3
AX]CSEInternational Journal of Computer Sciences and Engineering pen Access

Research Paper Volume-4, Issue-7 E-ISSN: 2347-2693

Security Model for Object Oriented Applications

Amanpreet Kaur

Department of Information Technology
Lovely Professional University, Jalandhar, Punjab, India

Available online at: www.ijcseonline.org

Received:20/Jun/2016 Revised: 30/Jun/2016 Accepted: 21/Jul/2016 Published: 31/Jul/2016

Abstract —Object oriented platform allow us to create ‘n’ number of objects of a class without imposing any constraints. By
taking advantage of this feature, unknown objects of known and unknown classes can also be created in an application by the
intruder. This paper presents a security model for object oriented platform to overcome such issues. In this paper, | have raised

security issues related to object oriented applications. | have also discussed the needs of security for these applications.

Keywords — Inheritance; Object; Unknown classes; Unknown Objects

l. INTRODUCTION

Objects are the basic run time entities in object oriented
system ™ They can represent a person, an employee, a
student, a table, or anything. Object oriented systems
divides a problem into number of entities called objects
and has data and functions associated with these objects.
It has features like data encapsulation, polymorphism,
message passing, inheritance, and dynamic binding. %

Object oriented platform makes it easier for a developer to
convert a real life problem into a computer based
application by using the ‘reusability’ feature. It can be
used to develop business based applications effectively to
manage data of an organization

Example 1.1: ‘emp.cpp’

class emp
{
int emp-id; //represents the id of an employee
char *name; //represents the name of an employee
public:
emp() //default constructor of class ‘emp’
{
}
void enter_id(int x,char *name)
{ //methods of class ‘emp’

this->emp_id=x;
this->name=name;

void show_id()

{

cout<<"\n id of an employee ="<<emp_id;
cout<<”\n name of an employee="<<name;

}
¥

class salary:public emp

{

© 2016, 1JCSE All Rights Reserved

int salary; //derived class ‘salary’ from ‘emp’

public:
salary() //default constructor of ‘salary’

{
}

void enter_salary(int x)

{ //methods of class ‘salary’
salary=x;

}

void show_salary()

{
cout<<’\n salary of an employee is="<<salary;

}

Y

Description:

In the above example, salary is derived from emp to
add salaries with the names of employees. Two objects s1
and s2 of type salary are created to hold the data of
employees.

salary s1;
salary s2;
sl.enter_id(1,aman);
sl.enter_salary(10,000);
s2.enter_id(2,garima);
s2.enter_salary (20,000);

TABLE 1
EMP DATA
Objects ID Name Salary
sl 1 Aman 10,000
s2 2 Garima 20,000

“Objects holding data of employees”

60

International Journal of Computer Sciences and Engineering

In an application, known classes and objects are those
which are created by an authorized person whereas
unknown classes and objects are those which are created
by an unauthorized person. Let us assume, s1 and s2 be
the known objects of known class ‘salary’.

In the below sections, security issues of object oriented
applications are discussed. A proposed security model for
object oriented applications is discussed.

I1. SECURITY ISSUES OF OBJECT ORIENTED
APPLICATIONS

If an unauthorized person has access to class definitions
and methods of a defined class hierarchy then creating an
unknown objects of it is an easy task for him. Through
unknown objects of known classes, he will add unknown
data in the database of an application ™

Inheritance is the special feature of object oriented
system. It allows us to reuse a class ‘n’ number of times to
derive new and more functional classes without bothering
about any constraints. It can be used to develop effective
business applications to manage data of an organization. If
an intruder has access to class definitions and methods of
an application then he can easily inherit a defined class
hierarchy. He will add unknown classes to it. Through
unknown objects of unknown classes, he will add
unknown data in the database of an application.

Security issues are always different of different
organizations. So, there is a need of such an embedded
security model in object oriented platform which can be
easily customized by developer for his application.

