situation with all the

framework level dependencies being handled by the spring-

boot BOM, all we have to do is add the dependency in the

dependency management module. The dependency

management system will take care of the rest. Using the help

of spring BOM (Bill of Material) it will try to import best-

suited library version from the repository [5]. Spring also

provides starter modules for many components. Once the

application has built successfully we can then package that

into a single fat-jar containing all the dependencies it needs to

work. So spring boot help is overcoming what is commonly

known as dependency hell. Care should be taken here to

avoid the explicit defining theversion of dependenciesasit

might happen that these libraries conflict with one another.

So best is to rely on the spring-boot BOM and let the spring

decide which libraries to load. We only need to specify the

version in case of libraries not covered under BOM, for

example our own custom libraries.

It should also be done in case of dependencies that are

included in many micro-services of the same application. One

may consider creating a parent module and inject the

dependencies through that to all the child application. That

will in short run solve some problem of maintaining same

version, but as the dependencies increase they will create

dependency hell as one application is using one version and

second application another. If a dependency is the part of the

framework, then it can be defined in the parent dependency

management file,butthe actual inclusion of the dependency

need to be done in the application.

C. Config: Storing Config in the Environment.

As we have seen that the application with twelve-factor

methodology will have one codebase and many deployments.

And application configuration will vary from machine to

machine, stage to stage. For example same application will be

running on different port different IP on every developers

machine.Most commonly the database connection will

change in development, testing and production stages. If we

keep on changing the code each time we have to deploy the

application then that will work only good as far as manual

deployment is concerned.

 International Journal of Computer Sciences and Engineering Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 23

Deployment in cloud native application is a continuous and

automated process all the developer needs to do is just push

the code to the code repository. Creating a new release

version after running test cases has to be automated process.

In such a case if we need to change the code every time the

application is deployed, will limit the process. So

configuration and the code need to be strictly separated [7].

As there is much difference in the configuration rather that

the code in different deployments.

Further in case of cloud deployment with the use of Dockers

[8],If the configuration is inside the application and cannot be

overridden from the environment then we have to again build

the image for the docker, where as all we need is change the

configuration variable.In earlier Java application the

properties files are used to do this and these property files are

placed outside the war so as to change them without re-

deploying the complete application, but we still need to

restart the application for these configuration to take place.

One major drawback of having configuration in the code is

that we can’t keep these code files containing the

configuration in codebase as they might contain sensitive data

like database credentials.

Spring Cloud
4
 provides spring-cloud-config component,

which take care of the entire configuration related issues.

Further more the configuration in spring boot application can

be provided as runtime parameter or even read from the

environment. Spring cloud config provides externalized

configuration support for distributed system. The spring

cloud config provides support for both client and server side.

This component creates a configuration server and all the

client will treat is as a service when the application boots up

it will ask for its own configuration. Only bootstrap

configuration is need in the application that to can be

provided by the environment. Once the application gets its

configuration from the server the bootstrap configuration are

over-ridden by the configuration provided by the

configuration server. Also by providing the RefreshScope in

the client application, we just need to change the

configuration in the server and configuration server will push

the changes to the client application while its still running so

using spring cloud config component, externalization of the

configuration can be done in real sense.

D. Backing Services: Services as Attached Resourses.

Any service which the application consumes over the

network for its normal operation is called backing service.

For example database, queuing system, mailing service.

These all act as back end services for the application. The

application should not depend upon these services for

running. There can be some exceptions being thrown if

4http://projects.spring.io/spring-cloud/

application fails to find a backing service it requires, but the

application must degrade gracefully. There may be services

those are not native to the application like the metrics

gathering services or third party social networking APIs like

Facebook or Twitter. An application following the twelve

factors treats these local or third party services as backing

services. At any give time the application must be able to

swap between these services, without any code change. For

example, instead Oracle database the application can be made

to run on MySQL cluster, instead of RabbitMQ
5
, one should

be able to switch to ActiveMQ
6
.

