[
AXJCSE International Journal of Computer Sciences and Engineering [pen Access

Survey Paper Volume-4, Special Issue-5, Jul 2016 E-ISSN: 2347-2693

Twelve-Factor application pattern with Spring Framework

Dinkar Thakurl*, Arvind Kalia®

'Department of Computer Science, Himachal Pradesh University, India
’Professor, Department of Computer Science, Himachal Pradesh University, India

Available online at: www.ijcseonline.org

Abstract— The world of software development is moving from monoliths to micro-service architecture. Instead of having one
big application, handling all tasks, there is a paradigm shift towards creating many small applications doing just a unit of work.
When we build software-as-a-service we have to look into development, maintenance, and scalability of the application. Over
the time it has been observed that the post development tasks of an application are inhibited because application is not just
doing one task that it is supposed to do but all the activities that can be delegated. With twelve-factor pattern we can come
close to create micro-services that can reduce cost of development, have maximum portability when deploying on different
environment, are cloud ready and most importantly scale up. Spring.io provide a rich underlying framework, which can help in
creating applications that are twelve-factor compliance, with Spring Boot they took it to a whole new level. With twelve-factor
methodology in mind, in this research paper we will try to look into how spring can help covering each point in twelve-factors.

Index Terms—T welve-factor application; Cloud native; Spring-framework; Micro-services

I. INTRODUCTION

The twelve-factor'application pattern is a new way of
creating software application such that the applications
created by following this methodology ease the process of
deploying, maintaining, and scaling and graceful degradation.
In short application created with these factors in mind are
close to the cloud native application.

A cloud native application can be packaged in containers,
allow dynamic scaling and most importantly micro-service
based [1]. With the advancement of the cloud computing,
there is more emphasis on creating software that can take full
advantage of the hardware and services provided by the cloud
[2]. In an ideal cloud environment every application behaves
as a service, which can be attached from outside of the
consumer application and hence are cloud native. The benefit
of creating such application is that, these services can utilize
other services being provided by the cloud platforms such as
Amazon, Azure, and Cloud Foundry to name a few.

The twelve factor methodology provides some guidelines,
checkpoint to ensure that when we create an application for
the cloud we know what things we have to look up, and what
points we need to keep in mind so that we are not developing
application every time we need to deploy or changing
configuration. Like all the patterns and methodologies its not
compulsory to follow these guidelines to run an application in
the cloud, but to make full use of the cloud, knowingly or
unknowingly we will be following these.

"http://12factor.net/admin-processes

© 2016, IJCSE All Rights Reserved

With the evolution of software applications from simple
hello-world to complex booking or stock trading application,
frameworks facilitating software development have also been
improved. One such framework for Java application is spring
framework”. Developed by Rod Johnson, first released on 1
October 2002, this framework was at core build on principles
of dependency injection and aspect-oriented programing with
a unit of work in mind. Fast forward to the age of cloud,
developers as spring have evolved this framework to provide
a comprehensive tool for developing cloud native
applications. From creating to monolith war files, spring with
its spring-boot frameworks now created micro-services as fat-
jars. Spring-Boot” has changed the way we develop Java web
application, instead of deploying the war in a tomcat
container, now we have a fat-jar containing all the necessary
components within even the web servers like tomcat or jetty.
Hence making it a good choice to create cloud native
applications.

II. TWELVE FACTORS AND SPRING

A. CodeBase: One Code Base, Many Deployments.

Tracking of the changes in a twelve-factor application is done
using a version control system. All the changes made in the
code create a revision and are maintained by the code
repository.Git, Subversion and Mercurial are some examples
of version control systems [3].

According to the twelve-factors, one application must
correspond to one code base and vice-versa. Meaning that
one micro-service should have its one code repository. The
need for having this is that the changes in micro-services

*https://spring.io/
*http://projects.spring.io/spring-boot/

21

International Journal of Computer Sciences and Engineering
must be local to it.

One may question that what is the problem in having one
codebase and many applications? Well, that’s true in the case
of monoliths applications where one application is not doing
a single task, but a group of tasks. If we look further, we will
find thatthese applications have many independent
components, but still are in one application as their code base
is same forming an Anti-pattern. The main drawback arising
from such structure of having a single code base is that for a
change in one component we have to deploy complete
application, hence we have to test complete application even
the component that are not part of the change [6].