I11. PROPOSED SECURITY MODEL TO IDENTIFY
UNKNOWN CLASSES

The verification phase shown in Figure 5 should be
included as an inbuilt feature of object oriented platform.
Following should be the components of verification
phase:
¢ An inbuilt string type variable should store type of an
object before the object starts its inbuilt process of
creation. Its value should be updated whenever a new
object starts its process of creation. To understand the
functioning of the security model, let’s assume
‘check_type’ to be that variable.
salary s1; [check type= “salary”]
emp el; [check type= “emp”]
department d1; [check type= “department”]
e A file should be provided with object oriented
platform which would be maintained by the developer
(if he wishes to). The file should be designed to store
the names of classes. If file is empty, then verification
block will check nothing from it. In that file, developer
can add the names of classes, he wishes to create in an
application. The file permissions can be controlled by
the developer. He can make it non-readable and non-
editable for others to stop the addition of unknown

© 2016, 1JCSE All Rights Reserved

Vol.-4(7), PP(60-65) Jul 2016, E-ISSN: 2347-2693

classes by unauthorized people. Let’s assume the name
of file is ‘type_database’.

Verification phase will crosscheck the current value of
‘check type’ with the data of ‘type database’ file,
whenever an object will start its process of creation. If the
current value of ‘check type’ matches with any entry of
‘type _database’ file then object should be created else it
should be destroyed and an error on the output device
should be shown. In this way, unknown objects of
unknown classes will automatically got rejected.

Verification phase should be included as an inbuilt
process at the time of creation of an object in object
oriented platform. This phase will not only provide
security to the application, in fact, the complete object-
oriented platform on the system will be under the
developer's control.

The object oriented platforms should impose restriction on
creating more than one class with the same name. For
example: if 'salary' is an existing class on system then
another class designed to maintain the salaries of another
department should be created with the different name.
This approach will stop the entry of unknown classes
which are created on the same name of known classes.

IV. SECURITY MODEL TO STOP UNKNOWN OBJECTS OF
KNOWN CLASSES

An unauthorized person can create the unknown
objects of those classes which will pass the verification
phase. So, there is a need of protecting class definitions
and methods from intrusion.

Class definitions and methods should be non-editable
and non-readable for everyone except the authorized
person./”’Known objects should be protected by developer
to avoid the modification of existing data in the database.
Class definitions and methods should be protected to stop
the addition of unknown classes in it.

Creation of object:
cmp el:

Implicit calling
emnp():
Address:0x23111 ¢

Fig.1. Inbuilt Process to Create an Object of Class ‘Emp’

The inbuilt procedure of creating an object of the class
is: an implicit call to its own class default constructor at
run time i.e. calling emp ()®'So, emp () should be
modified in a way that it rejects unknown objects of
known classes.

Example 4.1

int objects_created=0; //represents no. of objects created
by the developer in application so far//

61

International Journal of Computer Sciences and Engineering

int size=5; //represent constraint on number of
objects specified by developer//

void exit(void) //method to stop the further process of
creation of an unknown object//

{
cout<<”\n unauthorized access”;
getch();
class emp
{
public:
emp() //customized default constructor of ‘emp’//
object_created++;
if (objects_created>=size)
{
exit();
}
}
j3
Description:

When the object of emp class will call emp () at the
time of its creation, ‘objects created’ variable will be
incremented. In the above example, developer will create
five objects of emp class according to his requirement.
After that, any object accessing emp () will be directed to
exit () method, which will show an error of ‘unauthorized
access’. Class definitions should be non-editable and non-
readable for everyone, except developer. So only he, can
change the constraints on number of objects. In this way,
an unknown object will be unable to access methods of
the class.

A. Security of Inheritance

Inheritance is the special feature of object oriented
system™® Inheritance allows us to reuse a class ‘n’ number
of times to derive new and more functional classes
without bothering about any constraints. The inbuilt
process of creating the object of derived type class is
different from the non-derived type class. To reject
unknown objects, in case of inheritance, a different
approach will be used.

1)Security of Single Level Inheritance

emp
salary

Fig.2. Single Level Inheritance

© 2016, 1JCSE All Rights Reserved

Vol.-4(7), PP(60-65) Jul 2016, E-ISSN: 2347-2693

Description:

Figure 2 shows that emp is a base class for salary.
These (emp and salary) are assumed as known classes of
defined class hierarchy.

Fig.3. Inbuilt process to create an object of ‘salary’
,and ’emp’

In single-level inheritance, the inbuilt process of
creating a derived class object is: first implicit call to its
base class default constructor, after that, an implicit call to
its own class default constructor. At the time of creation, a
memory address will be assigned to the object. The inbuilt
process of creating ‘salary s1'is: first call to emp (), after
that, a call to salary ().Figure 3 shows that to stop the
creation of unknown objects of salary and emp, ‘emp ()’
should be programmed in such a way that it rejects
unknown objects of class salary.