Wewill be able to switch backing services if they are treated

as resources being provided by the cloud platform. One

benefit of having services are resource is that they can be

scaled up or down as required, and the application need not to

bother about that. We can change the underlying service

without and change in the code of the application and the

application will behave as it is.

Spring boot provides wrappers for nearly all the known

required services, for database we have spring data, for

message queues we have the spring cloud stream, for social

networking API we have spring social and all these can be

bundled in micro-services using spring boot. We only need to

change the configuration, through the configuration server in

order to make it work. As spring provides wrapper for these

backing services as a developer one only need to follow the

guidelines provided by the spring framework. Also, if there is

a need to create any custom implementation forbacking

services,then it must be kept in mind to treat services as

resources present outside of the application and accessed

through theURL.

E. Build, Release, Run: Seperation between Build and Run

Stages.

Build stage transforms the code from the code base to

executablelibraries. Dependencies are fetched depending

upon the version described in the code base. Build stage does

all the hard work. Release Stage creates combination of build

produced and the configuration as needed by the staging

environment and makes it ready for the execution. In the Run

stage the application is made available on the server. The run

stage should be the lightest and cleanest part of the process.

All the issues should be handled in the build stage as the

developers handle this stage. If the server crashes or the

application start misbehaving then the application should be

able to restart without human intervention. Thus the run stage

should have minimum moving parts.

The concept of fat-jars of spring boot comes very handy in

these cases. All the dependencies declared are explicitly

5https://www.rabbitmq.com/
6http://activemq.apache.org/

 International Journal of Computer Sciences and Engineering Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 24

declared in the application and during the build phase the all

these dependencies are fetched and bundled with

theapplication. This build of the application is ready to be

deployed and will get configuration from the configuration

server. With the advancement of Dockers now the image of

these build can be saved and run on demand. Many images of

different versions of the application can be made which

facilitated the rollback and re-deployment of the application.

F. Processes: Application as Stateless and Share-Nothing.

This is the most important concept when we are developing

an application for the cloud. When we say build for failure

this is what we have in mind. In cloud environment, we have

many instances of the same application running on either

same machine inside dockers or in different machine serving

many requests. If the application is not stateless,it means that

the current request depend upon the previous request, then

this will lead to failure as the requests can go to any instance

and not to the same instance every time.

Any data that need to be persisted between the calls can be

shared by using backing services that can be a database or

cache server, which is shared across the applications and all

the instances. Although, we can use local memory, file

system for temporary storage for a single transaction. The

result of these operations must be stored in the database or

intermediate service to provide persistence. As we will move

forward, with each request the data will also move from the

state of inconsistency to eventual consistency [9].

Some web systems use sticky sessions, storing the request

information in the server. This was old approach where data

is stored in the session variables, which in turn get stored on

the server. But such applications breaks when placed behind

the load balancer, as concurrent requests usually don’t go to

the same instance.

Micro-services created with spring boot actas different

processes and can be consumed by http rest calling, which

itself is a stateless protocol. Spring provides spring session

component to which act as an external resource shared

between the application instances to maintain and provide the

session to all the instances. Spring session is mainly used to

share the user login session across the micro-services. Extra

information and intermediate data can be stored in Redis

server or Memcache for which spring has pre-build

component all we need to do is include that component in the

application and provide configuration in the configuration

server for that application. Even though spring provides the

component to handle this, it’s the developer who needs to

keep in mind this concept of statelessness and share-nothing

while developing an application for the cloud.

G. Port Binding: Export Services via Port.

Port binding enables the application to become a backing

service to any other application. This relates to the concept

that the applications should be built as they are backing

services being consumed by the URL. With the use of port

binding applications can consume by the other application on

the cloud as a service. Making applications self-containing by

explicitly declaring the dependencies it require inside the

application to fulfill this. Traditionally we have to deploy

web application in web server, like Java war is deployed in

tomcat, PHP uses apache server and ASP.net uses IIS.

Twelve-factor app does not depend on the runtime, in-fact the

web-server is also included in the application and with port

binding it is ready to listen for the incoming requests. With

having an embedded server in the application any type of

service can be exposed using port binding.