Secondly, if we say that we have many code-base constituting
a single application, then each codebase itself constitutes to
individual application and they should be in compliance with
the twelve factors guidelines. Such an arrangement of the
code will result in distributed structure and consumption of
these applications/micro-services can be either by APIs or by
using dependency management systems like maven or ruby
gems.

The application can have many deployments, meaning hereby
that application might be deployed many times in cloud as
separate instances of the same service. Even while under
development there might be different instances of the
application running on staging environment, on developers
machine all referring to same codebase but different version
maintained by the version control system.

With spring boot providing the needed underlying framework
through dependency management, and passing configuration
as environment variable, building and deploying application
is just one command. All we need to do is checkout the code,
built it and run. No changes other than environment variables
like database path, log path are required, these changes are
provided by the springconfiguration server. So, we have one
codebase per application/service and many deployments.

B. Dependencies: Explicit and Isolated Dependencies.

No application can run in isolation and it depends on the
libraries. Some libraries are provided by the language runtime
like the system library in Java and the header files in C, but
there are many other libraries that don’t come as a package
and are installed explicitly like some database connector, or
image processing libraries. In an application following
twelve-factor itis required to explicitly declare all the external
dependencies. One must not depend on the libraries or
packages being provided by the underlying system. Even if
the underlying system on which the application has to run
provides those libraries.

The main reason for this is that while creating the application
for the cloud one cannot always have the same operating

© 2016, IJCSE All Rights Reserved

Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

system, same environment for execution. A cloud native
application must declare its dependencies completely and
exactly. Also, it should not allow any implicit dependency to
get in during the execution of the application.

One of the key benefits of declaring dependencies explicitly
is that all we need to do is check out the code and run
package/builder command and dependency management
module will download all the libraries required to run [4].
Instead of looking for the code for dependencies developer
only have to go though the manifest, like pom.xml,
build.gradle in Java or a gemfile in ruby-on-rails.

Spring-boot comes very handy in this situation with all the
framework level dependencies being handled by the spring-
boot BOM, all we have to do is add the dependency in the
dependency management module. The dependency
management system will take care of the rest. Using the help
of spring BOM (Bill of Material) it will try to import best-
suited library version from the repository [S]. Spring also
provides starter modules for many components. Once the
application has built successfully we can then package that
into a single fat-jar containing all the dependencies it needs to
work. So spring boot help is overcoming what is commonly
known as dependency hell. Care should be taken here to
avoid the explicit defining theversion of dependenciesasit
might happen that these libraries conflict with one another.
So best is to rely on the spring-boot BOM and let the spring
decide which libraries to load. We only need to specify the
version in case of libraries not covered under BOM, for
example our own custom libraries.

It should also be done in case of dependencies that are
included in many micro-services of the same application. One
may consider creating a parent module and inject the
dependencies through that to all the child application. That
will in short run solve some problem of maintaining same
version, but as the dependencies increase they will create
dependency hell as one application is using one version and
second application another. If a dependency is the part of the
framework, then it can be defined in the parent dependency
management file,butthe actual inclusion of the dependency
need to be done in the application.

C. Config: Storing Config in the Environment.

As we have seen that the application with twelve-factor
methodology will have one codebase and many deployments.
And application configuration will vary from machine to
machine, stage to stage. For example same application will be
running on different port different IP on every developers
machine.Most commonly the database connection will
change in development, testing and production stages. If we
keep on changing the code each time we have to deploy the
application then that will work only good as far as manual
deployment is concerned.

22

International Journal of Computer Sciences and Engineering

Deployment in cloud native application is a continuous and
automated process all the developer needs to do is just push
the code to the code repository. Creating a new release
version after running test cases has to be automated process.
In such a case if we need to change the code every time the
application is deployed, will limit the process. So
configuration and the code need to be strictly separated [7].
As there is much difference in the configuration rather that
the code in different deployments.

Further in case of cloud deployment with the use of Dockers
[81,If the configuration is inside the application and cannot be
overridden from the environment then we have to again build
the image for the docker, where as all we need is change the
configuration variable.In earlier Java application the
properties files are used to do this and these property files are
placed outside the war so as to change them without re-
deploying the complete application, but we still need to
restart the application for these configuration to take place.
One major drawback of having configuration in the code is
that we can’t keep these code files containing the
configuration in codebase as they might contain sensitive data
like database credentials.

