€
AXJCSE International Journal of Computer Sciences and Engineering [pen Access

Survey Paper

Volume-4, Special Issue-5, Jul 2016

E-ISSN: 2347-2693

MBT for Functional Testing of Embedded Systems

Mohammed Naim Khan, Namita Arya and Amit Prakash Singh*

University School of ICT
Guru Gobind Singh Indraprastha University, Dwarka, Delhi

Available online at: www.ijcseonline.org

Abstract— Embedded Systems require combination of Software Electrical and Mechanical Engineering. This leads to increased
complexity of Embedded Systems with shorter production cycle. These evolutions pose new challenges to traditional embedded
system testing approaches, because besides time constraints, embedded system products are expected to meet quality constraints
prior to their deployment in field. The Cost and Time of Testing Embedded Systems consumes a considerable portion of entire
development cycle. With Increased Complexity of Embedded Software it becomes imperative that our Functional Testing is
effective at detecting issues in the system. With the above requirements we propose to use Model Based Testing (MBT) for the
functional testing of Embedded Systems during the manufacturing process in the production line. The comprehensive and
systematic approach of MBT facilitates automated testing with reduced test time and cost along with improved quality of the

product.

Keywords— Embedded system, Model Based Testing, Functional Testing, System Testing

I. INTRODUCTION

Embedded Systems design and development is governed by
time to market and productivity constraints. This forces
researchers to improve the overall embedded system
development cycle including design, development and
Testing. Embedded systems have integrated hardware and
software components used in time critical and life critical
applications where failure results in high financial loss or
even in injury or death. As a consequence, it is important to
ensure the correctness of these systems with systematic and
comprehensive testing techniques.

Model-based testing (MBT) is defined as an approach
whereby test sequences are generated automatically from
models of the system under test, using different kinds of
computing algorithms to optimize that process. Hence
model-based Automated Test Generation (ATG) is the key
feature of MBT. MBT is used in different flavours by
several tools and projects. A more detailed list of
applications of that approach using various notations is
presented by Utting et al in their Taxonomy of Model-
Based Testing [2].

UML and UTP introduced by the Object Management
Group (OMQG) [1] are the foundations for the Model Based
Development (MBD) and Model Based Testing (MBT) of
embedded systems respectively. MBD and MBT methods
provide automation in the overall Embedded System
development cycle. Adapting automation is expected to
improve time to market, reduce cost and improve quality
constrains of Embedded System.

The challenge in Functional Testing of Embedded Systems
is the effort involved in developing and evaluating a test

© 2016, IJCSE All Rights Reserved

suite that systematically tests the system and reveals faults
effectively. To deal with increased complexity and meet the
high quality expectations of embedded systems it becomes
necessary to test the functionality of embedded system in
production line. In this paper, we present a functional test
methodology for embedded systems in production line that
helps reduce test time and improve quality of the system
being delivered. The paper is structured as follows: In
section 2 provides Background of Model Based Testing. In
section 3 related works are described. In section 4 our
approach is presented with the help of example, followed by
conclusion in section 5.

II. BACKGROUND:MODEL BASED TESTING

Software Testing consumes 30 to 60 percent of the total
development time [2]. Model Based Testing enhances the
level of automation by automatic execution of test cases
along with automatic generation of test cases. This
provides repeatable testing process confirming coverage
of all behaviours of the system and allowing tests to be
linked to system requirements.

