
 © 2016, IJCSE All Rights Reserved 11

International Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and EngineeringInternational Journal of Computer Sciences and Engineering Open Access
Survey Paper Volume-4, Special Issue-5, Jul 2016 E-ISSN: 2347-2693

MBT for Functional Testing of Embedded Systems

Mohammed Naim Khan, Namita Arya and Amit Prakash Singh*

University School of ICT

Guru Gobind Singh Indraprastha University, Dwarka, Delhi

Available online at: www.ijcseonline.org

Abstract— Embedded Systems require combination of Software Electrical and Mechanical Engineering. This leads to increased

complexity of Embedded Systems with shorter production cycle. These evolutions pose new challenges to traditional embedded

system testing approaches, because besides time constraints, embedded system products are expected to meet quality constraints

prior to their deployment in field. The Cost and Time of Testing Embedded Systems consumes a considerable portion of entire

development cycle. With Increased Complexity of Embedded Software it becomes imperative that our Functional Testing is

effective at detecting issues in the system. With the above requirements we propose to use Model Based Testing (MBT) for the

functional testing of Embedded Systems during the manufacturing process in the production line. The comprehensive and

systematic approach of MBT facilitates automated testing with reduced test time and cost along with improved quality of the

product.

Keywords— Embedded system, Model Based Testing, Functional Testing, System Testing

I. INTRODUCTION

Embedded Systems design and development is governed by

time to market and productivity constraints. This forces

researchers to improve the overall embedded system

development cycle including design, development and

Testing. Embedded systems have integrated hardware and

software components used in time critical and life critical

applications where failure results in high financial loss or

even in injury or death. As a consequence, it is important to

ensure the correctness of these systems with systematic and

comprehensive testing techniques.

Model-based testing (MBT) is defined as an approach

whereby test sequences are generated automatically from

models of the system under test, using different kinds of

computing algorithms to optimize that process. Hence

model-based Automated Test Generation (ATG) is the key

feature of MBT. MBT is used in different flavours by

several tools and projects. A more detailed list of

applications of that approach using various notations is

presented by Utting et al in their Taxonomy of Model-

Based Testing [2].

UML and UTP introduced by the Object Management

Group (OMG) [1] are the foundations for the Model Based

Development (MBD) and Model Based Testing (MBT) of

embedded systems respectively. MBD and MBT methods

provide automation in the overall Embedded System

development cycle. Adapting automation is expected to

improve time to market, reduce cost and improve quality

constrains of Embedded System.

The challenge in Functional Testing of Embedded Systems

is the effort involved in developing and evaluating a test

suite that systematically tests the system and reveals faults

effectively. To deal with increased complexity and meet the

high quality expectations of embedded systems it becomes

necessary to test the functionality of embedded system in

production line. In this paper, we present a functional test

methodology for embedded systems in production line that

helps reduce test time and improve quality of the system

being delivered. The paper is structured as follows: In

section 2 provides Background of Model Based Testing. In

section 3 related works are described. In section 4 our

approach is presented with the help of example, followed by

conclusion in section 5.

II. BACKGROUND:MODEL BASED TESTING

Software Testing consumes 30 to 60 percent of the total

development time [2]. Model Based Testing enhances the

level of automation by automatic execution of test cases

along with automatic generation of test cases. This

provides repeatable testing process confirming coverage

of all behaviours of the system and allowing tests to be

linked to system requirements.

The general process of MBT begins with modelling the

System under Test (SUT) and then the MBT tool

generates the abstract test cases from that model based

on the test strategy selected. These tests can be executed

manually by the tester as the abstract test cases are

similar to high level sequences that would be designed

manually in action word testing or keyword testing [5].

These tests cases are easily understood by humans are

complete to be used by manual tester for execution on

SUT. On the other hand automatic executable tests [6]

 International Journal of Computer Sciences and Engineering Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 12

can be generated from the abstract test cases. Finally the

generated test suit is executed to generate the test

results. The SUT is then evaluated based on these test

results. The MBT process is divided in following steps:

A. Model the SUT

The Test model of SUT represents its expected behaviour.

Standard modelling languages like UML are used to

formalize the control points and observations points of the

system. Embedded Systems inherently exhibit state driven

behaviour so UML state charts which are extensions of

Finite State Machines (FSM) can be used. Various tools like

Spec Explorer, AGEDIS, Qtronic, Test Optimal, etc. [3] are

available for state chart modelling of UML systems.