Example 4.2: ‘emp.cpp’

int objects_created=0; //represents number of
created in an application so far//

objects

int size=5; //represents constraint on number of objects
specified by developer//

void exit(void)
{ // method to stop the further process of creation of an
unknown object//

cout<<”\n unauthorized access”;

getch();

class emp

{
emp()
{

if (objects_created>=size)

//customized default constructor of ‘emp’

exit();
}
}
}
h
Class salary: private emp

{

62

International Journal of Computer Sciences and Engineering

salary()
{

}
¥

Description:

The above example shows class definitions and
methods of emp and salary. It is able to create five known
objects of either emp or salary or both because ‘size’
specified by developer is five. Only developer will be
able to change the constraints on number of objects
because class definitions are under his control. When
unknown objects (after fifth object) of salary or emp will
start their process of creation they will first access emp (),
which will call exit () method for them. Exit () method
will show an error of ‘unauthorized access’ and stop the
further process of creation of the unknown objects of
salary i.e. calling salary (). If unknown objects of class
salary or emp will not be created they will be unable to
access methods of these classes.

The verification phase is not used for identifying
unknown objects of known classes because in emp ()
developer can easily use different type of operators (>=,
<,>, <=) according to his requirements which would be
tough in case of verification phase.

2) Security of Multilevel Inheritance

Vol.-4(7), PP(60-65) Jul 2016, E-ISSN: 2347-2693

cnp

anlary

I

departnnnant

Fig.4. Multilevel Inheritance

Description:

In Figure 4, Department inherited salary which is
derived from emp class. These are assumed as known
classes of an application.

Class Definitions

Verification Phase

Object Declaration

Class arnp|

salary ol
salaey o2
o lenter_ad(l.aman),
s 2enter_3d2 parima) g

)

=
& elsn

\‘“""
N)

Choek_type="salsy -

Object Creation Process | i8 "check _type
> austched frons siny antry of
tvpe database” file) eait]),

value gat

b J Allow the object

rerect the abject

Allowed Objects o ects_crostec>«size)

Clman salary public smp

Locked by Developer

&£
&<

g Inbullt Process

Locked By Developer

— L
Type Database

Salan
Depactineist
P

Maintained and Locked
by Developer

Fig.5. Working of security model in an application

© 2016, 1JCSE All Rights Reserved

63

International Journal of Computer Sciences and Engineering

|Lreanon o1 0Djec

department d!:

il‘.: cp| }-~salaryl }- 'Lj;‘p irtment

Address:0x23fi04

emp()

Address:0x23ffefc

1

Fig.6. Inbuilt process to create an object of department,
salary, and emp

Description:

In multi-level inheritance, the inbuilt procedure of
creating a derived class object is: first implicit call to its
base class’s base class default constructor then an
implicit call to its own base class default constructor,
after that, an implicit call to its own default constructor.
To complete the creation process, ‘Department d1’° will
implicitly call emp() (default constructor of base class of
‘salary’) ,salary() (its own base class default constructor)
and department() in order. Figure 6 shows that to stop
the process of creation of unknown objects of
department and salary, emp()(default constructor of base
class ‘emp’) should be programmed like Example 4.2
according to requirements. Exit () method will stop the
further process of creation of the unknown objects of
department (i.e. calling salary () ->department) and
salary (i.e. calling salary ().

3) Security Issues of Multiple Inheritance

department salary

emp

Fig.7. Multiple Inheritance

© 2016, 1JCSE All Rights Reserved

Vol.-4(7), PP(60-65) Jul 2016, E-ISSN: 2347-2693

Description:

In Figure 7, department and salary are assumed as
known base classes for emp. The inbuilt process of
creation of an object of derived type class in multiple
inheritance is different from that of multilevel
inheritance. In multiple inheritance the order of implicit
calling of base class default constructor follows the order
of position of base class in derived class declaration.