The general process of MBT begins with modelling the
System under Test (SUT) and then the MBT tool
generates the abstract test cases from that model based
on the test strategy selected. These tests can be executed
manually by the tester as the abstract test cases are
similar to high level sequences that would be designed
manually in action word testing or keyword testing [5].
These tests cases are easily understood by humans are
complete to be used by manual tester for execution on
SUT. On the other hand automatic executable tests [6]

11

International Journal of Computer Sciences and Engineering

can be generated from the abstract test cases. Finally the
generated test suit is executed to generate the test
results. The SUT is then evaluated based on these test
results. The MBT process is divided in following steps:

A. Model the SUT

The Test model of SUT represents its expected behaviour.
Standard modelling languages like UML are used to
formalize the control points and observations points of the
system. Embedded Systems inherently exhibit state driven
behaviour so UML state charts which are extensions of
Finite State Machines (FSM) can be used. Various tools like
Spec Explorer, AGEDIS, Qtronic, Test Optimal, etc. [3] are
available for state chart modelling of UML systems.

B. Select Test Generation Criteria

There are infinite number of test cases that could be
generated for the test model of SUT, so we need to choose
some test generation criteria that would help generation test
cases for increased coverage of SUT. Various testing
strategies like equivalence partitioning, cause-effect testing,
pair-wise testing, Boundary Value Analysis, etc. [4] can be
used for test selection criteria from the model. For
embedded systems we select covering all the transitions in
state machine as our test generation criteria.

C. Test Case Generation

This is a fully automated process which generates abstract
test cases that are typically sequence of high level SUT
actions with input and its expected output for each action.
These tests can be executed manually by the tester as the
abstract test cases are similar to high level sequences that
would be designed manually in action word testing [5].
These tests cases are easily understood by humans are
complete to be used by manual tester for execution on SUT.
On the other hand automatic executable tests [6, 7] can be
generated from the abstract test cases. Various tools such as
IBM rational, HP quick Test, Test Optimal etc. [4] are
available in market for generation of test cases or test suits
from abstract models.

D. Execute the Tests

The generated test cases and test suits are executed either
manually or automatically on SUT. Constraints defined
during the model creation on the state machines like guard,
pre/post conditions of triggers, etc. [8, 9] should be
evaluated during the execution of the test cases. Many
studies show that this is an effective way of detecting
failures [10, 11].

© 2016, IJCSE All Rights Reserved

Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

E. Result Analysis

The final step in MBT is to analyse the results and take
corrective actions. The test case execution results in some
tests pass and some fail. Analysis is similar to traditional
test analysis process where the failing results indicate some
deviation from the expected behaviour of the SUT. The test
may fail due to fault in SUT or it may fail due to error in
model or requirements. Thus after result analysis we may
have to refine our model based on the fail results due to the
model error. MBT is good for finding SUT errors but it also
exposes requirement errors [2].

III. RELATED WORK

As Embedded Systems encompass every aspect of our
lives the complexity of the embedded systems increases
and with it increases the number of embedded systems
produced on daily basis. The increased complexity and
production quantity of Embedded Systems call for new
software development and test methodology. The MDD
technique is being widely adopted for developing
embedded systems as it offers several advantages over
the traditional ways of development and Testing. Studies
conducted in [12, 13] use general-purpose UML for
modeling embedded software. From Various studies we
see that UML finds widespread applicability for modeling
embedded software systems [14]. The same is also evident
from the various commercial tools available for model
based design of Embedded Systems.

For systems being designed using MDD and MDA, a
model based testing approach is suggested as it is
associated with the MDD paradigm favouring models
over code [15]. Model based testing is typically used for
generating test cases from behavioural models of system.
There has been a drastic increase in the number of model
based testing techniques and tools available both
commercial and academic in recent years. Although these
techniques have a common goal, they differ in terms of
modeling languages (e.g. UML), automatic test
generation, testing targets and tool support. A survey of
15 different studies on model based testing techniques is
provided in [15].

A majority of the model based testing techniques in [15]
focus on tools and techniques for automatically
generating test cases from models in the context of UML
diagrams and the UML Testing Profile (UTP) [6, 7, and
15]. Studies conducted in [15] show the advantages of
using model based testing approaches.