B. Select Test Generation Criteria

There are infinite number of test cases that could be

generated for the test model of SUT, so we need to choose

some test generation criteria that would help generation test

cases for increased coverage of SUT. Various testing

strategies like equivalence partitioning, cause-effect testing,

pair-wise testing, Boundary Value Analysis, etc. [4] can be

used for test selection criteria from the model. For

embedded systems we select covering all the transitions in

state machine as our test generation criteria.

C. Test Case Generation

This is a fully automated process which generates abstract

test cases that are typically sequence of high level SUT

actions with input and its expected output for each action.

These tests can be executed manually by the tester as the

abstract test cases are similar to high level sequences that

would be designed manually in action word testing [5].

These tests cases are easily understood by humans are

complete to be used by manual tester for execution on SUT.

On the other hand automatic executable tests [6, 7] can be

generated from the abstract test cases. Various tools such as

IBM rational, HP quick Test, Test Optimal etc. [4] are

available in market for generation of test cases or test suits

from abstract models.

D. Execute the Tests

The generated test cases and test suits are executed either

manually or automatically on SUT. Constraints defined

during the model creation on the state machines like guard,

pre/post conditions of triggers, etc. [8, 9] should be

evaluated during the execution of the test cases. Many

studies show that this is an effective way of detecting

failures [10, 11].

E. Result Analysis

The final step in MBT is to analyse the results and take

corrective actions. The test case execution results in some

tests pass and some fail. Analysis is similar to traditional

test analysis process where the failing results indicate some

deviation from the expected behaviour of the SUT. The test

may fail due to fault in SUT or it may fail due to error in

model or requirements. Thus after result analysis we may

have to refine our model based on the fail results due to the

model error. MBT is good for finding SUT errors but it also

exposes requirement errors [2].

III. RELATED WORK

As Embedded Systems encompass every aspect of our

lives the complexity of the embedded systems increases

and with it increases the number of embedded systems

produced on daily basis. The increased complexity and

production quantity of Embedded Systems call for new

software development and test methodology. The MDD

technique is being widely adopted for developing

embedded systems as it offers several advantages over

the traditional ways of development and Testing. Studies

conducted in [12, 13] use general-purpose UML for

modeling embedded software. From Various studies we

see that UML finds widespread applicability for modeling

embedded software systems [14]. The same is also evident

from the various commercial tools available for model

based design of Embedded Systems.

For systems being designed using MDD and MDA, a

model based testing approach is suggested as it is

associated with the MDD paradigm favouring models

over code [15]. Model based testing is typically used for

generating test cases from behavioural models of system.

There has been a drastic increase in the number of model

based testing techniques and tools available both

commercial and academic in recent years. Although these

techniques have a common goal, they differ in terms of

modeling languages (e.g. UML), automatic test

generation, testing targets and tool support. A survey of

15 different studies on model based testing techniques is

provided in [15].

A majority of the model based testing techniques in [15]

focus on tools and techniques for automatically

generating test cases from models in the context of UML

diagrams and the UML Testing Profile (UTP) [6, 7, and

15]. Studies conducted in [15] show the advantages of

using model based testing approaches.

From the above discussions, it may be seen that there is a
numerous work carried out for utilizing MDD for

 International Journal of Computer Sciences and Engineering Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 13

embedded systems development and testing. In our
previous work we had proposed a comprehensive testing
technique for embedded system PCBA wherein we had
proposed the various testing techniques for functional
testing using USB, UART or Ethernet port. The above
methods work well but require additional code for
implementing the functional test. This may not be feasible
with memory constraint embedded system. The work
presented here is an extension of the functional testing of
Embedded Systems in production line which is applicable
to the systems developed using MDD and MDA
architecture.

IV. PROPOSED METHODOLOGY

The architecture of functional test method for embedded

system in production line is shown in figure 1.

The system under test (SUT) is connected adaptor or test

execution tool that manages the interactions with the

SUT. The adaptor records the input sequence to the SUT

and the results generated by SUT. The Adaptor is

connected to the host PC that runs the test case or test

suits and stores the result of the testing performed. The

Host PC send the test to be executed to the adaptor and

gets the result of execution from the adaptor. If online

MBT process is used the tests will be executed by the

modelling tool that would be running on host PC. So the

MBT tool itself will manage the test execution and store

the results. With offline MBT we have generated the test

suits in the form of test scripts in some existing language

that are already in use for testing purpose. These test

scripts are then running on the host PC and the results of

execution of the The results stored in the host PC are

analysed for correctness by comparing it with the

predefined expected output from the SUT. As the Model is

already stabilized during the development process of

embedded system the failures occurring are completely of

the SUT. Thus the models developed during the

development process can be effectively utilized for

functional testing of embedded system in the production

line. We next demonstrate the functional testing of

embedded system using the Test Optimal tool.