We can use spring discovery component (Eureka or Consul).

All the application can be made discoverable to the other

services using this. When an application boots-up its register

itself to the spring discovery and when service is requested,

the discovery service provides the necessary URL for the

service. This concept of port binding is very useful when

application is running inside a docker asdocker will bind an

internal port to an external port.

H. Concurrency: Scale Out via Process Model.

Processes are the first class citizen in Twelve-Factor. This

factor has been derived from the UNIX process model of

running service daemons. This means that all the

application/processes should scale, clone and restart when

required. These processes are handled by the operating

system’s process manager, which manages output streams

and manual shutdown and restarts. Using this model we can

design our application so that each process is specialized in

handling one type of work effectively. Like the web request

are handled by the web worker process and heavy

background task by the backing worker process.

If we look application as a whole we will see that an

application is nothing but bundle of these micro-services, for

example, in case of a website, signup/registration can be one

service. Logging is another services and maintaining session

another. If these services are combined in a single application

like in a monolith application, then scaling an individual

component will be next to impossible. We have to scale

whole of the application if we need to scale anyone of the

lagging component. So if we need to scale out, then we need

to have a process model, which can only be possible if the

applications are treated as backing services independent of

one another [10]. This is highly facilitated by the fact that we

create self-contained fata-jars, so that they are totally

independent.

 International Journal of Computer Sciences and Engineering Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 25

I. Disposability: Maximun Robustness, Fast Startup,

Graceful Shutdown.

The application should be able to start immediately and when

it goes down there should not be like sudden death. If we

take an example of a web application, and we follow all the

abovefactors even then we can’t we certain that the

application be behave nicely on web scale. If a backing

service goes down, then what should be the behavior of the

application? Should it also crash, give an exception or

perform some notification.

First thing here is the robustness, it doesn’t mean that the

application should never crash. There are many factors,

which can cause the application to crash. One of them is the

failure of underlying hardware. In this case there is not way

the service itself can broadcast the panic message. Here the

use of the queuing system can help in achieving the

robustness. If the backing service fails, then the client should

be able to create the queue for the upcoming request. Again

this should not be done inside the client or service, but

outside of both the application, in a separate queuing server.

Second, the fast startup means that the application can be

instantiated within seconds. There should not be any delay in

the starting up of new instance of the application. The reason

is quite simple when the load increases on a service, then it is

distributed to different instances of the service. In order to do

so the cloud usually tries to replicate the service and create

new instances on the service. If this takes time, then the

already running instances have to bear the extra load till the

new instance is created. This is effectively handled by

providing pre build application (images in case of dockers) as

most of the time is consumed in building the application

rather than releasing and running it.

Third and important one is graceful degradation. This means

that when the process manager terminates the service,then it

should close the port in which they are running, thereby

refusing any request coming to that port, and finishing any

current request to complete. In this model all the services are

reentrant. It should not leave any current task in between.

Either the task should be completed or reverted back to the

queue to be picked next time removing all the intermediate

changes.

Also the client should be made aware that service instance is

down and requests are reverted to any live instance of the

service. Ifthere is no instance in live state at that given point

of time, then either the request is kept in the queue or it

should go to the fallback. In case of web application spring

hystrix along with the client side load balancing handles it.

The discovery service provides only those instances of the

application that are in upstate. If the client is not able to send

requests to the service, then hystrix handles the fallback and

execute the fallback method. A typical example is

aboutshowing movies based on the viewing history of the

user. If this service is down, then the application calling this

should handle it gracefully and respond by providing the

default movie list. It is not always wise to show the default

data, as the user might be expecting some valid output based

on his input, and providing him with default data will be

misleading. In these scenarios the application must provide a

valid error message instead of just crashing.

J. Dev/Prod Parity: Keeping Development, Staging and

Production Environment as Similar as Possible.