From the above discussions, it may be seen that there is a
numerous work carried out for wutilizing MDD for

12

International Journal of Computer Sciences and Engineering

embedded systems development and testing. In our
previous work we had proposed a comprehensive testing
technique for embedded system PCBA wherein we had
proposed the various testing techniques for functional
testing using USB, UART or Ethernet port. The above
methods work well but require additional code for
implementing the functional test. This may not be feasible
with memory constraint embedded system. The work
presented here is an extension of the functional testing of
Embedded Systems in production line which is applicable
to the systems developed using MDD and MDA
architecture.

IV. PROPOSED METHODOLOGY

The architecture of functional test method for embedded
system in production line is shown in figure 1.

The system under test (SUT) is connected adaptor or test
execution tool that manages the interactions with the
SUT. The adaptor records the input sequence to the SUT
and the results generated by SUT. The Adaptor is
connected to the host PC that runs the test case or test
suits and stores the result of the testing performed. The
Host PC send the test to be executed to the adaptor and
gets the result of execution from the adaptor. If online
MBT process is used the tests will be executed by the
modelling tool that would be running on host PC. So the
MBT tool itself will manage the test execution and store
the results. With offline MBT we have generated the test
suits in the form of test scripts in some existing language
that are already in use for testing purpose. These test
scripts are then running on the host PC and the results of
execution of the The results stored in the host PC are
analysed for correctness by comparing it with the
predefined expected output from the SUT. As the Model is
already stabilized during the development process of
embedded system the failures occurring are completely of
the SUT. Thus the models developed during the
development process can be effectively utilized for
functional testing of embedded system in the production
line. We next demonstrate the functional testing of
embedded system using the Test Optimal tool.

© 2016, IJCSE All Rights Reserved

Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

Adaptor / Test Execution Tool

System Under Test
(SUT)

Figure 1: Test Architecture

For the SUT we take a simple example of porch light the
behaviour of which can be stated as follows:

e There is a switch for porch light with three
states: ON, OFF and Auto.

e When switch = ON the porch light is turned ON.

e When switch = OFF the porch light is turned
OFF.

e When switch = Auto the porch light shall turn
ON or OFF based on the ambient light which is
read by light sensor in the range of 0% to 100%.

e At start up in auto mode the porch light shall
turn ON/OFF if ambient light is below/above
40%.

e In Auto mode the porch light shall turn ON if
ambient light falls below 40%.

e In Auto Mode the porch light will turn OFF if
ambient light is more than 60%.

The top level model for the porch light is shown in figure 2
and the test optimal model is shown in figure 3.
The Test Optimal model requires a start state and an end

state. The same is depicted in the model. From the Init
state we have three outgoing transitions depicting the
three states of switch: ON, OFF and Auto. The Auto state
has single outgoing transition to the check brightness
that measures the ambient light and accordingly switches
to ON or OFF state. In Auto mode we continuously need
to monitor the ambient light so both ON and OFF state
return to Auto state for the brightness measurement. The
state is only changed if required conditions are met. The

13

International Journal of Computer Sciences and Engineering

input switch can toggle at any time asynchronously so
from all the three states ON, OFF and Auto we have a
transition back to Init state and finally we have
transitions to End state from ON and OFF state as
required by Test Optimal tool.

—1 Switch

Porch Light p———————

- Sensor

Porch Light Controller

Figure 2: Top Level Model of Porch Light Controller

Test Optimal supports various test generation criteria we
select random walk greedy algorithm with 100% coverage
to test case generation. The other options are shown in
figure 4.

parcert

Maodel Of Porch Light Controller

Figure 3: Test Optimal Model

The random walk greedy approach ensures coverage of all
the transitions in the model. It prefers un-traversed
transitions over already traversed transitions, as the
result it can achieve better coverage of the model more
quickly.

The execution coverage of the model with the selected test
case generation and specified coverage criteria can be
seen from the coverage graph. The Coverage graph of
porch light controller is shown in Figure 5.