Figure 1: Test Architecture

For the SUT we take a simple example of porch light the

behaviour of which can be stated as follows:

• There is a switch for porch light with three

states: ON, OFF and Auto.

• When switch = ON the porch light is turned ON.

• When switch = OFF the porch light is turned

OFF.

• When switch = Auto the porch light shall turn

ON or OFF based on the ambient light which is

read by light sensor in the range of 0% to 100%.

• At start up in auto mode the porch light shall

turn ON/OFF if ambient light is below/above

40%.

• In Auto mode the porch light shall turn ON if

ambient light falls below 40%.

• In Auto Mode the porch light will turn OFF if

ambient light is more than 60%.

The top level model for the porch light is shown in figure 2
and the test optimal model is shown in figure 3.
The Test Optimal model requires a start state and an end

state. The same is depicted in the model. From the Init

state we have three outgoing transitions depicting the

three states of switch: ON, OFF and Auto. The Auto state

has single outgoing transition to the check brightness

that measures the ambient light and accordingly switches

to ON or OFF state. In Auto mode we continuously need

to monitor the ambient light so both ON and OFF state

return to Auto state for the brightness measurement. The

state is only changed if required conditions are met. The

 International Journal of Computer Sciences and Engineering Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 14

input switch can toggle at any time asynchronously so

from all the three states ON, OFF and Auto we have a

transition back to Init state and finally we have

transitions to End state from ON and OFF state as

required by Test Optimal tool.

Figure 2: Top Level Model of Porch Light Controller

Test Optimal supports various test generation criteria we

select random walk greedy algorithm with 100% coverage

to test case generation. The other options are shown in

figure 4.

Figure 3: Test Optimal Model

The random walk greedy approach ensures coverage of all

the transitions in the model. It prefers un-traversed

transitions over already traversed transitions, as the

result it can achieve better coverage of the model more

quickly.

The execution coverage of the model with the selected test

case generation and specified coverage criteria can be

seen from the coverage graph. The Coverage graph of

porch light controller is shown in Figure 5.

Figure 4: Test Generation Option

The coverage graph is very helpful when due to time

limitations in the production line we would like to test

only critical paths of our model that affect the SUT in

such a manner that it can cause system failure. So

coverage graph helps us visualize the transitions being

tested when we set certain priority for state traversal test

using MScript in test optimal. Using MScript we can set

guard conditions, certain specific actions for data path or

control path coverage.

Figure 5: Coverage Graph

The test optimal tool also provides the Test sequence

diagram that gives the test sequence in the form of

transition diagram depicting all the states in the model

 International Journal of Computer Sciences and Engineering Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 15

and how the tests proceed from one state to another. The

same information can be obtained in tabular form.

The Test sequence diagram for the porch light controller

is shown in Figure 6. As can be seen from the test

sequence diagram the tool has automatically generated

three test coverage paths from Init state to End state and

each time the test sequence traverses through different

path in order to cover all the states and paths in the

model.

Figure 6: Test Sequence Diagram

These state transitions represent test cases for the model.
These can be further fine-tuned as per the requirements
by using the MScript. Test Optimal has inbuilt support for
web based testing. We can also have the test cases
generated for offline testing by using the traditional
scripts that run on the host PC and collect the results from
the SUT in response to each test case executed. These
scripts further validate the results against the expected
output from the SUT.
Thus MBT leads to automatic generation of test cases

that can be optimised as per the requirement of critical

path, cost and time constraint in the production line. This

results in efficient and effective functional test strategy

for Embedded System.

V. CONCLUSION

Embedded systems are covering more and more aspects of

our daily life thus increasing in complexity and finding

application in safety critical applications. This increases the

number of Embedded Systems produced on daily basis and

also it is necessary to functionally test the embedded

systems for quality and safety. Along with this cost

constraint of embedded system due to its inherent

commercial applications restrict the test time allocation for

the embedded systems.

In this paper we have proposed a functional test

methodology of embedded system using model based

testing in the production line. This test strategy is best

suited for systems developed using MBD as the model for

the system would then be readily available. Modelling of

the system requires to put in additional efforts towards the

architecture of the system to understand its complete

behaviour. This process is helpful in finding specification

errors, omissions and conflicts. When designing the system

model, the tester should not consider test cases – the tester

should, only consider of the system behaviour.