For example class emp: public department, public
salary.
Creation of object

emp el

salary sl

department dl.

llm]‘huxl calling

¢l
depmrtment()->salary()-=emp{)
Address:0x231M1 11

'--IIHK}I)
Address:0x23111¢

department{)
Address:0x23ff1d

Fig.8. Inbuilt process to create an object of emp, salary, and
department

Description:

Figure 8 shows that to complete the inbuilt process of
Creation, ‘emp el’ will implicitly call department () (the
first inherited base class default constructor), salary ()
(the second inherited base class default constructor) and
emp () (its own default constructor) in order. To put
constraint on the number of objects of emp and
department, department () should be customized
according to developer’s requirements like Example 4.2.
Customized department () will not be able to impose
restrictions on those objects which are of type ° salary’
as it is an independent class and its objects will call
salary() at the time of creation.

V.CONCLUSION

Due to different security requirements of
organizations there is need of security model which can
be easily customized by the developer or owner.*® The
verification phase as an inbuilt feature in object oriented
platform will filter the unknown classes for a developer.
The verification phase will protect the object oriented
platform. The ‘type database’ file can be easily
protected by the developer by changing the permissions.
Locking of class definitions and methods will stop the
unknown additions of classes in it. Putting constraints in
default constructor of a class will protect the methods of
a class by stopping the unknown access to them. So,
discussed methods will make object oriented platform
more secure.

64

International Journal of Computer Sciences and Engineering

REFRENCES

[1] E.B. Fernandez, R.C. Summers, and C. Wood,
“Database Security and Integrity,” Addison-Wesley,
February 1981.

[2] T.F. Keefe, “SODA: A Security Model For Object-
oriented Management Systems”, Proceedings of 15"
International Computer Software and Applications
Conference, Tokyo, Japan, September 1991.

[3]1 Jonathan K. Millen and Teresa F. Lunt, “Security
for Object-Oriented Database Systems,” IEEE 1992.

[4] Elisa Bertino, “Data Hiding and Security in Object-
Oriented Databases”, Eighth International
Conference on Data Engineering, 338-347, February
1992.

[5] Juhnyoung Lee, Sang H.Son, Myung-Joon Lee,
“Issues in devolving object-oriented databases
systems for real-time applications,” IEEE 1994.

[6] Y. Oki, T. Chikaraishi, T. Shimomura and T. Ohta,
“A Design Method for Data Integrity in Object-
Oriented Database Systems,” IEEE 1995.

[7] Roshan K. Thomas and Ravi S. Sandhu, “A Trusted
Subject Architecture for Multilevel Secure Object-
Oriented Database,” IEEE Transactions on
Knowledge and Data Engineering, Vol. 8, No. 1,
February 1996.

[8] Elisa Bertino and Ravi Sandhu, “Database Security-
Concepts, Approaches, and Challenges”, IEEE
Transactions on Dependable and Secure Computing,
Vol. 2, No.1, January-March 2005.

[9] Ni Xianjun, “A Logic Specification and
Implementation Approach for Object Oriented
Database Security,” Workshop on Knowledge
Discovery and Data Mining, |IEEE 2008.

[10]Sohail IMRAN and Dr. Irfan Hyder, “Security
Issues in Databases”, Second International
Conference on Future Information Technology and
Management EngineeringlEEE 2009.

[11]Leon Pan, “A Unified Network Security and Fine-
Grained Database Access Control Model,” Second
International Symposium on Electronic Commerce
and Security, 2009.

[12]Mansaf Alam “Access specifiers Model for Data
Security in Object Oriented Databases,”Eighth
International Conference on Information
Technology: New Generations, IEEE 2011.

[13 JHussain Al-Agrabi; Lu Liu; Richard Hill; Zhijun
Ding; Nick Antonopoulos“Buisness Intelligence
Security on clouds:Challenges,Solutions and Future
Directions”,IEEE 2013

[14 INitish Pathak; Girish Sharma; B. M. Singh
“Designing of SPF based secure web application
using forward engineering”,IEEE 2015.

[15]S. Nagaparameshwara Chary, B.Ram “Analysis of
Classification Technique Algorithms in Data
mining- A Review*,|JCSE 2016.

© 2016, 1JCSE All Rights Reserved

Vol.-4(7), PP(60-65) Jul 2016, E-ISSN: 2347-2693

Author Profile

Amanpreet Kaur received the
License degree Information
Technology in 2013, then she
received the M.S degree in
Information Technology in
2014(Integrated), from Lovely
Professional University, Jalandhar,
Punjab, India. Her research interests are Object Oriented
Databases.

5,

65