Spring Cloud* provides spring-cloud-config component,
which take care of the entire configuration related issues.
Further more the configuration in spring boot application can
be provided as runtime parameter or even read from the
environment. Spring cloud config provides externalized
configuration support for distributed system. The spring
cloud config provides support for both client and server side.
This component creates a configuration server and all the
client will treat is as a service when the application boots up
it will ask for its own configuration. Only bootstrap
configuration is need in the application that to can be
provided by the environment. Once the application gets its
configuration from the server the bootstrap configuration are
over-ridden by the configuration provided by the
configuration server. Also by providing the RefreshScope in
the client application, we just need to change the
configuration in the server and configuration server will push
the changes to the client application while its still running so
using spring cloud config component, externalization of the
configuration can be done in real sense.

D. Backing Services: Services as Attached Resourses.

Any service which the application consumes over the
network for its normal operation is called backing service.
For example database, queuing system, mailing service.
These all act as back end services for the application. The
application should not depend upon these services for
running. There can be some exceptions being thrown if

*http://projects.spring.io/spring-cloud/

© 2016, IJCSE All Rights Reserved

Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

application fails to find a backing service it requires, but the
application must degrade gracefully. There may be services
those are not native to the application like the metrics
gathering services or third party social networking APIs like
Facebook or Twitter. An application following the twelve
factors treats these local or third party services as backing
services. At any give time the application must be able to
swap between these services, without any code change. For
example, instead Oracle database the application can be made
to run on MySQL cluster, instead of RabbitMQS, one should
be able to switch to ActiveMQ®.

Wewill be able to switch backing services if they are treated
as resources being provided by the cloud platform. One
benefit of having services are resource is that they can be
scaled up or down as required, and the application need not to
bother about that. We can change the underlying service
without and change in the code of the application and the
application will behave as it is.

Spring boot provides wrappers for nearly all the known
required services, for database we have spring data, for
message queues we have the spring cloud stream, for social
networking API we have spring social and all these can be
bundled in micro-services using spring boot. We only need to
change the configuration, through the configuration server in
order to make it work. As spring provides wrapper for these
backing services as a developer one only need to follow the
guidelines provided by the spring framework. Also, if there is
a need to create any custom implementation forbacking
services,then it must be kept in mind to treat services as
resources present outside of the application and accessed
through theURL.

E. Build, Release, Run: Seperation between Build and Run
Stages.

Build stage transforms the code from the code base to
executablelibraries. Dependencies are fetched depending
upon the version described in the code base. Build stage does
all the hard work. Release Stage creates combination of build
produced and the configuration as needed by the staging
environment and makes it ready for the execution. In the Run
stage the application is made available on the server. The run
stage should be the lightest and cleanest part of the process.
All the issues should be handled in the build stage as the
developers handle this stage. If the server crashes or the
application start misbehaving then the application should be
able to restart without human intervention. Thus the run stage
should have minimum moving parts.

The concept of fat-jars of spring boot comes very handy in
these cases. All the dependencies declared are explicitly

Shttps://www.rabbitmg.com/
®http://activemq.apache.org/

23

International Journal of Computer Sciences and Engineering

declared in the application and during the build phase the all
these dependencies are fetched and bundled with
theapplication. This build of the application is ready to be
deployed and will get configuration from the configuration
server. With the advancement of Dockers now the image of
these build can be saved and run on demand. Many images of
different versions of the application can be made which
facilitated the rollback and re-deployment of the application.

F. Processes: Application as Stateless and Share-Nothing.
This is the most important concept when we are developing
an application for the cloud. When we say build for failure
this is what we have in mind. In cloud environment, we have
many instances of the same application running on either
same machine inside dockers or in different machine serving
many requests. If the application is not stateless,it means that
the current request depend upon the previous request, then
this will lead to failure as the requests can go to any instance
and not to the same instance every time.

Any data that need to be persisted between the calls can be
shared by using backing services that can be a database or
cache server, which is shared across the applications and all
the instances. Although, we can use local memory, file
system for temporary storage for a single transaction. The
result of these operations must be stored in the database or
intermediate service to provide persistence. As we will move
forward, with each request the data will also move from the
state of inconsistency to eventual consistency [9].

Some web systems use sticky sessions, storing the request
information in the server. This was old approach where data
is stored in the session variables, which in turn get stored on
the server. But such applications breaks when placed behind
the load balancer, as concurrent requests usually don’t go to
the same instance.