 The MBT tools provides various test execution

environments through a customizable interface and gives

end to end automation from test design to test execution and

management. MBT introduces formal modelling and

enhances the test development processes. Competency

building within the conventional tester is necessary and the

tester should be trained for modelling and programming

skill demands of MBT tools.

The functional testing of Embedded Systems using MBT

provides the benefit of High productivity maintaining Good

Quality with lower costs. For the Embedded Systems

already developed using the MBD process applying the

MBT in the production line is easily feasible increasing the

test coverage and testing the system in real time.

REFERENCES

[1] OMG: http://www.omg.org [28/04/16].

[2] Mark Utting and Bruno Legeard, “Practical

Model-Based Testing: A Tools Approach".

Elsevier, 2006.

[3] Muhammad Shafique, Yvan Labiche, “A

Systematic Review of Model Based Testing Tool

[4] Support,” International Journal on Software

Tools for Technology Transfer February 2015,

Volume 17, Issue 1, pp 59-76.

[5] Yasir Dawood Salman, Nor Laily Hashim, “An

Improved method of obtaining basic path testing

 International Journal of Computer Sciences and Engineering Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

 © 2016, IJCSE All Rights Reserved 16

for test case based on UML State Chart,”

International Symposium on Research in

Innovation and Sustainability 2014 (ISoRIS ’14)

[6] B. Beizer, “Software Testing Techniques”, Second

Edition, 1990.

[7] C. Bourhfir, R. Dssouli, E. Aboulhamid, N. Rico,

“Automatic executable test case generation for

extended finite state machine protocols,” Testing

of Communicating Systems Part of the series

IFIP — The International Federation for

Information Processing pp 75-90.

[8] Fuqing Wang, Shuai Wang, Yindong Ji, “An

Automatic Generation Method of Executable

Test Case Using Model Driven Architecture ,”

The 4th International Conference on Innovative

Computing, Information and Control (ICICIC),

2009.

[9] Fabrice Ambert, Fabrice Bouquet, Jonathan

Lasalle, Bruno Legeard and Fabien Peureux,

“Applying an MBT Toolchain to Automotive

Embedded Systems: Case Study Reports,” The

Fourth International Conference on Advances in

System Testing and Validation Lifecycle

(VALID) 2012.

[10] Jonathan Lasalle, Fabien Peureux, Frédéric

Fondement, “Development of an automated MBT

toolchain from UML/SysML models,” SI : FM &

UML Innovations in Systems and Software

Engineering December 2011, Volume 7, Issue 4,

pp 247-256

[11] Lionel Briand, Yvan Labiche, “A UML-Based

Approach to System Testing,” UML 2001 — The

Unified Modeling Language. Modeling

Languages, Concepts, and Tools Volume 2185 of

the series Lecture Notes in Computer Science pp

194-208.

[12] L. C. Briand; M. Di Penta; Y. Labiche, “Assessing

and improving state-based class testing: a series

of experiments,” IEEE Transactions on Software

Engineering 2004, Volume: 30, Issue: 11 Pages:

770 - 783.

[13] Sang-Uk Jeon, Jang-Eui Hong, Doo-Hwan Bae,

“Interaction-based Behavior Modeling of

Embedded Software using UML 2.0,” Ninth

IEEE International Symposium on Object and

Component-Oriented Real-Time Distributed

Computing (ISORC'06).

[14] Martin Grant, Lavagno Luciano, Jean Louis-

Guerin, “Embedded UML: a merger of real-time

UML and co-design,” Springer 2003.

[15] Helmerich, A., Koch, N. and Mandel, L., Braun,

P., Dornbusch, P., Gruler, A., Keil, P., Leisibach,

R., Romberg, J., Schätz, B., Wild, T. Wimmel, G.:

“Study of Worldwide Trends and R&D

Programmes in Embedded Systems in View of

Maximising the Impact of a Technology Platform

in the Area,” Final Report for the European

Commission, Brussels Belgium, 2005.

[16] Mohamed Mussa, Samir Ouchani, Waseem Al

Sammane, Abdelwahab Hamou-Lhadj, “A Survey

of Model-Driven Testing Techniques,” Ninth

International Conference on Quality Software

2009, Pages: 167 - 172.

AUTHORS PROFILE

Amit Prakash Singh is an

Associate Professor in

University School of

Information &

Communication

Technology, Guru Gobind

Singh Indraprastha

University, Delhi since

2012. He is working in the

are of Embedded Testing

and Artificial Neural

network.