© 2016, IJCSE All Rights Reserved

Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

Test Generation Criteria selection

Figure 4: Test Generation Option

The coverage graph is very helpful when due to time
limitations in the production line we would like to test
only critical paths of our model that affect the SUT in
such a manner that it can cause system failure. So
coverage graph helps us visualize the transitions being
tested when we set certain priority for state traversal test
using MScript in test optimal. Using MScript we can set
guard conditions, certain specific actions for data path or
control path coverage.

Model Execution Coverage Graph

Auto_State

Check_Brightness

Check_Brightness
Off_Auto

more than 60

|huto_Init |Auto_Mode
percent

OFF_State
! . lon_Auto

less than 40

el OFF _Init

OFF_Button_Pressed

initstate £

[Off_End OMN_Button_Pressed

ON_State

/N_En-:l

EndState

Figure 5: Coverage Graph

The test optimal tool also provides the Test sequence
diagram that gives the test sequence in the form of
transition diagram depicting all the states in the model

14

International Journal of Computer Sciences and Engineering

and how the tests proceed from one state to another. The
same information can be obtained in tabular form.

The Test sequence diagram for the porch light controller
is shown in Figure 6. As can be seen from the test
sequence diagram the tool has automatically generated
three test coverage paths from Init state to End state and
each time the test sequence traverses through different
path in order to cover all the states and paths in the
model.

Test Sequence Diagram

‘@f- '"“Slﬂ‘e[Auto_State ‘ ‘ OFF,s:a«e| lChE(kiElnghtneﬁsl IOV‘L&L}[EJ (@ Endstate

15 less than 40 percent

| 26 less than 40 percent _ !
125 less than 40 parcent !

1350N End !
LIS ONCERd)

‘('g.‘ InitState [ﬂ\\.llU,‘Sld'.ﬁ l ‘ CJFF,‘F.:;I\:‘ | ‘ Crw-:k,El;uevm:s: | | Ort";mw ‘ ‘-"g; EuldSuL:J

Figure 6: Test Sequence Diagram

These state transitions represent test cases for the model.
These can be further fine-tuned as per the requirements
by using the MScript. Test Optimal has inbuilt support for
web based testing. We can also have the test cases
generated for offline testing by using the traditional
scripts that run on the host PC and collect the results from
the SUT in response to each test case executed. These
scripts further validate the results against the expected
output from the SUT.

Thus MBT leads to automatic generation of test cases
that can be optimised as per the requirement of critical
path, cost and time constraint in the production line. This
results in efficient and effective functional test strategy
for Embedded System.

© 2016, IJCSE All Rights Reserved

Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

V. CONCLUSION

Embedded systems are covering more and more aspects of
our daily life thus increasing in complexity and finding
application in safety critical applications. This increases the
number of Embedded Systems produced on daily basis and
also it is necessary to functionally test the embedded
systems for quality and safety. Along with this cost
constraint of embedded system due to its inherent
commercial applications restrict the test time allocation for
the embedded systems.

In this paper we have proposed a functional test
methodology of embedded system using model based
testing in the production line. This test strategy is best
suited for systems developed using MBD as the model for
the system would then be readily available. Modelling of
the system requires to put in additional efforts towards the
architecture of the system to understand its complete
behaviour. This process is helpful in finding specification
errors, omissions and conflicts. When designing the system
model, the tester should not consider test cases — the tester
should, only consider of the system behaviour.

The MBT tools provides various test execution
environments through a customizable interface and gives
end to end automation from test design to test execution and
management. MBT introduces formal modelling and
enhances the test development processes. Competency
building within the conventional tester is necessary and the
tester should be trained for modelling and programming
skill demands of MBT tools.

The functional testing of Embedded Systems using MBT
provides the benefit of High productivity maintaining Good
Quality with lower costs. For the Embedded Systems
already developed using the MBD process applying the
MBT in the production line is easily feasible increasing the
test coverage and testing the system in real time.

REFERENCES

[1] OMG: http://www.omg.org [28/04/16].