Micro-services created with spring boot actas different
processes and can be consumed by http rest calling, which
itself is a stateless protocol. Spring provides spring session
component to which act as an external resource shared
between the application instances to maintain and provide the
session to all the instances. Spring session is mainly used to
share the user login session across the micro-services. Extra
information and intermediate data can be stored in Redis
server or Memcache for which spring has pre-build
component all we need to do is include that component in the
application and provide configuration in the configuration
server for that application. Even though spring provides the
component to handle this, it’s the developer who needs to
keep in mind this concept of statelessness and share-nothing
while developing an application for the cloud.

G. Port Binding: Export Services via Port.
Port binding enables the application to become a backing

© 2016, IJCSE All Rights Reserved

Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

service to any other application. This relates to the concept
that the applications should be built as they are backing
services being consumed by the URL. With the use of port
binding applications can consume by the other application on
the cloud as a service. Making applications self-containing by
explicitly declaring the dependencies it require inside the
application to fulfill this. Traditionally we have to deploy
web application in web server, like Java war is deployed in
tomcat, PHP uses apache server and ASP.net uses IIS.

Twelve-factor app does not depend on the runtime, in-fact the
web-server is also included in the application and with port
binding it is ready to listen for the incoming requests. With
having an embedded server in the application any type of
service can be exposed using port binding.

We can use spring discovery component (Eureka or Consul).
All the application can be made discoverable to the other
services using this. When an application boots-up its register
itself to the spring discovery and when service is requested,
the discovery service provides the necessary URL for the
service. This concept of port binding is very useful when
application is running inside a docker asdocker will bind an
internal port to an external port.

H. Concurrency: Scale Out via Process Model.

Processes are the first class citizen in Twelve-Factor. This
factor has been derived from the UNIX process model of
running service daemons. This means that all the
application/processes should scale, clone and restart when
required. These processes are handled by the operating
system’s process manager, which manages output streams
and manual shutdown and restarts. Using this model we can
design our application so that each process is specialized in
handling one type of work effectively. Like the web request
are handled by the web worker process and heavy
background task by the backing worker process.

If we look application as a whole we will see that an
application is nothing but bundle of these micro-services, for
example, in case of a website, signup/registration can be one
service. Logging is another services and maintaining session
another. If these services are combined in a single application
like in a monolith application, then scaling an individual
component will be next to impossible. We have to scale
whole of the application if we need to scale anyone of the
lagging component. So if we need to scale out, then we need
to have a process model, which can only be possible if the
applications are treated as backing services independent of
one another [10]. This is highly facilitated by the fact that we
create self-contained fata-jars, so that they are totally
independent.

24

International Journal of Computer Sciences and Engineering

1. Disposability: Maximun Robustness, Fast Startup,
Graceful Shutdown.

The application should be able to start immediately and when
it goes down there should not be like sudden death. If we
take an example of a web application, and we follow all the
abovefactors even then we can’t we certain that the
application be behave nicely on web scale. If a backing
service goes down, then what should be the behavior of the
application? Should it also crash, give an exception or
perform some notification.

First thing here is the robustness, it doesn’t mean that the
application should never crash. There are many factors,
which can cause the application to crash. One of them is the
failure of underlying hardware. In this case there is not way
the service itself can broadcast the panic message. Here the
use of the queuing system can help in achieving the
robustness. If the backing service fails, then the client should
be able to create the queue for the upcoming request. Again
this should not be done inside the client or service, but
outside of both the application, in a separate queuing server.

Second, the fast startup means that the application can be
instantiated within seconds. There should not be any delay in
the starting up of new instance of the application. The reason
is quite simple when the load increases on a service, then it is
distributed to different instances of the service. In order to do
so the cloud usually tries to replicate the service and create
new instances on the service. If this takes time, then the
already running instances have to bear the extra load till the
new instance is created. This is effectively handled by
providing pre build application (images in case of dockers) as
most of the time is consumed in building the application
rather than releasing and running it.

Third and important one is graceful degradation. This means
that when the process manager terminates the service,then it
should close the port in which they are running, thereby
refusing any request coming to that port, and finishing any
current request to complete. In this model all the services are
reentrant. It should not leave any current task in between.
Either the task should be completed or reverted back to the
queue to be picked next time removing all the intermediate
changes.