Usually there are many gaps in the development environment

and the production environment. These are mainly because of

the stack present in the development environment can be

different than that of production. In development phase a

developer may use alightweight and fast service like SQLite,

and on production dev-ops team would like to go for more

robust and heavyweight stack like MySQL. Even the

underlying operating system can be different. Developer

might go for the OSX for its ease of use, where as the

production environment uses Linux [12]. Even the people

developing the application and who is deploying it are

different. This can lead to uncertain problems arising only in

production environment. Hence increasing the development

to production time.

Continuous deployment is one of the aspects of the Twelve

Factor application. This can be achieved by making the gap

between the development and production stack as small as

possible. By getting the developers involved in the

deployment phase monitoring the behavior of the application

after deployment, andinvolving the dev-ops team in the

decisions like which component to use as they are the one

who have to maintain it.

This parity between the different stages is even more in case

of backing service like the database, message queuing

system. It is recommended to resist the urge to usedifferent

backing services between development and production

environment. Now days installing many of the backing

services like Elastic Search, Memcache, logging framework

on development environment is easy. The only need is to

have framework provide support to switch between these

services without any change in the code, although changes in

the configuration are accepted as long as they are provided

from the outside of the application.

Spring with its adapters for backing service provide a great

relief, with the help of spring data we have the option of

moving from one to another database very easily. With spring

cloud stream using any famous message queuing system very

easy, all we need is to point the application to the new URL.

Still care need to be taken to minimize the gap as any tiny

issue while deploying and running application will result in

rework of many days.

 International Journal of Computer Sciences and Engineering Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 26

K. Logs: Logs as Event Streams.

The behavior of the running application can be seen using

logs. Usually logs are written in a file. Logs are timed order

event streams. Different level of logging is used to filter the

depth of the events that are happing in the service while it is

running. Logs have no fixed end, as they are output stream,

which generates as long as the application is running.

Routing or storing of the output stream is not part of the

application. Storing and managing the log file is the concern

of the underlying platform all the application need to do is to

stream them. Open source log router like fluentd
7
, logstash

8

and, greylog
9
 are handy in such cases, where the application

route the log to output stream, which is then captured by the

fluent and send for elastic search for long term archival. The

purpose of this is the separation of the concern and delegation

of the task, which are not native to the application. By

parsing the log to the log capturing services we can parse the

log study application run time behavior by plotting trends

from the logs.

In the cloud applications communicate with one another and

hence it is desirable to have request tracing between the calls

to see how the calling between different services is

happening. Spring provides spring cloud sleuth and spring

cloud zipkin to handle these types of problems. With the help

of these components we can have logs to trace the request

propagation. Also it is required to have live, instantaneous

view of the application with spring hystrix and the turbine

stream, application can stream the activity log and system

administrator can have real time view of the application.

So much importance is given to the logging because it is a

heavy process and on production environment. It is the only

way to understand the behavior of the application. With the

help of better logging we will able to monitor the service

better and take necessary step [3]. The logs it generates

govern even the auto scaling and the fault tolerance behavior

of an application.

L. Admin Processes: Running Management Task Process.

Once the application is in production then the actual work

starts. We may have tested the application over and over

again with almost identical dataset and nearly same

environment as that of production, but still to make

improvements in the application we need to gather data on

health performance and usage. Along with that we may

require cleaning up of the bad data. Doing A/B

testing,running database migrations are also some

administrative task one would like to do on the production

7http://www.fluentd.org/
8https://www.elastic.co/products/logstash
9https://www.graylog.org/

with the service in running state. Admin processes therefore

should run as a long running process of the application. They

use the same configuration and code base meaning they are

run against the same release stage as of the application itself.

To achieve this the admin process task should be shipped

with the application, otherwise it may lead to the

synchronization issues. It is recommended to have a REPL

shell out of the box for application, or itprovides native some

admin endpoints. In the case of spring, spring-boot provides

actuator, which exposes management endpoints and URLs for

different task that can be done. For example is case of

discovery service one can mark the application down so that

the application frees the ports and no longer accept the

incoming requests. With all the metrics being provided by

spring, we can see service health status, JVM metrics,

memory metrics, view environment variables [13]. These

tasks may appear worthless in discussion, but these tasks are

actually very important when dealing with live application.