[2] Mark Utting and Bruno Legeard, “Practical
Model-Based Testingt A Tools Approach".
Elsevier, 2006.

[3] Muhammad Shafique, Yvan Labiche, “A
Systematic Review of Model Based Testing Tool

[4] Support,” International Journal on Software
Tools for Technology Transfer February 2015,
Volume 17, Issue 1, pp 59-76.

[5] Yasir Dawood Salman, Nor Laily Hashim, “An
Improved method of obtaining basic path testing

15

International Journal of Computer Sciences and Engineering

for test case based on UML State Chart,”
International Symposium on Research in
Innovation and Sustainability 2014 (ISoRIS *14)

[6] B. Beizer, “Software Testing Techniques”, Second
Edition, 1990.

[71 C. Bourhfir, R. Dssouli, E. Aboulhamid, N. Rico,
“Automatic executable test case generation for
extended finite state machine protocols,” Testing
of Communicating Systems Part of the series
IFIP — The International Federation for
Information Processing pp 75-90.

[8] Fuqing Wang, Shuai Wang, Yindong Ji, “An
Automatic Generation Method of Executable
Test Case Using Model Driven Architecture ,”
The 4th International Conference on Innovative
Computing, Information and Control (ICICIC),
2009.

[9] Fabrice Ambert, Fabrice Bouquet, Jonathan
Lasalle, Bruno Legeard and Fabien Peureux,
“Applying an MBT Toolchain to Automotive
Embedded Systems: Case Study Reports,” The
Fourth International Conference on Advances in
System Testing and Validation Lifecycle
(VALID) 2012.

[10] Jonathan Lasalle, Fabien Peureux, Frédéric
Fondement, “Development of an automated MBT
toolchain from UML/SysML models,” SI : FM &
UML Innovations in Systems and Software
Engineering December 2011, Volume 7, Issue 4,
pp 247-256

[11] Lionel Briand, Yvan Labiche, “A UML-Based
Approach to System Testing,” UML 2001 — The
Unified Modeling Language. Modeling
Languages, Concepts, and Tools Volume 2185 of
the series Lecture Notes in Computer Science pp
194-208.

[12] L. C. Briand; M. Di Penta; Y. Labiche, “Assessing
and improving state-based class testing: a series
of experiments,” IEEE Transactions on Software
Engineering 2004, Volume: 30, Issue: 11 Pages:
770 - 783.

[13] Sang-Uk Jeon, Jang-Eui Hong, Doo-Hwan Bae,
“Interaction-based Behavior = Modeling of
Embedded Software using UML 2.0,” Ninth
IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed
Computing (ISORC'06).

[14] Martin Grant, Lavagno Luciano, Jean Louis-
Guerin, “Embedded UML: a merger of real-time
UML and co-design,” Springer 2003.

© 2016, IJCSE All Rights Reserved

Vol.-4(5), Jul 2016, E-ISSN: 2347-2693

[15] Helmerich, A., Koch, N. and Mandel, L., Braun,
P., Dornbusch, P., Gruler, A., Keil, P., Leisibach,
R., Romberg, J., Schatz, B., Wild, T. Wimmel, G.:
“Study of Worldwide Trends and R&D
Programmes in Embedded Systems in View of
Maximising the Impact of a Technology Platform
in the Area,” Final Report for the European
Commission, Brussels Belgium, 2005.

[16] Mohamed Mussa, Samir Ouchani, Waseem Al
Sammane, Abdelwahab Hamou-Lhadj, “A Survey
of Model-Driven Testing Techniques,” Ninth
International Conference on Quality Software
2009, Pages: 167 - 172.

AUTHORS PROFILE

Amit Prakash Singh is an
Associate Professor in
University ~ School of
Information &
Communication
Technology, Guru Gobind
Singh Indraprastha
University, Delhi since
2012. He is working in the
are of Embedded Testing
and Artificial Neural
network.

16