Also the client should be made aware that service instance is
down and requests are reverted to any live instance of the
service. Ifthere is no instance in live state at that given point
of time, then either the request is kept in the queue or it
should go to the fallback. In case of web application spring
hystrix along with the client side load balancing handles it.
The discovery service provides only those instances of the
application that are in upstate. If the client is not able to send
requests to the service, then hystrix handles the fallback and
execute the fallback method. A typical example is

© 2016, IJCSE All Rights Reserved

Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

aboutshowing movies based on the viewing history of the
user. If this service is down, then the application calling this
should handle it gracefully and respond by providing the
default movie list. It is not always wise to show the default
data, as the user might be expecting some valid output based
on his input, and providing him with default data will be
misleading. In these scenarios the application must provide a
valid error message instead of just crashing.

J. Dev/Prod Parity: Keeping Development, Staging and
Production Environment as Similar as Possible.

Usually there are many gaps in the development environment
and the production environment. These are mainly because of
the stack present in the development environment can be
different than that of production. In development phase a
developer may use alightweight and fast service like SQLite,
and on production dev-ops team would like to go for more
robust and heavyweight stack like MySQL. Even the
underlying operating system can be different. Developer
might go for the OSX for its ease of use, where as the
production environment uses Linux [12]. Even the people
developing the application and who is deploying it are
different. This can lead to uncertain problems arising only in
production environment. Hence increasing the development
to production time.

Continuous deployment is one of the aspects of the Twelve
Factor application. This can be achieved by making the gap
between the development and production stack as small as
possible. By getting the developers involved in the
deployment phase monitoring the behavior of the application
after deployment, andinvolving the dev-ops team in the
decisions like which component to use as they are the one
who have to maintain it.

This parity between the different stages is even more in case
of backing service like the database, message queuing
system. It is recommended to resist the urge to usedifferent
backing services between development and production
environment. Now days installing many of the backing
services like Elastic Search, Memcache, logging framework
on development environment is easy. The only need is to
have framework provide support to switch between these
services without any change in the code, although changes in
the configuration are accepted as long as they are provided
from the outside of the application.

Spring with its adapters for backing service provide a great
relief, with the help of spring data we have the option of
moving from one to another database very easily. With spring
cloud stream using any famous message queuing system very
easy, all we need is to point the application to the new URL.
Still care need to be taken to minimize the gap as any tiny
issue while deploying and running application will result in
rework of many days.

25

International Journal of Computer Sciences and Engineering

K. Logs: Logs as Event Streams.

The behavior of the running application can be seen using
logs. Usually logs are written in a file. Logs are timed order
event streams. Different level of logging is used to filter the
depth of the events that are happing in the service while it is
running. Logs have no fixed end, as they are output stream,
which generates as long as the application is running.

Routing or storing of the output stream is not part of the
application. Storing and managing the log file is the concern
of the underlying platform all the application need to do is to
stream them. Open source log router like fluentd’, logstash®
and, greylog’ are handy in such cases, where the application
route the log to output stream, which is then captured by the
fluent and send for elastic search for long term archival. The
purpose of this is the separation of the concern and delegation
of the task, which are not native to the application. By
parsing the log to the log capturing services we can parse the
log study application run time behavior by plotting trends
from the logs.

In the cloud applications communicate with one another and
hence it is desirable to have request tracing between the calls
to see how the calling between different services is
happening. Spring provides spring cloud sleuth and spring
cloud zipkin to handle these types of problems. With the help
of these components we can have logs to trace the request
propagation. Also it is required to have live, instantaneous
view of the application with spring hystrix and the turbine
stream, application can stream the activity log and system
administrator can have real time view of the application.

So much importance is given to the logging because it is a
heavy process and on production environment. It is the only
way to understand the behavior of the application. With the
help of better logging we will able to monitor the service
better and take necessary step [3]. The logs it generates
govern even the auto scaling and the fault tolerance behavior
of an application.

L. Admin Processes: Running Management Task Process.

Once the application is in production then the actual work
starts. We may have tested the application over and over
again with almost identical dataset and nearly same
environment as that of production, but still to make
improvements in the application we need to gather data on
health performance and usage. Along with that we may
require cleaning up of the bad data. Doing A/B
testing,running database migrations are also some
administrative task one would like to do on the production

"http://www.fluentd.org/
$https://www.elastic.co/products/logstash
*https://www.graylog.org/

© 2016, IJCSE All Rights Reserved

Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

with the service in running state. Admin processes therefore
should run as a long running process of the application. They
use the same configuration and code base meaning they are
run against the same release stage as of the application itself.