III. CONCLUSION

When creating an application for the cloud we have to come

out of the traditional approach of creating software. With the

change in how the cloud platform handles deployment,

execution, maintenance and scalability of the application, we

have to change the way application are developed to make

them more cloud native. In this research paper we have

triedto understand the factors that can help developers to

create application that are cloud ready.

We also discussed the problems that may arise in an

application that is not in compliance with the twelve-

factors.We also look into the components provided by the

spring framework, and try to map the components to the

factors. We find that using the modules provided by the

spring framework we could easily make our application a

twelve-factor application. Instead of worrying about writing

custom components to address the needs of each factor with

the use of spring we can invest our time in creating the

application rather that the complete framework.

It should be noted that these factors only provide a

methodology, a guideline to create an application. It is not

compulsory to follow these points. We can still create and run

an application on the cloud even if it does not go with the

twelve-factors. But as we know that developing of an

application is just a tip of iceberg actual work starts after the

application is live and running at web scale. If we consider

these factors while developing the application, then life of all

of us will be easy once the application is deployed.

ACKNOWLEDGMENT

I would like to thank the open-source community to provide

with the tools that I have discussed here. I also thank Dr.

 International Journal of Computer Sciences and Engineering Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 27

Arvind Kalia, Professor, Department of Computer Science,

HPU Shimla. I would also like to thank my friends Mrs.

Neetika Sharma and Mr. Varinder Singh to help me in the

completion of this research paper.

REFERENCES

[1] S. Newman, “Building Microservices”. O’Reilly, 2015

[2] V.Andrikopoulos, S.Strauch,C. Fehling and F.Leymann, “CAP-

Oriented Design for Cloud-native Applications”

[3] S.Otte, “Version Control Systems.” Computer Systems and

Telematics, Institute of Computer Science, FreieUniversität,

Berlin, Germany2009.

[4] N.Sangal, E. Jordan, V.Sinha, and D..Jackson “Using

dependency models to manage complex software architecture”

in Proceedings of 20thAnnual ACM Conf. Object-Oriented

Programming, Systems, Languages, New York, 2005

[5] J.Salecker, and D.Schütz, “Bill of Material” in Proceedings of

9thEuropean Conference on Pattern Languages of Programs

(EuroPLoP 2004). UVK, Konstanz, Germany 2005

[6] Y. Tao, Y. Dang, T.Xie, D. Zhang, and S. Kim, “How do

software engineers understand code changes? An exploratory

study in industry” in Proceeding of ACM SIGSOFT 20th

International Symposium on the Foundations of Software

Engineering, Cary, North Carolina, November 11-16, 2012

[7] Maurer, Michael, I.Brandic, and R.Sakellariou, "Adaptive

resource configuration for Cloud infrastructure

management." Future Generation Computer Systems 29, no. 2,

2013,pp.472-487.

[8] D. Bernstein, "Containers and Cloud: From LXC to Docker to

Kubernetes", IEEE Cloud Computing, vol.1, no. 3, Sept. 2014,

pp.81-84

[9] M.Hogan, "Shared-Disk vs. Shared-Nothing" -

http://www.sersc.org/journals/IJEIC/vol2_Is4/15.pdf

[10] Tanenbaum, S. Andrew, V. Steen, and Maarten, “Distributed

Systems: Principles and Paradigms” Prentice Hall ISBN 0-13-

088893-1

[11] M. Stine,“Migrating to Cloud-Native Application

Architectures,”O’Reilly, 2015

[12] A Modernized Software Environment for Developing,

Deploying and Operating Cloud Applications,

vmware.http://www.vmware.com/files/pdf/Modernizing_App_

Develpment_Whitepaper.pdf

[13] J.Cito, P.Leitner,, H. C. Gall, A. Dadashi, A. Keller, and A

Roth, “Runtime Metric meets Developer - Building better

Cloud Applications using Feedback,” in Proceedings of the

2015 ACM International Symposium on New Ideas, New

Paradigms, and Reflections on Programming & Software

(Onward! 2015), 2015.