To achieve this the admin process task should be shipped
with the application, otherwise it may lead to the
synchronization issues. It is recommended to have a REPL
shell out of the box for application, or itprovides native some
admin endpoints. In the case of spring, spring-boot provides
actuator, which exposes management endpoints and URLs for
different task that can be done. For example is case of
discovery service one can mark the application down so that
the application frees the ports and no longer accept the
incoming requests. With all the metrics being provided by
spring, we can see service health status, JVM metrics,
memory metrics, view environment variables [13]. These
tasks may appear worthless in discussion, but these tasks are
actually very important when dealing with live application.

III. CONCLUSION

When creating an application for the cloud we have to come
out of the traditional approach of creating software. With the
change in how the cloud platform handles deployment,
execution, maintenance and scalability of the application, we
have to change the way application are developed to make
them more cloud native. In this research paper we have
triedto understand the factors that can help developers to
create application that are cloud ready.

We also discussed the problems that may arise in an
application that is not in compliance with the twelve-
factors.We also look into the components provided by the
spring framework, and try to map the components to the
factors. We find that using the modules provided by the
spring framework we could easily make our application a
twelve-factor application. Instead of worrying about writing
custom components to address the needs of each factor with
the use of spring we can invest our time in creating the
application rather that the complete framework.

It should be noted that these factors only provide a
methodology, a guideline to create an application. It is not
compulsory to follow these points. We can still create and run
an application on the cloud even if it does not go with the
twelve-factors. But as we know that developing of an
application is just a tip of iceberg actual work starts after the
application is live and running at web scale. If we consider
these factors while developing the application, then life of all
of us will be easy once the application is deployed.

ACKNOWLEDGMENT

I would like to thank the open-source community to provide
with the tools that I have discussed here. I also thank Dr.

26

International Journal of Computer Sciences and Engineering

Arvind Kalia, Professor, Department of Computer Science,
HPU Shimla. I would also like to thank my friends Mrs.
Neetika Sharma and Mr. Varinder Singh to help me in the
completion of this research paper.

REFERENCES

[1] S. Newman, “Building Microservices”. O’Reilly, 2015

[2] V.Andrikopoulos, S.Strauch,C. Fehling and F.Leymann, “CAP-
Oriented Design for Cloud-native Applications”

[3] S.Otte, “Version Control Systems.” Computer Systems and
Telematics, Institute of Computer Science, FreieUniversitit,
Berlin, Germany2009.

[4] N.Sangal, E. Jordan, V.Sinha, and D.Jackson “Using
dependency models to manage complex software architecture”
in Proceedings of 20"Annual ACM Conf. Object-Oriented
Programming, Systems, Languages, New York, 2005

[5] J.Salecker, and D.Schiitz, “Bill of Material” in Proceedings of
9"European Conference on Pattern Languages of Programs
(EuroPLoP 2004). UVK, Konstanz, Germany 2005

[6] Y. Tao, Y. Dang, T.Xie, D. Zhang, and S. Kim, “How do
software engineers understand code changes? An exploratory
study in industry” in Proceeding of ACM SIGSOFT 20th
International Symposium on the Foundations of Software
Engineering, Cary, North Carolina, November 11-16, 2012

[71 Maurer, Michael, I.Brandic, and R.Sakellariou, "Adaptive
resource configuration for Cloud infrastructure
management." Future Generation Computer Systems 29, no. 2,
2013,pp.472-487.

[8] D. Bernstein, "Containers and Cloud: From LXC to Docker to
Kubernetes", IEEE Cloud Computing, vol.1, no. 3, Sept. 2014,
pp-81-84

[9] M.Hogan, "Shared-Disk VS. Shared-Nothing" -
http://www.sersc.org/journals/IJEIC/vol2_Is4/15.pdf

[10] Tanenbaum, S. Andrew, V. Steen, and Maarten, “Distributed
Systems: Principles and Paradigms” Prentice Hall ISBN 0-13-
088893-1

[11] M. Stine,“Migrating to Cloud-Native = Application
Architectures,”O’Reilly, 2015

[12] A° Modernized Software Environment for Developing,
Deploying and Operating Cloud Applications,
vmware.http://www.vmware.com/files/pdf/Modernizing_App_
Develpment_Whitepaper.pdf

[13] J.Cito, P.Leitner,, H. C. Gall, A. Dadashi, A. Keller, and A
Roth, “Runtime Metric meets Developer - Building better
Cloud Applications using Feedback,” in Proceedings of the
2015 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software
(Onward! 2015), 2015.

© 2016, IJCSE All Rights Reserved

Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

27

